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Medium effects on pion production in heavy ion collisions
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Within the framework of the relativistic Vlasov–Uehling–Uhlenbeck transport model based on the relativistic
nonlinear NLρ interaction, we study pion in-medium effects on the π−/π+ ratio in Au + Au collisions at the
energy of E/A = 400 MeV. These effects include the isospin-dependent pion s-wave and p-wave potentials,
which are taken from calculations based on the chiral perturbation theory and the �-hole model, respectively. We
find that the π−/π+ ratio in this collision is suppressed by the pion s-wave potential but enhanced by the p-wave
potential, with a net effect of a significantly suppressed π−/π+ ratio. Including also the in-medium threshold
effects on � resonance production and decay and using a nuclear symmetry energy with a slope parameter
L = 59 MeV by reducing the coupling of isovector-vector ρ meson to nucleon, our result is in good agreement
with measured π−/π+ ratio from the FOPI Collaboration. We further investigate the pion in-medium effects on
the ratio of charged pions as a function of their kinetic energies.
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I. INTRODUCTION

The density dependence of nuclear symmetry energy
Esym(ρ) has profound impacts on both nuclear physics and
astrophysics [1–4]. While the nuclear symmetry energy be-
low and around the nuclear matter saturation density ρ0 =
0.16 fm−3 has been relatively well constrained by various
experimental probes, such as the isospin diffusion, nuclear
masses, neutron skin thickness, and giant dipole resonances
[5–16], its high-density behavior remains very uncertain. This
is very different from what we know about the equation of
state of symmetric nuclear matter. Besides its properties at ρ0,
such as its incompressibility of about 240 MeV determined
from the nuclear giant monopole resonance [17], studies
of the collective flows of nucleons in high-energy heavy
ion collisions [18,19] and the yield of kaons in heavy ion
collisions at subthreshold energies [20–23] have led to a
fairly good determination of its stiffness up to three times
ρ0. However, heavy ion collisions with neutron-rich nuclei
provide a unique approach to study the symmetry energy
at suprasaturation densities. In particular, the π−/π+ ratio
in heavy ion collisions at energies near the pion production
threshold in a nucleon-nucleon collision is believed to be a
promising probe of the symmetry energy at high densities
[24], with a softer symmetry energy giving a larger π−/π+
ratio. During the last decade, many theoretical studies based
on various transport models have been devoted to extract the
high-density behavior of nuclear symmetry energy from the
FOPI experimental data [25,26] on the π−/π+ ratio [27–29].
However, these studies have led to quite different conclusions,
and there is still no qualitative consensus on this issue. A
more in-depth understanding of pion production, such as the
threshold effects [30,31], impact of energy conservation [32],
and pion in-medium effects [33–37], is therefore important.

In Ref. [31], based on the relativistic Vlasov–Uehling–
Uhlenbeck (RVUU) model including explicitly the different
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isospin states of nucleons, � resonances, and pions, the
threshold effect, i.e., the change of pion production threshold
in nuclear medium as a result of nucleon and � resonance
potentials, on the π−/π+ ratio and the total pion yield has
been studied. A considerable increase of the π−/π+ ratio is
observed after including the threshold effect and, in particular,
the threshold effect reverses the effect due to the stiffness of
nuclear symmetry energy on the π−/π+ ratio. In this study,
the pion in-medium effect is, however, not considered. Since
studies based on a thermal model have indicated that the pion
in-medium effect on the π−/π+ ratio is comparable to that
due to the symmetry energy [33,34], it is thus important to
include this effect in the transport model to better understand
the symmetry energy effect on pion production in heavy ion
collisions. In this work, we extend the isospin-dependent
RVUU model of Ref. [31] to include the isospin-dependent
pion s-wave and p-wave potentials in nuclear medium, which
we take from calculations based on the chiral perturbation
theory [38] and the �-hole model [39–41], respectively. The
effects of pion potentials on the π−/π+ ratio in central
Au + Au collisions at E/A = 400 MeV are then investigated,
and the results are compared with the experimental data from
the FOPI Collaboration [26].

This paper is organized as follows: In Sec. II, we review the
pion dispersion relation in nuclear medium due to its s-wave
and p-wave interactions with nucleons. We then discuss in
Sec. III the decay widths of � resonances that include the pion
in-medium effect. The extended RVUU model, which includes
both the pion in-medium effect and the threshold effect, are
presented in Sec. IV. Results on pion production in heavy ion
collisions based on the extended RVUU model are shown and
discussed in Sec. V. Finally, we give a summary in Sec. VI.

II. PION DISPERSION RELATION IN NUCLEAR MEDIUM

In nuclear medium, a pion acquires a self-energy from its
s-wave and p-wave interactions with nucleons. As a result, the
pion dispersion relation in nuclear medium becomes

ω2 = m2
π + k2 + �S + �P (ω,k), (1)
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FIG. 1. Density dependence of the energy of a pion at fixed
momentum k = 200 MeV due to its s-wave interaction with nucleons
in asymmetric nuclear matter of isospin asymmetry δ = 0.2. The
black line indicates the case for a free pion.

where mπ = 138 MeV is the mass of pion, and �S and �P

are the self-energies of the pion due to its respective s-wave
and p-wave interactions with nucleons.

A. s-wave pion self-energy

For the pion s-wave self-energy in nuclear medium, it has
been calculated up to the two-loop approximation in chiral
perturbation theory, and detailed expressions can be found in
Ref. [38]. In Fig. 1, we show the density dependence of the pion
energy after including the contribution from the pion s-wave
self-energy. Here the pion momentum is fixed at 200 MeV
and the isospin asymmetry of nuclear matter, which is defined
by δ = (ρn − ρp)/(ρn + ρp) with ρn (ρp) being the neutron
(proton) density, is taken to be δ = 0.2. It can be seen that, for
π− and π0, the s-wave interactions are always repulsive, while
for π+ the s-wave interaction is attractive at low densities but
repulsive at high densities. Since the pion s-wave self-energy
is momentum independent, its contributions can be absorbed
into the mass term in Eq. (1) by defining the pion effective mass
as m∗

π = (m2
π + �S)1/2. We easily find m∗

π− > m∗
π0 > m∗

π+ in
neutron-rich matter.

B. p-wave pion self-energy

The pion p-wave self-energy in nuclear medium has usually
been studied via the �-hole model. For a pion in isospin state
mt and of energy ω and momentum k in nuclear medium, its
self-energy due to the p-wave interaction is given by [39–41]
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with

ω� = k2

2m0
+ m0 − mN. (3)

Here mN = 939 MeV and m0 = 1232 MeV are the mass of
nucleon and � resonance, respectively, ρ = ρn + ρp is the
nuclear density, f� � 2.3 is the πN� coupling constant, b �
7mπ is the cutoff of the πN� form factor, mτ is the nucleon
isospin state, and 〈 3

2 ,mt + mτ |1,mt ; 1
2 ,mτ 〉 is the Clebsch–

Gordan coefficient from the isospin coupling of a pion with
nucleon and � resonance.

Including the short-range �-hole interaction via the Migdal
parameter g′ � 0.6 [39] leads to the modified pion self-energy

�
mt

P = �
mt

0

1 − g′�mt

0 /k2
. (4)

Because of the p-wave self-energy, the pion energy turns out
to be

ω2
mt

= 1
2

[
ω2

0 + ω̂2 ±
√(

ω2
0 − ω̂2

)2 + 4k2Bω�

]
, (5)
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From Eq. (5), we see that there exist two branches of
eigenstates, and the low (high)-energy branch is normally
called the pion (�-hole) branch. Each branch consists of a
pion component and a �-hole component with the probability
for the pion component given by

S = 1

1 − ∂�
mt

P /∂ω2
. (9)

We depict in Fig. 2 the density dependence (left window)
and momentum dependence (right window) of pion energies
for the two branches in asymmetric nuclear matter of ρ = 2ρ0

and δ = 0.2. Compared with that of π+, the dispersion relation
of π− is softer in the pion branch but stiffer in the �-hole
branch.

C. Pion dispersion relation

The pion dispersion relation in a nuclear medium including
contributions of both s-wave and p-wave self-energies can be
obtained from Eqs. (5) to (8) by substituting mπ in Eq. (6)
with m∗

mt
. We exhibit in Fig. 3 the density and momentum

dependence of the resulting pion energy in asymmetric nuclear
matter of ρ = 2ρ0 and δ = 0.2. In the left window, we fix
the momentum at k = 200 MeV, while in the right window
the nucleon density is fixed at ρ = 2ρ0. Due to the s-wave
self-energy, the π+ energy is lower than the π− energy for the
�-hole branch and also at momenta below about 2.5mπ for
the pion branch.
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FIG. 2. Density dependence of the energy of a pion at fixed
momentum k = 200 MeV (left window) and momentum dependence
of its energy at fixed density ρ = 2ρ0 (right window) due to its p-wave
potential in asymmetric nuclear matter of isospin asymmetry δ = 0.2.
The curves labeled by ωF and ω� are energies of free pion [Eq. (6)]
and �-hole state [Eq. (3)], respectively.

III. � RESONANCE DECAY WIDTH
IN NUCLEAR MEDIUM

The pion mean-field potentials also affect the decay width
of � resonance. In this work, we calculate the modified �
resonance decay width following the method used in Ref. [42].
For a free � resonance of mass m� and in isospin state
mT decaying into a nucleon and a pion with four-momenta
(EN, pN ) and (ω,k), respectively, its width can be calculated
from


(m�,ρ) = 1

2m�

∑
mt

∫
d3 pN

(2π )32EN

d3kdω

(2π )3

× δ
(
ω2 − k2 − m2
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)|M|2

× (2π )4δ3( pN + k)δ(EN + ω − m�)

FIG. 3. Same as Fig. 2 but with the inclusion of both pion s-wave
and p-wave potentials.
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In the above, the summations mt and i are over the isospin
state of pion and its two branches of dispersion relation,
respectively. The momentum of a pion in isospin state mt

and in the ith branch is denoted by kmt ,i , and its magnitude
can be determined by solving

m� =
√

m2
N + k2 + ωmt ,i(|k|,ρ). (11)

In Eq. (10), the invariant matrix element for the decay of a
� resonance in its rest frame is

|M|2 = C

4

(
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)2
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,
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where C = |〈 3

2 ,mT |1,mt ; 1
2 ,mT − mt 〉|2 is the square of

the Clebsch–Gordan coefficient from the isospin coupling;
p�, pN , and pπ are the four-momenta of the � resonance,
nucleon, and pion, respectively; and the factor 1/4 comes
from the average over the spin of � resonance. Using the
well-known projection operators for nucleon and � resonance,

PN (pN ) = /pN + mN, (13)

and
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we have

|M|2 = 2C
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Taking into account the short-range �-hole interaction modi-
fies the invariant matrix element to

|M|2 = 2C
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(16)

In free space, we obtain from Eqs. (16) and (4) the decay
width of � resonance,


0 = k3

12π

(
f�

mπ

)2
mN + EN

m�

e−2k2/b2
. (17)

For a � resonance of mass m0 = 1.232 GeV, the above
equation gives 
0 = 0.12 GeV, which is the same as the
empirical value.

In Fig. 4, we show the decay widths of �++ and �− as
functions of their masses after the inclusion of the pion s-wave
potential (S), the p-wave potential (P), and both the s-wave
and p-wave potentials (S + P) in asymmetric nuclear matter
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FIG. 4. Decay widths of �++ and �− as functions of their masses
after the inclusion of the pion s-wave potential (S), the p-wave
potential (P), and both the s-wave and p-wave potentials (S + P)
in asymmetric nuclear matter of ρ = 2ρ0 and δ = 0.2. The case of a
� resonance in free space is shown as black solid lines. Here nucleons
and � resonances are treated as free particles.

of ρ = 2ρ0 and δ = 0.2. Here nucleons and � resonances
are treated as free particles. For comparison, the case of �
resonance in free space is shown as black solid lines.

It is seen that including the effect of pion s-wave potential
increases the �− decay threshold and reduces its decay width.
This is because the s-wave potential increases the effective
mass of π− and therefore reduces the π− momentum k.
The �+ width remains, on the other hand, almost unchanged
since the pion s-wave potential only has little effects on the
π+ effective mass around 2ρ0. Therefore, including the pion
s-wave potential is expected to suppress the π−/π+ ratio in
heavy ion collisions.

From the middle panel of Fig. 4, we see that the threshold
for � resonance to decay into a pion in the �-hole branch is
very large (∼1.36 GeV), making its contribution less important
than that due to decay to the pion branch. Therefore, in the
present work that focuses on low-energy heavy ion collisions,
we neglect the decay of � resonance into a pion in the �-hole
branch. For the decay of � resonance to a pion in the pion
branch, we find that its width is increased by the pion p-wave
potential for small � resonance masses but reduced for large �
resonance masses. This is due to the competition between the
decreasing probability factor S and increasing decay matrix
element and phase space with increasing � resonance mass.
For low-energy heavy ion collisions, the process � → N + π

is therefore enhanced by the pion p-wave potential. In
particular, since the pion dispersion relation in nuclear medium
is softened by the pion-nucleon p-wave interaction, the decay
width of � resonance becomes larger and thus enhances its
decay. Although the pion s-wave potential generally decreases
the width of a � resonance, including both pion s-wave
and p-wave potentials still leads to an enhanced decay of �
resonances as shown in the bottom panel of Fig. 4.

In the present study, we also include the � resonance and
nucleon in-medium effects by substituting their masses mn

and m� in Eq. (16) with corresponding effective masses m∗
N

and m∗
� given in Ref. [31]. In this case, instead of Eq. (11),

the momentum of the pion from the decay of a � resonance in
nuclear medium is determined by solving

m� + �0
� =

√
m∗

N
2 + k2 + �0

N + ω(k,ρ), (18)

where �0
N and �0

� are the time components of nucleon and
� resonance vector self-energies in the laboratory frame,
respectively, which are also given in Ref. [31]. In the above,
we have neglected the spatial components �� and �N of the
nucleon and � resonance vector self-energies since they are
small compared with corresponding time components.

IV. RELATIVISTIC VLASOV–UEHLING–UHLENBECK
MODEL

To study the pion in-medium effects in heavy ion collisions,
we extend the RVUU model [31] by including them on the
production and absorption of � resonances and pions as well
as the propagation of pions.

For the reaction N + N ′ → N ′′ + �, the pion mean-field
potential affects its threshold via the minimum mass m∗

�,min of
� resonance that can decay into nucleon and pion, which can
be determined according to

m∗
�,min = mink

{√
m∗

N
2 + k2 + �0

N − �0
� + ω(k,ρ)

}
, (19)

where the spatial components of nucleon and delta vector
self-energies are again neglected. In free space, one has
ω = (m2

π + k2)1/2, and m∗
�,min is just equal to mN + mπ . While

the effect of the pion s-wave potential can be easily included by
replacing mπ with m∗

π , it is nontrivial to include the effect of
the pion p-wave potential. However, for low-energy heavy
ion collisions, the effect of the pion p-wave potential on
the minimum mass of � resonance can be safely neglected.
To illustrate this point, we show in Fig. 5 the momentum
dependence of (m2

N + k2)1/2 + ω(k) with the inclusion of both
pion s-wave and p-wave potentials in symmetric nuclear
matter at different densities. It is see that, even at the high
density of ρ = 3ρ0, the minimum mass is only slightly less
(<1 MeV) than the value at k = 0, i.e., mN + m∗

π . Therefore,
we neglect in this study the effect of the pion p-wave
interaction on the reaction N + N ′ → N ′′ + � and evaluate
the minimum mass of � according to

m∗
�,min = m∗

N + m∗
π + �0

N − �0
�. (20)

For �0 and �+, which may have different minimum masses
in their two different decay channels, we use the smaller
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FIG. 5. Sum of nucleon and pion energies EN + ω(k) as a
function of pion momentum k in symmetric nuclear matter at
different densities with the inclusion of both pion s-wave and p-wave
potentials. Here the nucleon is treated as a free particle.

one to determine the production threshold of � resonance.
Since m∗

π− > m∗
π+ in neutron-rich matter, the above equation

thus indicates that the pion s-wave potential suppresses the
production of �− more than �+ and therefore may reduce the
charged-pion ratio in heavy ion collisions.

In the RVUU model, the � resonance is treated as a
particle of various masses according to the Lorentzian function
[43–45]. In the present study, this is generalized to

P (m∗
�) = p∗

f m∗
�
tot(m∗

�)(
m∗2

� − m∗2
0

)2 + m∗2
0 
2

tot(m
∗
�)

, (21)

where m∗
� and m∗

0 are the shifted � resonance mass and pole
mass by the scalar mean field, p∗

f is the kinetic momentum of
the � resonance in the center-of-mass frame of final nucleon
and � resonance, which is defined by their kinetic momenta,
i.e., p∗

N ′′ + p∗
� = 0, and the decay width 
tot is the total decay

width calculated using the method introduced in Sec. III.
The RVUU model also includes the inverse reaction N ′′ +

� → N + N ′. Its cross section is related to that of the reaction
N + N ′ → N ′′ + � via the detailed balance relation [43–45],

σ (N ′′� → NN ′) = m∗

8m2
0

1

1 + δNN ′

p∗2
i

p∗
f

σ (NN ′ → N ′′�)

×
[∫ m∗

max

m∗
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dm

2π
P (m)

]−1

, (22)

where p∗
i is the nucleon kinetic momentum in the frame of

p∗
N + p∗

N ′ = 0.
The maximum effective mass of �, m∗

�,max, in above
equation can be determined by evaluating the square of the
center-of-mass energy

s = (√
m∗2

N ′′ + p∗2
N ′′ + �0

N ′′ +
√

m∗2
� + p∗2

� + �0
�

)2

− (pN ′′ + p�)2 (23)

in the frame of p∗
N + p∗

N ′ = p∗
N ′′ = p∗

� = 0. Denoting the
nucleon and � resonance self-energies �N and �� in this
frame by �′

N and �′
�, respectively, we then have

s = (
m∗2

N ′′ + �0′
N ′′ + m∗2

� + �0′
�

)2 − (�′
N ′′ + �′

�)2, (24)

which leads to

m∗
�,max =

√
s + (�′

N ′′ + �′
�)2 − m∗

N ′′ − �0′
N ′′ − �0′

�. (25)

The decay of a � resonance during each time step of dt in
the RVUU model is treated by the Monte Carlo method with
the decay probability given by

P = 1 − exp[−dt
tot/γ ], (26)

where γ = E�/(E2
� − p2

�)1/2 is the Lorentz factor for the
� resonance. The charge state of emitted pion is chosen
according to the branch ratio 
mt

/
tot with 
mt
being the

partial decay width. In determining the four-momentum of
the pion, we assume that the pion is emitted isotropically in
the frame F ′ of p∗

N + pπ = 0. This frame can be obtained
from the laboratory frame by a Lorentz transformation with
the velocity

β = p∗
N + k

E∗
N + ω

= p� − �N

E� − �0
N

, (27)

where �N is the nucleon mean field in the laboratory frame.
Here we use the conditions of canonical energy and momen-
tum conservation; namely, E� = EN + ω and p� = pN + k.
After randomly generating a direction for the kinetic momen-
tum p∗′

N of the emitted nucleon in the frame F ′, its kinetic
momentum p∗

N in the laboratory frame can be determined if its
magnitude p∗′

N is known. In terms of the pion three-momentum,
p� − p∗

N − �N, p∗′
N can then be determined from the energy

conservation condition,

E� =
√

m∗2
N + p∗2

N + �N + ω(ρ,| p� − p∗
N − �N |). (28)

The motion of a pion in the RVUU model obeys the classical
equations of motion, i.e.,

ṙ = dω

dk
, (29)

k̇ = −∇ω. (30)

Since dω/dk is less than that of a free pion in both the pion
and �-hole branches, pions moves slower in nuclear medium.

A pion can be absorbed by a nucleon to form a � resonance.
In the case that the nucleon and � resonance are free particles,
the cross section for the reaction N + π → � in the center-
of-mass frame can be evaluated as

σ =
∫

dm�

2π
A(m�)

∫
d3 p�

(2π )32E�

|MNπ→�|2
4(ENω)|vN − vπ |

×(2π )4δ3( pN + k − p�)δ(EN + ω − E�)

= 1

8m2
�k

|MNπ→�|2A(m�), (31)

064604-5



ZHEN ZHANG AND CHE MING KO PHYSICAL REVIEW C 95, 064604 (2017)

FIG. 6. Cross sections of the reaction π+ + p → �++ and
π− + n → �− as functions of

√
s with inclusion of the pion s-wave

potential (S), the p-wave potential (P) and both s-wave and p-wave
potentials (S + P) in asymmetric nuclear matter of ρ = 2ρ0 and
δ = 0.2. For comparison, we also show the cross section for free pions
as black solid lines. Here nucleons and � resonances are treated as if
they are in free space.

where A(m�) is the spectral function of � resonance [43–45],

A = 4m2
0
tot(

m2
� − m2

0

)2 + m2
0


2
tot

. (32)

In obtaining the second expression in the above equation, we
have used the relation |vN − vπ | = | pN/EN − dω/dk| for
the relative velocity between the nucleon and pion. Using
the detailed balance relation |MNπ→�|2 = 2|M�→Nπ |2 and
Eq. (10) results in the following expression for the pion
absorption cross section by a nucleon:

σ = 8π

k2

1

S(k,ρ)

m2
0

tot(

m2
� − m2

0

)2 + m2
0


2
tot

. (33)

Medium effects due to the pion and nucleon potentials
on the pion absorption cross section can be included in
the above formula with the pion momentum k calculated
according to Eq. (11) and using the nucleon and � resonance
effective masses. Taking the reactions π+ + p → �++ and
π− + n → �− as examples and ignoring the nucleon and �
mean-field potentials, we show in Fig. 6 these cross sections
as functions of the center-of-mass energy

√
s of the scattering

pion and nucleon, i.e., the mass m� of produced � resonance,
for the cases of including the pion s-wave potential (S), the
p-wave potential (P), and both s-wave and p-wave potentials
(S + P) in asymmetric nuclear matter of ρ = 2ρ0 and δ = 0.2.
For comparison, the cross sections for free pions are shown
as black solid lines. It can be seen that while the pion
p-wave potential substantially reduces the pion absorption
cross section, the effect of the pion s-wave potential is rather
small, except around the pole mass 1.232 GeV of � resonance,
where it leads to a considerable increase of the cross section
for π− + n → �−.

V. RESULTS AND DISCUSSIONS

We study in this section the pion in-medium effects on the
charged pion ratio in Au + Au collision at E/A = 400 MeV in

the RVUU model with the nucleon mean-field potentials based
on the relativistic NLρ model [46] and compare the results with
experimental data from the FOPI Collaboration [26]. Since
the charged-pion ratio also depends on the stiffness of nuclear
symmetry energy [24] and is affected by the threshold effect
[31], we compare in the following results from six different
cases, i.e., (i) without the threshold and pion in-medium effects
(free); namely, nucleons, � resonances, and pions are treated
as free particles in all reactions; (ii) with only the threshold
effect (Th); (iii) with the threshold effect and the pion s-wave
potential (Th + S); (iv) with the threshold effect and the pion
p-wave potential (Th + P); (v) with the threshold effect and
both the pion s-wave and p-wave potentials (Th + S + P);
(vi) same as case (v) but with the coupling constant fρ =
0.95 fm2 of the isovector-vector ρ meson to nucleon in the
NLρ model reduced to fρ = 0.43 fm2. The latter reduces the
slope parameter L of the nuclear symmetry energy from 84
to 59 MeV, which is consistent with the average value from
analyses using various observables and methods [15,16].

We include the threshold effect by following Ref. [31]. As
in Ref. [31], we use a medium-dependent cross section for �
production from the reaction N + N → N + � by assuming
the following density dependence:

σNN→�N (ρN ) = σNN→�N (0) exp(−A
√

ρN/ρ0), (34)

where ρN is the nucleon density and A is an adjustable
parameter. The cross section for N + � → N + N is also
modified according to the detailed balance relation. We find
that our model can well reproduce the experimental data on
the total pion yield in Au + Au collisions at E/A = 400 MeV
if the values A = −2.35, 1.5, 1.4, 1.65, 1.5, and 1.5 are used for
the above six cases, respectively. The variation of the values for
A is due to the fact that the total pion yield is enhanced by the
threshold effect and the pion p-wave potential, and suppressed
by the s-wave potential. Because of the cancellation between
the pion s-wave and p-wave potentials, and the fact that the
fρ only influences the isovector properties of nuclear matter,
including both the pion s-wave and p-wave potentials and
the reduction of fρ does not significantly affect the total pion
yield.

We show in Fig. 7 the π−/π+ ratio in Au + Au collisions
at impact parameter of 1.4 fm and energy of E/A = 400 MeV
from the above six different cases. It is seen that the threshold
effect substantially increases the π−/π+ ratio by about 20%.
For the effects of pion potentials, we find that the pion
s-wave potential reduces and the p-wave potential enhances
the π−/π+ ratio. As a result, including both potentials leads
to a significant decrease (∼10%) of the π−/π+ ratio. The
effect of s-wave potential can be easily understood since at
densities below about 2ρ0, the effective masses of π− and π0

increase while the π+ effective mass slightly decreases. The
enhancement of the π−/π+ ratio after the inclusion of the pion
p-wave potential is due to the softer dispersion relation of π−
in the pion branch. The pion in-medium effects on the π−/π+
ratio obtained in our study are qualitatively consistent with the
results in Refs. [33,34] based on a thermal model.

It can also be seen in Fig. 7 that the prediction on the π−/π+
ratio from the RVUU model with both the threshold effect
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FIG. 7. The π−/π+ ratio in Au + Au collisions at impact
parameter of 1.4 fm and energy of E/A = 400 MeV from the NLρ

model in different cases (see text for details). Experimental data [26]
from the FOPI collaboration are shown as the cyan band.

and the pion in-medium effect is slightly larger than the upper
value of experimental data. By using a softer symmetry energy
with the slope parameter L = 59 MeV, the π−/π+ ratio is
reduced and becomes consistent with the experimental results.
This result seems to contradict predictions by other transport
models [27–29] that a softer symmetry energy leads to a larger
charged-pion ratio. However, as indicated in Ref. [31], the
threshold effect reverses the effect of the symmetry energy on
the π−/π+ ratio; namely, with the inclusion of the threshold
effect, the softer the symmetry energy is, the smaller is the
π−/π+ ratio. This is because the threshold effect is related to
the density dependence of the symmetry energy and becomes
smaller with the softening of the symmetry energy, which then
decreases the charged-pion ratio.

Recent studies have shown that the ratio of high-energy
charged pions, i.e., their spectral ratio, is more sensitive
to the high-density behavior of nuclear symmetry energy
[35,47]. To study if this remains the case after including
the medium effects, we depict in Fig. 8 the π−/π+ ratio in
Au + Au collisions at E/A = 400 MeV and impact parameter
of 1.4 fm as a function of the kinetic energy Ekin of pion in
the center-of-mass frame for the three cases of “free”, Th,
and Th + S + P. It is seen that the threshold effect enhances
the charged-pion ratio at energies Ekin > 50 MeV. Including
also pion potentials suppresses the π−/π+ ratio at energies
Ekin < 70 MeV but enhances the ratio at higher energies. In
particular, at Ekin = 250 MeV, including both the threshold
effect and pion potentials increases the π−/π+ ratio by a
factor of two, which is comparable to the effect due to the
stiffness of nuclear symmetry energy [35,47].

VI. SUMMARY

We have extended the relativistic Vlasov–Uehling–
Uhlenbeck model based on the nonlinear relativistic NLρ
mean-field model by including the isospin-dependent pion
s-wave and p-wave potentials in nuclear medium, which are
obtained from calculations based on the chiral perturbation

FIG. 8. The π−/π+ ratio in Au + Au collisions at E/A =
400 MeV and impact parameter of 1.4 fm as a function of kinetic
energy in the center-of-mass frame for the three cases of without any
medium effects (free), with the in-medium threshold effect (Th), and
with both the threshold and pion potential effects (Th + S + P).

theory and the �-hole model, respectively. Their effects on
the π−/π+ ratio in Au + Au collisions at E/A = 400 MeV
have been studied. While the π−/π+ ratio is enhanced by
the pion p-wave potential, it is significantly suppressed by the
pion s-wave potential. As a result, the pion potentials in nuclear
medium lead to a significant reduction (∼10%) of the π−/π+
ratio, which is comparable to that due to the stiffness of nuclear
symmetry energy at high densities. After including both the
threshold effect and the pion in-medium effect, the π−/π+
ratio obtained from the RVUU model based on the relativistic
NLρ model, which has a value of L = 84 MeV for the slope
parameter of nuclear symmetry energy, is slightly larger than
the experimental upper value from the FOPI Collaboration.
Using a softer symmetry energy of L = 59 MeV, which is
consistent with currently known empirical value [15,16], by
reducing the ρ-nucleon coupling constant in the NLρ model
can, however, well reproduce the experimental data on the
charged-pion ratio.

We have also studied the effects of medium modification
of thresholds and pion potentials on the π−/π+ spectral ratio.
We found that including these effects reduces the π−/π+ ratio
at low pion kinetic energies, but considerably increases that at
high pion kinetic energies as in Refs. [35,47]. Our study thus
indicates that the isospin-dependent in-medium threshold and
pion potential effects need to be seriously treated in transport
models to describe more realistically pion production in heavy
ion collisions, so that the behavior of nuclear symmetry energy
at high density can be more reliably determined from the
charged pion ratio measured in these collisions.

Besides the charged-pion ratio studied in the present
work, the FOPI Collaboration also has extensive data on
other observables related to pions, such as their longitudinal
and transverse rapidity distributions and stopping, polar
anisotropies, transverse momentum spectra, and directed and
elliptic flows in intermediate-energy heavy ion collisions for
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a variety of colliding systems at various energies [25,26]. A
systematic study of these observables based on the present
model will be very useful for both understanding the pion
in-medium dynamics and determining the density dependence
of nuclear symmetry energy.
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Phys. Rev. Lett. 86, 39 (2001).

[23] C. Fuchs, Prog. Part. Nucl. Phys. 56, 1 (2006).
[24] B. A. Li, Phys. Rev. Lett. 88, 192701 (2002).
[25] FOPI Collaboration, W. Reisdorf et al., Nucl. Phys. A 781, 459

(2007).
[26] FOPI Collaboration, W. Reisdorf et al., Nucl. Phys. A 848, 366

(2010).
[27] Z. Xiao, B. A. Li, L. W. Chen, G. C. Yong, and M. Zhang, Phys.

Rev. Lett. 102, 062502 (2009).
[28] Z. Q. Feng and G.-M. Jin, Phys. Lett. B 683, 140 (2010).
[29] W. J. Xie, J. Su, L. Zhu, and F. S. Zhang, Phys. Lett. B 718,

1510 (2013).
[30] G. Ferini, M. Colonna, T. Gaitanos, and M. Di Toro, Nucl. Phys.

A 762, 147 (2005).
[31] T. Song and C. M. Ko, Phys. Rev. C 91, 014901 (2015).
[32] M. D. Cozma, Phys. Lett. B 753, 166 (2016).
[33] J. Xu, C. M. Ko, and Y. Oh, Phys. Rev. C 81, 024910 (2010).
[34] J. Xu, L. W. Chen, C. M. Ko, B. A. Li, and Y. G. Ma, Phys. Rev.

C 87, 067601 (2013).
[35] J. Hong and P. Danielewicz, Phys. Rev. C 90, 024605 (2014).
[36] W. M. Guo, G. C. Yong, H. Liu, and W. Zuo, Phys. Rev. C 91,

054616 (2015).
[37] Z. Q. Feng, W. J. Xie, P. H. Chen, J. Chen, and G. M. Jin, Phys.

Rev. C 92, 044604 (2015).
[38] N. Kaiser and W. Weise, Phys. Lett. B 512, 283 (2001).
[39] G. E. Brown and W. Weise, Phys. Rep. 22, 279 (1975).
[40] B. Friedman, V. R. Pandharipande, and Q. N. Usmani, Nucl.

Phys. A 372, 483 (1981).
[41] C. M. Ko, L. H. Xia, and P. J. Siemens, Phys. Lett. B 231, 16

(1989).
[42] L. Xiong, C. M. Ko, and V. Koch, Phys. Rev. C 47, 788 (1993).
[43] P. Danielewicz and G. F. Bertsch, Nucl. Phys. A 533, 712 (1991).
[44] B. A. Li, Nucl. Phys. A 552, 605 (1993).
[45] B. A. Li and C. M. Ko, Phys. Rev. C 52, 2037 (1995).
[46] B. Liu, V. Greco, V. Baran, M. Colonna, and M. Di Toro, Phys.

Rev. C 65, 045201 (2002).
[47] M. B. Tsang, J. Estee, H. Setiawan, W. G. Lynch, J. Barney,

M. B. Chen, G. Cerizza, P. Danielewicz, J. Hong, P. Morfouace,
R. Shane, S. Tangwancharoen, K. Zhu, T. Isobe, M. Kurata-
Nishimura, J. Lukasik, T. Murakami, Z. Chajecki, and (S�RIT
Collaboration), Phys. Rev. C 95, 044614 (2017).

064604-8

https://doi.org/10.1126/science.1090720
https://doi.org/10.1126/science.1090720
https://doi.org/10.1126/science.1090720
https://doi.org/10.1126/science.1090720
https://doi.org/10.1016/j.physrep.2007.02.003
https://doi.org/10.1016/j.physrep.2007.02.003
https://doi.org/10.1016/j.physrep.2007.02.003
https://doi.org/10.1016/j.physrep.2007.02.003
https://doi.org/10.1016/j.physrep.2005.02.004
https://doi.org/10.1016/j.physrep.2005.02.004
https://doi.org/10.1016/j.physrep.2005.02.004
https://doi.org/10.1016/j.physrep.2005.02.004
https://doi.org/10.1016/j.physrep.2004.12.004
https://doi.org/10.1016/j.physrep.2004.12.004
https://doi.org/10.1016/j.physrep.2004.12.004
https://doi.org/10.1016/j.physrep.2004.12.004
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1103/PhysRevLett.86.5647
https://doi.org/10.1103/PhysRevLett.86.5647
https://doi.org/10.1103/PhysRevLett.86.5647
https://doi.org/10.1103/PhysRevLett.86.5647
https://doi.org/10.1016/S0375-9474(02)00867-9
https://doi.org/10.1016/S0375-9474(02)00867-9
https://doi.org/10.1016/S0375-9474(02)00867-9
https://doi.org/10.1016/S0375-9474(02)00867-9
https://doi.org/10.1103/PhysRevC.87.034327
https://doi.org/10.1103/PhysRevC.87.034327
https://doi.org/10.1103/PhysRevC.87.034327
https://doi.org/10.1103/PhysRevC.87.034327
https://doi.org/10.1016/j.nuclphysa.2013.11.005
https://doi.org/10.1016/j.nuclphysa.2013.11.005
https://doi.org/10.1016/j.nuclphysa.2013.11.005
https://doi.org/10.1016/j.nuclphysa.2013.11.005
https://doi.org/10.1016/j.physletb.2013.08.002
https://doi.org/10.1016/j.physletb.2013.08.002
https://doi.org/10.1016/j.physletb.2013.08.002
https://doi.org/10.1016/j.physletb.2013.08.002
https://doi.org/10.1103/PhysRevLett.111.232502
https://doi.org/10.1103/PhysRevLett.111.232502
https://doi.org/10.1103/PhysRevLett.111.232502
https://doi.org/10.1103/PhysRevLett.111.232502
https://doi.org/10.1103/PhysRevC.92.031301
https://doi.org/10.1103/PhysRevC.92.031301
https://doi.org/10.1103/PhysRevC.92.031301
https://doi.org/10.1103/PhysRevC.92.031301
https://doi.org/10.1103/PhysRevLett.102.122701
https://doi.org/10.1103/PhysRevLett.102.122701
https://doi.org/10.1103/PhysRevLett.102.122701
https://doi.org/10.1103/PhysRevLett.102.122701
https://doi.org/10.1103/PhysRevC.86.015803
https://doi.org/10.1103/PhysRevC.86.015803
https://doi.org/10.1103/PhysRevC.86.015803
https://doi.org/10.1103/PhysRevC.86.015803
https://doi.org/10.1140/epja/i2014-14040-y
https://doi.org/10.1140/epja/i2014-14040-y
https://doi.org/10.1140/epja/i2014-14040-y
https://doi.org/10.1140/epja/i2014-14040-y
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007
http://arxiv.org/abs/arXiv:1701.03564
https://doi.org/10.1103/PhysRevLett.82.691
https://doi.org/10.1103/PhysRevLett.82.691
https://doi.org/10.1103/PhysRevLett.82.691
https://doi.org/10.1103/PhysRevLett.82.691
https://doi.org/10.1126/science.1078070
https://doi.org/10.1126/science.1078070
https://doi.org/10.1126/science.1078070
https://doi.org/10.1126/science.1078070
https://doi.org/10.1016/j.physletb.2005.02.060
https://doi.org/10.1016/j.physletb.2005.02.060
https://doi.org/10.1016/j.physletb.2005.02.060
https://doi.org/10.1016/j.physletb.2005.02.060
https://doi.org/10.1103/PhysRevLett.55.2661
https://doi.org/10.1103/PhysRevLett.55.2661
https://doi.org/10.1103/PhysRevLett.55.2661
https://doi.org/10.1103/PhysRevLett.55.2661
https://doi.org/10.1016/0370-2693(95)00301-Z
https://doi.org/10.1016/0370-2693(95)00301-Z
https://doi.org/10.1016/0370-2693(95)00301-Z
https://doi.org/10.1016/0370-2693(95)00301-Z
https://doi.org/10.1103/PhysRevLett.86.39
https://doi.org/10.1103/PhysRevLett.86.39
https://doi.org/10.1103/PhysRevLett.86.39
https://doi.org/10.1103/PhysRevLett.86.39
https://doi.org/10.1016/j.ppnp.2005.07.004
https://doi.org/10.1016/j.ppnp.2005.07.004
https://doi.org/10.1016/j.ppnp.2005.07.004
https://doi.org/10.1016/j.ppnp.2005.07.004
https://doi.org/10.1103/PhysRevLett.88.192701
https://doi.org/10.1103/PhysRevLett.88.192701
https://doi.org/10.1103/PhysRevLett.88.192701
https://doi.org/10.1103/PhysRevLett.88.192701
https://doi.org/10.1016/j.nuclphysa.2006.10.085
https://doi.org/10.1016/j.nuclphysa.2006.10.085
https://doi.org/10.1016/j.nuclphysa.2006.10.085
https://doi.org/10.1016/j.nuclphysa.2006.10.085
https://doi.org/10.1016/j.nuclphysa.2010.09.008
https://doi.org/10.1016/j.nuclphysa.2010.09.008
https://doi.org/10.1016/j.nuclphysa.2010.09.008
https://doi.org/10.1016/j.nuclphysa.2010.09.008
https://doi.org/10.1103/PhysRevLett.102.062502
https://doi.org/10.1103/PhysRevLett.102.062502
https://doi.org/10.1103/PhysRevLett.102.062502
https://doi.org/10.1103/PhysRevLett.102.062502
https://doi.org/10.1016/j.physletb.2009.12.006
https://doi.org/10.1016/j.physletb.2009.12.006
https://doi.org/10.1016/j.physletb.2009.12.006
https://doi.org/10.1016/j.physletb.2009.12.006
https://doi.org/10.1016/j.physletb.2012.12.021
https://doi.org/10.1016/j.physletb.2012.12.021
https://doi.org/10.1016/j.physletb.2012.12.021
https://doi.org/10.1016/j.physletb.2012.12.021
https://doi.org/10.1016/j.nuclphysa.2005.08.007
https://doi.org/10.1016/j.nuclphysa.2005.08.007
https://doi.org/10.1016/j.nuclphysa.2005.08.007
https://doi.org/10.1016/j.nuclphysa.2005.08.007
https://doi.org/10.1103/PhysRevC.91.014901
https://doi.org/10.1103/PhysRevC.91.014901
https://doi.org/10.1103/PhysRevC.91.014901
https://doi.org/10.1103/PhysRevC.91.014901
https://doi.org/10.1016/j.physletb.2015.12.015
https://doi.org/10.1016/j.physletb.2015.12.015
https://doi.org/10.1016/j.physletb.2015.12.015
https://doi.org/10.1016/j.physletb.2015.12.015
https://doi.org/10.1103/PhysRevC.81.024910
https://doi.org/10.1103/PhysRevC.81.024910
https://doi.org/10.1103/PhysRevC.81.024910
https://doi.org/10.1103/PhysRevC.81.024910
https://doi.org/10.1103/PhysRevC.87.067601
https://doi.org/10.1103/PhysRevC.87.067601
https://doi.org/10.1103/PhysRevC.87.067601
https://doi.org/10.1103/PhysRevC.87.067601
https://doi.org/10.1103/PhysRevC.90.024605
https://doi.org/10.1103/PhysRevC.90.024605
https://doi.org/10.1103/PhysRevC.90.024605
https://doi.org/10.1103/PhysRevC.90.024605
https://doi.org/10.1103/PhysRevC.91.054616
https://doi.org/10.1103/PhysRevC.91.054616
https://doi.org/10.1103/PhysRevC.91.054616
https://doi.org/10.1103/PhysRevC.91.054616
https://doi.org/10.1103/PhysRevC.92.044604
https://doi.org/10.1103/PhysRevC.92.044604
https://doi.org/10.1103/PhysRevC.92.044604
https://doi.org/10.1103/PhysRevC.92.044604
https://doi.org/10.1016/S0370-2693(01)00584-6
https://doi.org/10.1016/S0370-2693(01)00584-6
https://doi.org/10.1016/S0370-2693(01)00584-6
https://doi.org/10.1016/S0370-2693(01)00584-6
https://doi.org/10.1016/0370-1573(75)90026-5
https://doi.org/10.1016/0370-1573(75)90026-5
https://doi.org/10.1016/0370-1573(75)90026-5
https://doi.org/10.1016/0370-1573(75)90026-5
https://doi.org/10.1016/0375-9474(81)90048-8
https://doi.org/10.1016/0375-9474(81)90048-8
https://doi.org/10.1016/0375-9474(81)90048-8
https://doi.org/10.1016/0375-9474(81)90048-8
https://doi.org/10.1016/0370-2693(89)90104-4
https://doi.org/10.1016/0370-2693(89)90104-4
https://doi.org/10.1016/0370-2693(89)90104-4
https://doi.org/10.1016/0370-2693(89)90104-4
https://doi.org/10.1103/PhysRevC.47.788
https://doi.org/10.1103/PhysRevC.47.788
https://doi.org/10.1103/PhysRevC.47.788
https://doi.org/10.1103/PhysRevC.47.788
https://doi.org/10.1016/0375-9474(91)90541-D
https://doi.org/10.1016/0375-9474(91)90541-D
https://doi.org/10.1016/0375-9474(91)90541-D
https://doi.org/10.1016/0375-9474(91)90541-D
https://doi.org/10.1016/0375-9474(93)90288-9
https://doi.org/10.1016/0375-9474(93)90288-9
https://doi.org/10.1016/0375-9474(93)90288-9
https://doi.org/10.1016/0375-9474(93)90288-9
https://doi.org/10.1103/PhysRevC.52.2037
https://doi.org/10.1103/PhysRevC.52.2037
https://doi.org/10.1103/PhysRevC.52.2037
https://doi.org/10.1103/PhysRevC.52.2037
https://doi.org/10.1103/PhysRevC.65.045201
https://doi.org/10.1103/PhysRevC.65.045201
https://doi.org/10.1103/PhysRevC.65.045201
https://doi.org/10.1103/PhysRevC.65.045201
https://doi.org/10.1103/PhysRevC.95.044614
https://doi.org/10.1103/PhysRevC.95.044614
https://doi.org/10.1103/PhysRevC.95.044614
https://doi.org/10.1103/PhysRevC.95.044614



