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Applicability of the Wong formula for fusion cross sections from light to heavy systems
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We discuss the applicability of the Wong formula for fusion cross sections in a single-channel problem. To this
end, we carry out a systematic study and compare the approximate fusion cross sections with the exact results
in a wide mass region of reaction systems. We show that the deviation of the approximate results from the exact
cross sections is large for light systems, even though the Wong formula provides a reasonable approximation
for heavy systems. We also discuss the energy dependence of the deviation, and show that for a given projectile
nucleus the critical energy, at which the deviation exceeds 5% of the exact cross sections, increases as a function
of the mass number of the target nucleus.

DOI: 10.1103/PhysRevC.95.064601

I. INTRODUCTION

The nuclear fusion reaction is defined as a reaction to
form a compound nucleus. It plays an essential role in several
phenomena in physics, such as the energy production in stars,
nucleosynthesis, and a synthesis of superheavy elements [1–4].
Theoretically, the simplest approach to estimate fusion cross
sections is to use the potential model, in which one assumes
a spherical potential between the two colliding nuclei. In this
model, the colliding nuclei are assumed to be spherical and
inert, and fusion is simulated as an absorption of flux inside
the Coulomb barrier. Fusion cross sections are then obtained
by adding the penetrability of the Coulomb barrier for each
partial wave.

Approximating the Coulomb barrier with a parabolic func-
tion, Wong has derived a compact expression for fusion cross
sections [5]. The resultant formula, referred to as the Wong
formula, has been widely used in the investigation of heavy-ion
fusion reactions. For instance, the formula has been used to
provide reference cross sections in order to discuss channel
coupling effects. The formula has also been used recently in
order to analyze fusion barrier distributions using a method
based on the Bayesian spectral deconvolution [6]. Moreover,
the correction to the Wong formula has been discussed in order
to discuss the oscillatory behavior of fusion cross sections in
symmetric and nearly symmetric light systems [7,8].

As has been demonstrated in Ref. [8], the original Wong
formula tends to overestimate fusion cross sections in light
systems. In order to cure this problem, the Wong formula
has been generalized in Ref. [8] by introducing an energy
dependence to the barrier parameters. Even though the gen-
eralized Wong formula has been shown to reproduce well the
exact results, it has yet to clarify from which system and from
which energy the generalization becomes important. That is,
questions which we would like to address in this paper are:
how heavy should a system be in order for the correction to
the Wong formula to be negligible? And, up to which energy
can one ignore the correction? The aim of this paper is thus
to perform a systematic study and quantify the correction in

several systems. To this end, we compare fusion cross sections
obtained with the Wong formula with the exact results from
light to heavy systems. We shall discuss the deviation from the
exact cross sections as a function of the mass number of the
target nucleus for a fixed projectile nucleus. Notice that it is not
our intention to examine systematically the generalized Wong
formula itself. Instead, we would like to discuss a variation of
the applicability of the original Wong formula from light to
heavy systems.

The paper is organized as follows. In the next section, we
will briefly present the formulation of the potential model for
fusion reactions, and introduce the Wong formula. In Sec. III,
we will apply the Wong formula to a multitude of systems
and discuss its applicability. We will also introduce the critical
energy, at which the deviation exceeds a certain fraction of the
exact cross sections. We will finally summarize the paper in
Sec. IV.

II. THE WONG FORMULA FOR FUSION
CROSS SECTIONS

In the potential model, fusion cross sections are computed
from a numerical solution of the radial Schrödinger equation,[

− h̄2

2μ

d2

dr2
+ V0(r) + l(l + 1)h̄2

2μr2
− E

]
ul(r) = 0, (1)

where μ is the reduced mass, V0(r) is an internucleus potential
(that is, a sum of a nuclear and the Coulomb potentials), l is
the relative angular momentum between the colliding nuclei,
and E is the incident energy in the center of mass frame. With
the incoming wave boundary condition, this equation is solved
with boundary conditions of [2,9]
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Here, H
(±)
l are the Coulomb wave functions, and k and kl(r)

are defined as k =
√

2μE/h̄2 and

kl(r) =
√

2μ

h̄2

(
E − V0(r) − l(l + 1)h̄2

2μr2

)
, (4)

respectively. rmin is the radius at which the incoming wave
boundary condition is imposed and is taken somewhere inside
the Coulomb barrier [2,9]. From the S matrix, Sl , or the
transmission coefficient, Tl , so obtained, fusion cross sections
are evaluated as

σfus(E) = π

k2

∞∑
l=0

(2l + 1)Pl(E) (5)

with Pl(E) = 1 − |Sl|2 = |Tl|2.
In order to derive an analytic expression for fusion cross

sections, Wong has first approximated the Coulomb barrier
with an inverted parabola, that is,

V0(r) ∼ VB − 1
2μ�2(r − RB)2. (6)

In the original Wong formula, the barrier position, RB , and the
barrier curvature, h̄�, are assumed to be independent of l and
are evaluated for the s-wave. The effective potential for the lth
partial wave then reads

V0(r) + l(l + 1)h̄2

2μr2
∼ VB + l(l + 1)h̄2

2μR2
B

− 1

2
μ�2(r − RB)2.

(7)

Using the Hill-Wheeler formula [10], the penetration proba-
bility, Pl(E), is calculated as

Pl(E) = 1

1 + exp
[

2π
h̄�

(
VB + l(l+1)h̄2

2μR2
B

− E
)] . (8)

Replacing the summation in Eq. (5) by the integral, that is,

π

k2

∞∑
l=0

(2l + 1)Pl(E) → π

k2

∫ ∞

0
dl (2l + 1)Pl(E), (9)

one finally obtains the well-known Wong formula given by

σfus(E) = h̄�

2E
R2

B ln

[
1 + exp

(
2π

h̄�
(E − VB)

)]
. (10)

Notice that at energies well above the Coulomb barrier, i.e.,
E − VB � h̄�/2π , the Wong formula leads to the classical
fusion cross section

σfus(E) ∼ πR2
B

(
1 − VB

E

)
. (11)

See Appendix B in Ref. [2] for the performance of the parabolic
approximation and the Wong formula for the 16O + 144Sm
system.

Figure 1 compares fusion cross sections with the Wong
formula (dashed line) to those obtained by numerically solving
the Schrödinger equation (solid line), for the 12C + 16O, 40Ca,
154Sm, and 238U systems. To this end, we employ the Akyüz-
Winther potential [11] for a nuclear part of the nucleus-nucleus
potential. Notice that none of these systems are symmetric, for
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FIG. 1. Comparisons between the exact (solid line) and approx-
imate (dashed line) fusion cross sections for four selected systems.
The approximate solutions are obtained with the Wong formula. The
Akyüz-Winther potential is employed for the internuclear potential.

which oscillations in fusion cross sections are amplified due
to the symmetry of a system [8]. As can be seen in the figure,
the Wong formula tends to overestimate fusion cross sections,
although the agreement with the exact results considerably
improves as the mass number of the target increases [8] (see
also Ref. [12]).

III. SYSTEMATICS

In order to discuss more systematically the performance of
the Wong formula, in this section we vary the target nucleus
from C to U for a fixed projectile nucleus. For each target
nuclide, we choose the isotope which has the largest natural
abundance. As the projectile nucleus, we choose 4He, 6Li,
12C, 16O, and 20Ne. In order to compare the deviation of the
Wong formula in different systems, we introduce the following
quantity:

�σ ≡
∫ Emax

Emin
|σexact(E) − σWong(E)|dE∫ Emax

Emin
σexact(E)dE

. (12)

We choose the minimum and the maximum energies for
the integration to be Emin = 0.9 VB and Emax = 1.1 VB ,
respectively.
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FIG. 2. The deviation from the exact results, defined by Eq. (12),
of the fusion cross sections obtained with the Wong formula. This
quantity is plotted as a function of the mass number of the target
nucleus for five projectile nuclei indicated in the figure.

Figure 2 shows the calculated results as a function of
the mass number A of the target nucleus. We again use the
Akyüz-Winther potential for each system. One can see that the
deviation, �σ , decreases as a function of the mass number of
the target nucleus. For the 12C, 16O, and 20Ne projectiles, the
deviation almost saturates at around A ∼ 50, that corresponds
to Z ∼ 20. On the other hand, for the lighter projectiles, the
decrease of �σ is much slower and especially for 4He the
deviation is relatively large even for a heavy target. As has been
pointed out in Ref. [8], this is because the centrifugal potential
plays a much more important role in the light systems and
thus the Coulomb barrier is much softer against the increase
of angular momentum. This implies that the original Wong
formula is not applicable for light projectiles such as 4He,
and the generalization proposed in Ref. [8] is important. For
heavier projectile nuclei, as we have noted, the original Wong
formula works well as long as the mass number of the target
nucleus is around A ∼ 50 or larger.

In order to see the energy dependence of the deviation of
the Wong formula, we next define a quantity �(E)

�(E) ≡ σexact(E) − σWong(E)

σexact(E)
, (13)

which indicates the degree of deviation at a given energy, E.
Figure 3 shows the quantity �(E) for the 6Li projectile on
several target nuclei from O to U, as a function of energy
relative to the barrier height for each system. Except for the
energy region just above the barrier, �(E) is negative, that
is, the Wong formula overestimates fusion cross sections.
Furthermore, the slope of �(E) is much steeper for the
lighter targets compared to that for the heavier targets, that
is consistent with the finding shown in Fig. 2.

At energies slightly above the barrier, the deviation �(E) is
positive, thus the Wong formula underestimates fusion cross
sections. This is due to the fact that the parabolic approxima-
tion underestimates the width of the Coulomb barrier because
of the asymmetric shape of the Coulomb barrier caused by the
long-range Coulomb interaction (see Fig. 15 in Ref. [2]). This
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FIG. 3. The deviation of the Wong formula given by Eq. (13)
for 6Li induced fusion reactions as a function of the incident energy
relative to the barrier height for each system. The target nuclei are
238U, 152Sm, 74Ge, 40Ar, 28Si, 20Ne, and 16O, as shown in the figure in
the decreasing order at E − VB = 4 MeV.

leads to a smaller tunneling probability at energies above the
barrier, thus reducing fusion cross sections. At higher energies,
on the other hand, the tunneling is not important, and the
l dependence of the barrier position RB comes into a play
to reduce fusion cross sections from the approximate cross
sections [8].

Let us next define the critical energy Ecrit as the energy
at which the absolute value of the deviation, |�(E)|, exceeds
a certain value. We arbitrarily choose it to be 5%. Figure 4
shows the critical energy with respect to the barrier height for
each system as a function of the mass number of the target
nucleus. For the projectile, we choose 6Li, 12C, 16O, and 20Ne.
The figure shows that for light systems the critical energy is
reached already at an energy slightly above the barrier, while
one has to go up to a higher energy for heavy systems. For
instance, the critical energy is 3.02 MeV higher than the barrier
for the 12C + 16O system whereas it is 30.37 MeV higher than

 0

 5

 10

 15

 20

 25

 30

 35

 0  50  100  150  200  250

Δ = 5 %

E c
rit

-V
B 

(M
eV

)

A

6Li +AX
12C + AX
16O + AX

20Ne + AX

FIG. 4. The critical energy, Ecrit, at which the deviation defined
by Eq. (13) exceeds 5%, measured relative to the barrier height for
each system as a function of the mass number of the target nucleus.
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the barrier for the 12O + 238U system. We notice that this is
consistent with what we have shown in Fig. 1.

IV. SUMMARY

We have carried out a comparative study on the applicability
of the Wong formula for single-channel fusion cross sections.
To this end, we have compared the fusion cross sections
obtained with the Wong formula to the exact results from
light to heavy systems. We have shown that the Wong formula

leads to reasonable results when the target nucleus is in the
A ∼ 50 region or heavier for the projectiles of 6Li, 12C, 16O,
and 20Ne, while the deviation is still large even for a heavy
target in systems with 4He projectile. We have also investigated
the energy dependence of the deviation, and have shown that
the deviation quickly becomes large for light systems as the
energy increases while a high incident energy is required for
heavy systems before the deviation becomes significant. These
conclusions indicate that a care must be taken in using the
Wong formula in light systems, for which the generalization
discussed in Ref. [8] becomes essential.
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