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We systematically investigate the thermodynamic properties of homogeneous nuclear matter with light clusters
at low densities and finite temperatures using a generalized nonlinear relativistic mean-field (gNL-RMF) model,
in which light clusters up to α (1 � A � 4) are included as explicit degrees of freedom and treated as pointlike
particles, with their interactions described by meson exchanges. The medium effects on the cluster binding
energies are described by density- and temperature-dependent energy shifts with the parameters obtained by
fitting the experimental cluster Mott densities. We find that the composition of low density nuclear matter with
light clusters is essentially determined by the density and temperature dependence of the cluster binding energy
shifts. Compared with the values of the conventional (second-order) symmetry energy, symmetry free energy, and
symmetry entropy, their fourth-order values are found to be significant at low densities (n ∼ 10−3 fm−3) and low
temperatures (T � 3 MeV), indicating the invalidity of the empirical parabolic law for the isospin asymmetry
dependence of these nuclear matter properties. Our results indicate that, in the density region of n � 0.02 fm−3,
the clustering effects become insignificant and the nuclear matter is dominated by the nucleon degree of freedom.
In addition, we compare the gNL-RMF model predictions with the corresponding experimental data on the
symmetry energy and symmetry free energy at low densities and finite temperatures extracted from heavy-ion
collisions, and reasonable agreement is found.
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I. INTRODUCTION

Understanding the properties of nuclear matter, especially
its equation of state (EOS), is extremely important in nuclear
physics and astrophysics. In order to investigate various
nuclear and astrophysical phenomena such as heavy-ion
collisions, supernova explosions, and neutron star evolution,
we need exact information on the nuclear matter EOS in a wide
range of temperature, density, and isospin asymmetry [1,2].
In the last few decades, significant progress has been made
in determining the nuclear matter EOS from experiments,
observations, and theoretical calculations [1–8]. However,
knowledge of the EOS of isospin asymmetric nuclear matter,
especially the nuclear symmetry energy Esym(n) at densities
far from saturation density n0 of symmetric nuclear matter, is
still lacking (see, e.g., Ref. [9] for a recent review).

In nuclear matter at very low densities, it is known that
nucleons tend to form light nuclei to reduce the energy
of the system [10–14]. Such a clustering phenomenon may
exist in the crust of neutron stars [15–19], in core-collapse
supernovae [20,21], and even in heavy-ion collisions [22–26].
It is thus interesting to consider the clustering effects on
the properties of nuclear matter under various conditions
of density, temperature, and isospin asymmetry. Recently,
great efforts have been made to investigate the clustering
effects. For example, the clustering effects on nuclear structure
properties have been explored and some novel features have
been revealed [27–32]. In addition, in some commonly used
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EOSs for the simulation of core-collapse supernova, e.g., the
Lattimer-Swesty EOS constructed by Lattimer and Swesty
[33] and the Shen EOS constructed by Shen et al. [34], the α
particles are included and treated as an ideal Boltzmann gas.
The EOS of low density nuclear matter including nucleons and
α particles is also investigated by using the virial expansion
[35], and later on the contributions of the deuteron (d = 2H),
triton (t = 3H), and helium-3 (h = 3He) as well as heavier
nuclei are also included and investigated by using the S matrix
method and the quasiparticle gas model [36,37].

During the last several years, Typel et al. have investigated
nuclear matter including formation of light clusters up to the α
particle by using a generalized density-dependent relativistic
mean-field (gDD-RMF) model [11], in which the density and
temperature dependence of the binding energy of clusters
in nuclear medium is obtained from the predictions of a
quantum statistical (QS) approach. The density dependence
of the cluster binding energies and coupling parameters brings
the “rearrangement” contributions in the particle equations
of motion and vector self-energies [38–42]. Since the work
of Typel et al. [11], a number of studies have been carried
out to explore the clustering effects in nuclear matter. For
instance, Sharma et al. [16] study the clustering effects on
the liquid-gas phase transition, composition, and structure of
protoneutron stars including hyperons. Avancini et al. [17]
investigate the property of nuclear pasta phase including the
α particles and other light nuclei. Ferreira et al. [43] fit the
density dependence of the in-medium cluster binding energies
of Ref. [11] by changing the couplings of light clusters in the
RMF model, and explore the properties of light clusters in
nuclear matter. For simplicity, the binding energies of light
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clusters in nuclear medium are usually treated as constants in
these works [17,43].

Experimentally, clustering effects in low density nuclear
matter have been investigated in heavy-ion collisions around
Fermi energies. In particular, information of nuclear matter
symmetry energy at low densities and finite temperatures have
been extracted in heavy-ion collision experiments by Natowitz
et al. [44], Kowalski et al. [45], and Wada et al. [46]. The results
indicate that the clustering effects can enhance drastically
the symmetry energy at low densities, while the conventional
mean-field models without considering clusters significantly
under-predict the experimentally measured values of the
symmetry energy. Meanwhile, the experimental data [47] on
the dissolution density (Mott density) of clusters in nuclear
medium are also obtained.

In the present work, we investigate the properties of nuclear
matter with light clusters at low densities and finite tempera-
tures by using a generalized nonlinear relativistic mean-field
(gNL-RMF) model. We also discuss the Mott density of
clusters in nuclear matter as well as compare the model
predictions with the experimental data on the symmetry energy
and symmetry free energy extracted from heavy-ion collisions.
In the gNL-RMF model, light clusters up to α (1 � A � 4) are
included as explicit degrees of freedom and treated as pointlike
particles with their interactions described by meson exchanges,
and the medium effects on the light cluster binding energies
are described by density- and temperature-dependent energy
shifts. In the nonlinear RMF (NL-RMF) model [48–53], the
nonlinear couplings of mesons are introduced to reproduce
the ground-state properties of finite nuclei and to modify the
density dependence of the symmetry energy Esym(n). Since all
of these couplings are constants in the NL-RMF model, the
calculations are thus more convenient and simpler.

This paper is organized as follows. In Sec. II, we introduce
the gNL-RMF model for low density nuclear matter including
light clusters. Then the theoretical results are presented and
some experimental data are compared with the theoretical
predictions in Sec. III. Finally we give a conclusion in Sec. IV.

II. THEORETICAL FRAMEWORK

We extend the NL-RMF model and study the properties
of a homogeneous nuclear matter system with multiple
components, including protons, neutrons, and light clusters
of d, t , h, and α. All the components are treated as pointlike
particles, and they interact through the exchange of various
effective mesons including isoscalar scalar (σ ) and vector (ω)
mesons and an isovector vector (ρ) meson. In this gNL-RMF
model, the Lagrangian density of the system reads

L =
∑

i=p,n,t,h

Li + Lα + Ld + Lmeson, (1)

where the fermions (i = p,n,t,h) with spin 1/2 are described
by

Li = �̄i

[
γμiD

μ
i − M∗

i

]
�i, (2)

while the Lagrangian densities of an α particle with spin 0 and
a deuteron with spin 1 are given, respectively, by

Lα = 1
2

(
iDμ

α φα

)∗
(iDμαφα) − 1

2φ∗
α(M∗

α)2φα (3)

and

Ld = 1
4

(
iD

μ
d φν

d − iDν
dφ

μ
d

)∗
(iDdμφdμ − iDdνφdν)

− 1
2φ

μ∗
d (M∗

d )2φdμ. (4)

The covariant derivative is defined by

iD
μ
i = i∂μ − Aigωωμ − gρ

2
−→τ · −→ρ μ, (5)

and the effective mass is expressed as

M∗
i = Aim − Bi − Aigσσ, i = p,n,t,h,d,α, (6)

where gσ , gω, and gρ are coupling constants of σ , ω, and ρ
mesons with nucleons, respectively; Ai is mass number; Bi

is the in-medium cluster binding energy and m is nucleon
mass in vacuum which is taken to be m = 939 MeV. It should
be noted that here neutrons and protons are assumed to have
the same mass in vacuum, but for astrophysical applications
of the nuclear matter EOS, experimental masses of neutrons
(mn) and protons (mp) should be used for accuracy, and this
gives a linear term in the isospin dependence of nucleon
mass. Nucleons form an isospin doublet with τ3�n = −�n

and τ3�p = �p. Similarly, for the triton and helium-3 one has
τ3�t = −�t and τ3�h = �h, respectively.

The meson Lagrangian densities are given by Lmeson =
Lσ + Lω + Lρ + Lωρ with

Lσ = 1
2∂μσ∂μσ − 1

2m2
σ σ 2 − 1

3g2σ
3 − 1

4g3σ
4, (7)

Lω = − 1
4WμνW

μν + 1
2m2

ωωμωμ + 1
4c3(ωμωμ)2, (8)

Lρ = − 1
4

−→
R μν · −→

R μν + 1
2m2

ρ
−→ρ μ · −→ρ μ, (9)

Lωρ = �v

(
g2

ωωμωμ
)(

g2
ρ
−→ρ μ · −→ρ μ

)
. (10)

where Wμν and
−→
R μν are the antisymmetric field tensors for ωμ

and −→ρ μ, respectively. In the RMF approach, meson fields are
treated as classical fields and the field operators are replaced
by their expectation values.

In order to explore how the clustering effects depend
on the NL-RMF interactions and the symmetry energy of
nucleonic matter, we select four parameter sets of the NL-RMF
model for the nucleon degree of freedom, namely, NL3 [48],
FSU [51], FSUGold5 [52], and FSU-II [53]. The parameter
values of the four NL-RMF interactions are listed in Table I
for completeness. The FSUGold5 parameter set is obtained
based on FSU by adjusting gρ and �v as prescribed in
Ref. [52]; namely, for �v = 0.05 one readjusts only the gρ

to keep the symmetry energy Esym(nc) at nc = 0.1 fm−3

fixed. The parameters of FSU-II are taken from Ref. [53]
and they are obtained similarly to those of FSUGold5. One
can then check the symmetry energy effects by adopting
FSU, FSU-II, and FSUGold5 with different values of �v ,
which lead to different values of Esym(n0) as well as the
density slope parameter L = 3n0dEsym(n)/dn|n=n0 of the
symmetry energy. In particular, one has Esym(n0) = 30.6 MeV
and L = 45.8 MeV for FSUGold5, Esym(n0) = 32.5 MeV
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TABLE I. Parameter sets of the NL-RMF Lagrangian used in this
work.

NL3 [48] FSU [51] FSUGold5 [52] FSU-II [53]

mσ (MeV) 508.194 491.500 490.250 491.500
mω (MeV) 782.501 782.5 782.5 782.5
mρ (MeV) 763.0 763.0 763.0 763.0
gσ −10.2170 −10.5924 −10.5924 −10.5924
gω 12.8680 14.3369 14.3369 14.3369
gρ 8.9480 11.7673 16.3739 9.6700
g2 (fm−3) 10.4310 4.2771 4.2771 4.2771
g3 −28.8850 49.8556 49.8556 49.8556
c3 0 422.4953 422.4953 422.4953
�v 0 0.030 0.050 0.010

and L = 60.4 MeV for FSU, and Esym(n0) = 35.5 MeV and
L = 87.4 MeV for FSU-II. Compared with FSU, FSU-II, and
FSUGold5, the NL3 interaction additionally has significantly
different isoscalar properties and thus can be used to test the
interaction dependence of our results.

The in-medium cluster binding energy Bi = B0
i + Bi is

dependent on temperature T , total proton number density ntot
p ,

and total neutron number density ntot
n of the system, where B0

i

denotes the binding energy for cluster i in vacuum. The total
energy shift of a cluster in nuclear medium mainly includes
the contributions from the self-energy shift which is already
contained in the cluster effective mass in the gNL-RMF model,
the Coulomb shift which can be calculated from the Wigner-
Seitz approximation, and the Pauli shift which was evaluated in
the perturbation theory with Jastrow and Gaussian approaches
for light clusters d, t , h, and α [11]. Since the Coulomb shift is
very small for the light clusters d, t , h, and α considered here,
is it neglected in the present work. The energy shift Bi is thus
from the Pauli shift and it is assumed to have the following
empirical quadratic form [11]:

Bi

(
ntot

p ,ntot
n ,T

) = −ñi

[
1 + ñi

2ñ0
i

]
δBi(T ), (11)

where ñi stands for

ñi = 2

Ai

[
Zin

tot
p + Nin

tot
n

]
, (12)

in which Zi and Ni are proton number and neutron number
of the cluster i, respectively. The density scale for cluster i is
given by

ñ0
i (T ) = B0

i

δBi(T )
. (13)

The temperature dependence comes from δBi(T ) defined
by [11]

δBi(T ) = ai,1

(T + ai,2)3/2
, i = α,t,h, (14)

δBd (T ) = ai,1

T 3/2

[
1√
yi

− √
πai,3 exp

(
a2

i,3yi

)
erfc(ai,3

√
yi)

]
,

(15)

TABLE II. Parameters for the in-medium cluster binding energy
shifts. The values are taken from Ref. [11] and the values of aα,1 and
ad,1 in the parentheses are the revised values in the present work to
fit the experimental Mott densities [47].

Cluster i ai,1 ai,2 ai,3 B0
i

(MeV5/2 fm3) (MeV) (MeV) (MeV)

α 164371 (137330) 10.6701 28.29566
d 38386.4 (76500) 22.5204 0.2223 2.224566
t 69516.2 7.49232 8.481798
h 58442.5 6.07718 7.718043

with yi = 1 + ai,2/T . The values of parameters ai,1, ai,2,
and ai,3 are taken from Ref. [11] and listed in Table II for
completeness.

For homogeneous matter, the nonvanishing expectation
values of meson fields are σ = 〈σ 〉, ω = 〈ω0〉, and ρ = 〈ρ3

0 〉.
Since the cluster binding energy is density dependent, the
equations of motion for the meson fields have the following
form:

m2
σ σ + g2σ

2 + g3σ
3 =

∑
i=p,n,α,d,t,h

gi
σ ns

i , (16)

m2
ωω + c3ω

3 + 2�vg
2
ωg2

ρωρ2

=
∑

i=p,n,α,d,t,h

gi
ωni −

∑
i=α,d,t,h

m2
ω

2gω

(
∂Bi

∂n
ps
p

+ ∂Bi

∂n
ps
n

)
ns

i ,

(17)

m2
ρρ + 2�vg

2
ωg2

ρω
2ρ

=
∑

i=p,n,t,h

gi
ρI

i
3ni −

∑
i=α,d,t,h

m2
ρ

gρ

(
∂Bi

∂n
ps
p

− ∂Bi

∂n
ps
n

)
ns

i ,

(18)

where ns
i is the scalar density, ni is the vector density, isospin

I i
3 is equal to 1/2 for i = p,h and −1/2 for i = n,t , and the

meson-cluster couplings are assumed to have the following
forms:

gi
σ = Aigσ , gi

ω = Aigω, gi
ρ = gρ. (19)

In the above derivations, to avoid complications due to the total
baryon density dependence of the cluster binding energies
in the present theoretical framework, following the work of
Typel et al. [11], the dependence on the total baryon density in
Eq. (11) is replaced by a dependence on the pseudodensities,
which are defined by

nps
n = 1

2 [ρω − ρρ], nps
p = 1

2 [ρω + ρρ], (20)

with

ρω = m2
ω

gω

√
ωμωμ, ρρ = 2m2

ρ

gρ

√−→ρ μ−→ρ μ. (21)

The clusters are treated as pointlike particles, and the vector
and scalar densities of the fermions (i = p,n,t,h) are given,
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respectively, by

ni = gi

∫
d3k

(2π )3
[f +

i (k) − f −
i (k)], (22)

ns
i = gi

∫
d3k

(2π )3

M∗
i√

k2 + M∗2
i

× [f +
i (k) + f −

i (k)], (23)

with degeneracy factor gi = 2 and the occupation probability
given by the Fermi-Dirac distribution, i.e.,

f ±
i = 1

1 + exp
[(√

k2 + M∗2
i ∓ νi

)
/T

] . (24)

The densities of the bosons (i = α,d) are obtained from

ni = gi

∫
d3k

(2π )3
[b+

i (k) − b−
i (k)], (25)

ns
i = gi

∫
d3k

(2π )3

M∗
i√

k2 + M∗2
i

× [b+
i (k) + b−

i (k)], (26)

with degeneracy factor gα = 1 and gd = 3, and the Bose-
Einstein distribution gives the occupation probability in the
following form:

b±
i = 1

−1 + exp
[(√

k2 + M∗2
i ∓ νi

)
/T

] . (27)

For a system including nucleons and light clusters in chemical
equilibrium, as we are considering in the present work, νi

is the effective chemical potential which is defined as νi =
μi − gi

ωω − gi
ρI

i
3ρ, where the chemical potential of cluster i

is determined by

μi = Niμn + Ziμp. (28)

The thermodynamic quantities of homogeneous matter are
easily derived from the energy-momentum tensor. The energy
density is given by

ε =
∑

i=p,n,t,h

gi

∫
d3k

(2π )3

√
k2 + M∗2(f +

i + f −
i )

+
∑
i=d,α

gi

∫
d3k

(2π )3

√
k2 + M∗2(b+

i + b−
i )

+ 1

2
m2

σ σ 2 + 1

3
g2σ

3 + 1

4
g3σ

4

− 1

2
m2

ωω2 − 1

4
c3ω

4 − 1

2
m2

ρρ
2

+
∑

i=p,n,t,h

(
gi

ωωni + gi
ρρI i

3ni

) − �vg
2
ωg2

ρω
2ρ2, (29)

the pressure is obtained as

p = 1

3

∑
i=p,n,t,h

gi

∫
d3k

(2π )3

k2

√
k2 + M∗2

(f +
i + f −

i )

+ 1

3

∑
i=d,α

gi

∫
d3k

(2π )3

k2

√
k2 + M∗2

(b+
i + b−

i )

− 1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4

+ 1

2
m2

ωω2 + 1

4
c3ω

4 + 1

2
m2

ρρ
2

+�vg
2
ωg2

ρω
2ρ2, (30)

and the entropy density is expressed as

s = −
∑

i=p,n,t,h

gi

∫
d3k

(2π )3
[f +

i ln f +
i

+ (1 − f +
i ) ln(1 − f +

i ) + f −
i ln f −

i

+ (1 − f −
i ) ln(1 − f −

i )] −
∑
i=α,d

gi

∫
d3k

(2π )3

× [b+
i ln b+

i − (1 + b+
i ) ln(1 + b+

i )

+ b−
i ln b−

i − (1 + b−
i ) ln(1 + b−

i )]. (31)

These thermodynamic quantities satisfy the Hugenholtz–van-
Hove theorem, i.e.,

ε = T s − p +
∑

i=p,n,d,t,h,α

μini . (32)

It is convenient to define the internal energy per baryon as
Eint = ε/n − m and free energy per baryon as

F = Eint − T
s

n
. (33)

The binding energy per baryon of isospin asymmetric nu-
clear matter may be expanded in powers of isospin asymmetry
δ = (ntot

n − ntot
p )/(ntot

n + ntot
p ) up to fourth order, and then one

has

Eint(n,δ,T ) = Eint(n,0,T ) + Esym(n,T )δ2

+Esym,4(n,T )δ4 + O(δ6), (34)

where the density- and temperature-dependent symmetry
energy Esym and the fourth-order symmetry energy Esym,4 are
defined by

Esym(n,T ) = 1

2

∂2Eint

∂δ2

∣∣∣∣
δ=0

, (35)

Esym,4(n,T ) = 1

24

∂4Eint

∂δ4

∣∣∣∣
δ=0

. (36)
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Similarly, one can expand the free energy per baryon F and
the entropy per baryon S in the same manner, i.e.,

F (n,δ,T ) = F (n,0,T ) + Fsym(n,T )δ2

+Fsym,4(n,T )δ4 + O(δ6), (37)

S(n,δ,T ) = S(n,0,T ) + Ssym(n,T )δ2

+Ssym,4(n,T )δ4 + O(δ6). (38)

The symmetry free energy and the fourth-order symmetry free
energy are given, respectively, by

Fsym(n,T ) = 1

2

∂2F

∂δ2

∣∣∣∣
δ=0

, (39)

Fsym,4(n,T ) = 1

24

∂4F

∂δ4

∣∣∣∣
δ=0

, (40)

while the symmetry entropy and the fourth-order symmetry
entropy are obtained, respectively, as

Ssym(n,T ) = 1

2

∂2S

∂δ2

∣∣∣∣
δ=0

, (41)

Ssym,4(n,T ) = 1

24

∂4S

∂δ4

∣∣∣∣
δ=0

. (42)

Furthermore, one can investigate the clustering effects on
the symmetry energy, symmetry free energy, and symmetry en-
tropy by checking the parabolic laws in which the Esym(n,T ),
Fsym(n,T ), and Ssym(n,T ) are, respectively, replaced by

Epara(n,T ) = Eint(n,δ = 1,T ) − Eint(n,0,T ), (43)

Fpara(n,T ) = F (n,δ = 1,T ) − F (n,0,T ), (44)

Spara(n,T ) = S(n,δ = 1,T ) − S(n,0,T ). (45)

III. RESULTS AND DISCUSSION

A. Mott densities of light clusters

Mott densities are the densities at which the in-medium
binding energies of clusters defined by Bi = B0

i + Bi vanish.
The experimental Mott densities for light clusters d, t , h, and
α are obtained by analyzing the data in heavy-ion collisions
[47]. Using the medium-dependent binding energy shift Bi

parametrized by Eqs. (11), (14), and (15) with the total baryon
densities replaced by the pseudodensities defined by Eq. (20),
one can calculate the light cluster Mott densities at each
temperature.

Using the original parameters in Ref. [11] as shown in
Table II, we display in Fig. 1(a) the calculated Mott densities
for light clusters d, t , h, and α. The corresponding experimental
results from Ref. [47] are also included for comparison. It is
seen that the Mott densities increase with temperature. At a
fixed temperature, the α particle has the largest Mott density
and the next are the triton and helium-3, and the smallest is the
deuteron. In addition, while the theoretical results agree well
with the data for the triton and helium-3, they significantly
deviate from the data for the α particle and deuteron. To fit the
experimental data on the Mott densities of d and α, one can
adjust the values of aα,1 and ad,1 as well as aα,2 and ad,2 in

FIG. 1. The Mott density vs temperature in symmetric nuclear
matter for light clusters d , t , h, and α. The full symbols with error
bars are experimental data from heavy-ion collisions by Hagel et al.
[47] while the lines represent the predictions from the gNL-RMF
model with original [panel (a)] and revised [panel (b)] parameters for
the in-medium light cluster binding energy shifts.

Eqs. (14) and (15). In the present work, for simplicity, we only
adjust the values of aα,1 and ad,1 to fit the data. In particular,
we note that changing the parameter aα,1 from 164 371 to
137 330 and ad,1 from 38 386.4 to 76 500 can nicely reproduce
experimental data on the Mott densities of d and α, as shown
in Fig. 1(b). These new revised values of aα,1 and ad,1 for d
and α are included in Table II as shown in the parentheses.

Changing the parameters of in-medium binding energy
shifts is a simple and direct approach to fit the experimental re-
sults. On the other hand, as Typel et al. mentioned in Ref. [11],
the parameters of binding energy shifts are determined by
low-density perturbation theory from the unperturbed cluster
wave functions. To be more consistent, it would be better to
modify the QS model parameters to obtain new mass shifts,
but this is certainly beyond the scope of the present work. In
addition, the experimental results may depend on some model
assumptions and thus could contain systematic errors. In the
present work, for simplicity, following Ref. [11] we assume
that the in-medium light cluster binding energies follow the
formulation in Eq. (11) but depend on pseudodensities, which
may lead to the necessity of readjusting the parameters in
Eqs. (14) and (15).

Shown in Fig. 2 is the density dependence of the binding
energy for light clusters d, t , h, and α at temperatures T = 10,
5, and 3 MeV using the original and revised parameters
as shown in Table II. It is seen that in general, at lower
temperatures, the cluster binding energies drop faster as the
baryon density increases. Furthermore, the binding energies
of the deuteron, triton, and helium-3 drop faster with density
by using the revised parameters than by using the original
parameters, and this is also the case for the α particle at
T = 3 MeV. In Fig. 2(b), the two lines for the α particle almost
overlap. With the increment of temperature, the results of the
triton and helium-3 with the revised parameters get closer to the
results with the original parameters, and at the same time
the α-particle binding energy drops more and more slowly with
the density. At T = 10 MeV, the α-particle binding energy
with the revised parameters drops slower than that with the
original parameters. We note that the results for the triton and
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FIG. 2. Binding energies of light clusters d , t , h, and α as
functions of the total baryon density nB at T = 10 MeV (a), 5 MeV
(b), and 3 MeV (c). The results with the original [11] and revised
parameters (see Table II) for the binding energy shifts are indicated
by solid and dotted lines, respectively.

helium-3 in both Figs. 1 and 2 are also slightly changed with
the revised parameters aα,1 and ad,1, and this is due to the
fact that the baryon density in Eq. (11) is replaced by the
pseudodensity in Eq. (20).

Using the revised parameters and the original parameters
shown in Table II for the in-medium binding energy shifts of
the light clusters allow us to explore the in-medium binding
energy effects on the properties of low density nuclear matter
with light clusters. In the following, we use the revised
parameters for the in-medium binding energy shifts of the
light clusters unless noted otherwise.

B. Compositions of low density nuclear matter
with light clusters

Shown in Fig. 3 are the number fractions of nucleons and
light clusters as functions of the total baryon density for isospin
symmetric nuclear matter and neutron-rich nuclear matter with

FIG. 3. The number fraction of nucleons and light clusters d , t , h,
and α as a function of the total baryon density nB with FSU parameter
set for T = 10 MeV and Yp = 0.5 (a), T = 10 MeV and Yp = 0.1
(b), T = 3 MeV and Yp = 0.5 (c), and T = 3 MeV and Yp = 0.1 (d).

Yp = ntot
p /nB = 0.1 at temperatures T = 3 and 10 MeV with

the FSU parameter set. It is seen that generally the deuteron
dissolves first while the α dissolves last as baryon density
increases for a fixed temperature and isospin asymmetry. This
is understandable since the deuteron has smallest binding
energy while the α has largest binding energy. For the triton
and helium-3, their dissolution densities are between those of
the deuteron and α, and their fractions are almost identical for
the isospin symmetric nuclear matter.

As the system becomes more neutron rich, the fractions of
α, deuteron, and helium-3 become lower because of lackof
protons, while the fraction of triton becomes higher than that
of helium-3, as shown in Figs. 3(b) and 3(d). As seen in
Eq. (11), the in-medium binding energies of the triton and
helium-3 are isospin dependent, with the binding energy of
the triton decreasing faster with increasing density while the
binding energy of helium-3 drops more slowly for neutron-rich
matter with Yp = 0.1. As a result, the triton dissolves earlier
while the helium-3 dissolves later with increasing density in
neutron-rich matter, as shown in Figs. 3(b) and 3(d). At the

FIG. 4. The number fraction of light clusters d , t , h, and α as a
function of the total baryon density nB in nuclear matter with Yp = 0.5
and Yp = 0.1 at T = 3 and 10 MeV using the NL-RMF parameter
sets NL3, FSU, FSUGold5, and FSU-II.
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lower temperature of T = 3 MeV, among the light clusters,
the α-particle becomes the most dominant and dissolves last
as shown in Figs. 3(c) and 3(d). The α fraction is even
larger than the nucleon fraction for symmetric nuclear matter
around n ∼ 0.001 fm−3 at T = 3 MeV, and thus the matter
becomes “α matter”. At lower temperatures, nucleons prefer
to form α particles since the α has the largest binding
energy. As temperature increases, entropy becomes more
and more important, from the relation F = Eint − T S. For
isospin symmetric nuclear matter, instead of the α particle, the
nucleons become the most dominant at higher temperatures.
On the other hand, at lower temperatures, with increasing
density, all clusters appear earlier at low density and dissolve
earlier at high density, since their binding energies decrease
faster with increasing density at lower temperatures.

The interaction dependence of cluster fractions is checked
in both symmetric nuclear matter and neutron-rich matter with
Yp = 0.1 at T = 3 and 10 MeV, and the results are shown
in Fig. 4. Four parameter sets, i.e., NL3, FSU, FSU-II, and
FSUGold5, are used for comparison. It is seen that the cluster

FIG. 5. The number fraction of light clusters d , t , h, and α as
a function of the total baryon density nB in nuclear matter with
Yp = 0.5 and Yp = 0.1 at T = 3 and 10 MeV using the original [11]
and revised parameters (see Table II) for the binding energy shifts.

fractions are almost identical in all cases, and thus they could
be reasonably considered to be interaction independent. This is
mainly because the interactions among nucleons and clusters
are relatively weak at the low densities considered here.

Since the cluster fractions are essentially interaction inde-
pendent, it is interesting to see how the in-medium binding
energy shifts influence the cluster fractions. We calculate the
fractions of clusters with the original and revised parameters of
binding energy shifts in various cases with the FSU parameter
set, and the results are shown in Fig. 5. It is seen that with
increasing density, the -particle dissolves a little later and
the deuteron dissolves much earlier in all cases by using the
revised parameters than by using the original parameters. The
difference between the results for the triton and helium-3 is
small in symmetric nuclear matter while it becomes large in
neutron-rich matter.

Therefore, our results indicate that the cluster fractions
are essentially determined by the density and temperature
dependence of the in-medium cluster binding energies. Fur-
thermore, our calculations show that the light cluster fractions
become important at low densities, around 0.001 fm−3,
especially at lower temperatures. In the density region of
n � 0.02 fm−3, the fractions of light clusters in nuclear matter
become insignificant and the nuclear matter is dominated by
nucleons.

C. Clustering effects on symmetry energy, symmetry free
energy, and symmetry entropy

It is interesting to check the interaction-dependence of
Esym and Esym,4 by using FSU, FSU-II, and FSUGold5 which
predicts essentially the same isoscalar properties but different
density dependence of the symmetry energy by using different
values of ω-ρ coupling and �v and ρ meson coupling gρ

as given in Table I. Shown in Fig. 6 are Esym and Esym,4

as functions of the total baryon density at T = 3 MeV, T =
5 MeV, and T = 10 MeV with FSU, FSU-II, and FSUGold5.
In all cases, it is seen that the Esym are almost identical at
very low densities, and then the differences begin to appear
around nB ∼ 0.003 fm−3 where the clustering effects become
significant. At the higher density of nc = 0.10 fm−3, Esym with
different interactions meet each other, and this is because the
symmetry energy values at 0.1 fm−3 are fixed for FSU, FSU-II,
and FSUGold5. On the other hand, the Esym,4 generally
displays very small difference for difference interactions. It
is interesting to see that Esym,4 becomes significantly negative
at low densities and lower temperatures as shown in Figs. 6(d)
and 6(e), and this breaks the empirical parabolic law of the
symmetry energy, which will be discussed in detail later.
Therefore, our results suggest that the interaction dependence
of Esym and Esym,4 at low densities is insignificant.

To investigate how the clustering effects influence Esym,
the corresponding results without considering clusters are also
shown in Fig. 6 for comparison. It is clearly seen that the
clustering effects significantly enhance Esym at low densities
in all cases, and the enhancement becomes larger and larger
with decreasing temperature. On the other hand, the clustering
effects disappear above about 0.01 fm−3 for T = 3 MeV and
above about 0.02 fm−3 for T = 10 MeV, for which the fraction
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FIG. 6. Density dependence of Esym (left panels) and Esym,4 (right
panels) at T = 3, 5, and 10 MeV in the gNL-RMF model with FSU,
FSU-II, and FSUGold5. For comparison, the results for Esym in the
NL-RMF model without considering clusters are also included (thin
lines).

of α particle begin to decrease as shown in Fig. 4. Similarly,
the clustering effects also significantly enhance Esym,4 at low
densities in all cases (Esym,4 without considering clusters is
smaller than 0.5 MeV [53] in the density region considered in
Fig. 6 and is not shown here), especially at lower temperatures.

Shown in Fig. 7 are Esym and Esym,4 as functions of density
using the FSU parameter set with the original and revised
parameters for the in-medium binding energy shifts at T = 3,
5, and 10 MeV. One sees that the clustering effects with the
revised parameters are stronger than those with the original
parameters. Overall, the influences of different in-medium
cluster binding energy shifts are more significant than that
caused by different interactions, as shown in Fig. 6. As can
be seen by comparing Esym to that without clusters, shown
in Fig. 7 by dotted lines, the density at which the clustering
effects become negligible is essentially independent of the
cluster binding energy shifts.

In order to explore more clearly the clustering effects on
the symmetry energy, we show in Fig. 8 Epara obtained by
Eq. (43) as a function of the total baryon density at T = 3, 5,
and 10 MeV by using FSU. For comparison, the results of Esym

and Esym,4 obtained by Eqs. (35) and (36) are also presented.
One sees that the absolute values of Esym,4 at low densities are
relatively small at higher temperatures, as shown in Fig. 8(c),
and then get larger and larger with decreasing temperature.
Focusing on Fig. 8(a) for T = 3 MeV, one can see that there
is a bulge for Esym and valley for Esym,4 at low densities
where the light clusters are dominant. At low temperatures,
the α particle is dominant and its large binding energy plays

FIG. 7. Density dependence of Esym (left panels) and Esym,4 (right
panels) at T = 3, 5, and 10 MeV in the gNL-RMF model using the
original [11] and revised parameters (see Table II) for the binding
energy shifts. For comparison, the results for Esym in the NL-RMF
model without considering clusters are also included (dotted lines).

an important role in changing the symmetry energy. When
the temperature increases, the nucleons become dominant and
the entropy becomes important; therefore, the relatively small
binding energies of clusters can hardly affect the symmetry
energy. As a result, the clustering effects on the symmetry
energy become weaker at higher temperatures.

From Fig. 8, one can see that the difference between the
results of Esym and Epara are much smaller than the absolute
value of Esym,4 at low densities and lower temperatures, which
means that the expansion of internal energy per baryon in
powers of isospin asymmetry is hard to get convergent, and

FIG. 8. Density dependence of Esym, Esym,4, and Epara in the gNL-
RMF model with FSU at T = 3 MeV (a), 5 MeV (b), and 10 MeV
(c). The results of Esym in the NL-RMF model without considering
clusters are also included for comparison.
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FIG. 9. Same as Fig. 8, but for the symmetry free energy.

thus the parabolic law for the isospin asymmetry expansion of
nuclear matter EOS is invalid for nuclear matter including light
clusters at low temperature, consistent with the conclusion in
Ref. [11]. Furthermore, the results of Esym without considering
clusters are shown by dash-dotted lines in Fig. 8 and the same
conclusion is obtained as in Fig 6. Note that Esym is much
closer to Epara than the result without considering clusters at
higher temperatures, and this means that the parabolic law
could well approximate Esym at higher temperatures, although
the clustering effects slightly affect the symmetry energy.

Similarly to the symmetry energy, the results for the
symmetry free energy and the symmetry entropy are shown
in Figs. 9 and 10, respectively. Fsym,4 and Ssym,4 are quite large
at lower densities and lower temperatures, and then become
smaller at higher temperatures. Focusing on Fig. 9(a), one sees
that the magnitudes of the bulge for Fsym and valley for Fsym,4

at low densities are smaller than those of Esym and Esym,4

as shown in Fig. 8(a), and this means that the parabolic law
for free energy is broken not so strongly by the clustering
effects compared with that for internal energy. As temperature
increases, the clustering effects become weaker and weaker.

From Fig. 10(a), one sees that the clustering effects on the
symmetry entropy are significant at T = 3 MeV, similar to the
case of the symmetry energy as shown in Fig. 8(a). According
to F = Eint − T S, the relatively weaker clustering effects on
the symmetry free energy observed in Fig. 9(a) are thus mainly
due to the significant cancellation between the symmetry
entropy and the symmetry energy. The results of Fsym and
Ssym without considering clusters are also shown in Figs. 9
and 10, and the conclusions obtained from these figures are
very similar to that from Esym; namely, the clustering effects
exist at lower densities and lower temperatures, and disappear
at higher densities regardless of low or high temperatures.

FIG. 10. Same as Fig. 8, but for the symmetry entropy.

FIG. 11. Eint (a), F (b), and S (c) vs isospin asymmetry squared
[δ2 = (1 − 2Yp)2] in the gNL-RMF model with the FSU parameter
set at nB = 0.002 fm−3 and T = 3, 5, and 10 MeV.

To intuitively illustrate how the clustering effects break the
parabolic law for isospin asymmetry expansion of Eint, F , and
S, we present in Fig. 11 the Eint, F, and S as functions of
isospin asymmetry squared, δ2 = (1 − 2Yp)2, at total baryon
density 0.002 fm−3 (where the clustering effects are relatively
strong, as seen from previous figures) and T = 3, 5, and
10 MeV. It is seen that there are two symmetric branches as a
function of δ2, with the left branch corresponding to the results
from proton-rich matter calculations and the right branch from
neutron-rich matter calculations. The nice symmetry of the two
branches with respect to δ2 reflects that the isospin symmetry
breaking, due to the small difference between the binding
energies of the triton and helium-3, is very small.

Focusing on Fig. 11(a), one can see that the internal energy
per baryon Eint increases as the temperature increases. At
a fixed temperature, the symmetric nuclear matter has the
minimum internal energy per baryon. Moreover, for each
branch, one can see a nice linear relationship between the
Eint and δ2 at higher temperature T = 10 MeV while the
linear relationship is broken at lower temperature T = 3 MeV.
These features clearly indicate that, at total baryon density
0.002 fm−3, the parabolic approximation is broken for the
isospin asymmetry expansion for Eint at lower temperatures.
On the other hand, it is seen from Fig. 11(b) that the free energy
per baryon F decreases as the temperature increases, and for
a fixed temperature it also reaches the minimum in symmetric
nuclear matter. Compared with the results shown in Fig. 11(a)
for Eint, the linear relationship between F and δ2 is broken not
so much, and thus the parabolic law is approximately satisfied.
This feature is consistent with the conclusion obtained from
Fig. 9.

As for the entropy, one can see from Fig. 11(c) that at
T = 10 MeV the clustering effects are not important, and the
S reaches its maximum value in symmetric nuclear matter and
its minimum value in pure neutron (proton) nuclear matter as
expected. It is interesting to see that at lower temperatures, e.g.,
T = 3 MeV where the clustering effects become important, the
S reaches its minimum value in symmetric nuclear matter with
a complicated dependence on δ2. These features thus show
that the clustering effects drastically influence the entropy per
baryon in low density nuclear matter with light clusters at
lower temperatures.
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FIG. 12. The gNL-RMF model predictions for the density dependence of the symmetry energy (a)–(e) and symmetry free energy (f)–(j)
with FSU at different temperature intervals. The experimental data from Refs. [46] and [44] as well as the results in the NL-RMF model without
considering clusters are also included for comparison.

The above results demonstrate that the clustering effects
play a significant role for the thermodynamic properties of
low density nuclear matter, especially at lower temperatures.
For low density nuclear matter at lower temperatures, the
fourth-order symmetry energy, the fourth-order symmetry free
energy and the fourth-order symmetry entropy are found
to be significant and the isospin asymmetry expansion for
these nuclear matter properties is difficult to get convergent,
indicating that the empirical parabolic law is invalid in this
case.

D. Comparison with data on symmetry energy and symmetry
free energy

Experimentally, the symmetry energy and the symmetry
free energy at low densities and finite temperatures of T ≈
3 ∼ 8 MeV have been extracted by analyzing the isoscaling
behaviors of fragment production in heavy-ion collisions
[44,46]. Shown in the upper (lower) panels of Fig. 12 are the
predicted symmetry (free) energy Esym (Fsym) as a function
of baryon density for five temperature intervals, namely,
T = 3–4 MeV, T = 4–5 MeV, T = 5–6 MeV, T = 6–7 MeV,
and T = 7–8 MeV, by using the FSU parameter set. For com-
parison, Fig. 12 also includes the corresponding theoretical
results (Epara and Fpara) from the parabolic approximation
[i.e., Eqs. (43) and (44)] and the corresponding experimental
data [44,46]. In addition, the corresponding results for Esym

and Fsym without considering clusters are also included for
comparison.

First, it is seen from Fig. 12 that when the baryon density is
larger than about 0.02 fm−3, there are essentially no clustering
effects on the symmetry (free) energy and the data can be
nicely reproduced by the theoretical calculations [see, e.g.,
Figs. 12(d), 12(e), 12(i), and 12(j), where the data around

0.02 fm−3 are available]. When the baryon density is below
about 0.02 fm−3, the clustering effects become more and
more important, especially for the symmetry energy at lower
temperatures. These features are consistent with the results
presented and discussed earlier.

From the upper panels of Fig. 12, one can see that the
theoretical predictions on Esym and Epara are quite similar at
higher temperatures (i.e., T � 6 MeV) but their difference
becomes more and more significant as the temperature
decreases. Moreover, it is seen that the experimental data
on the symmetry energy can be reasonably described by
the theoretical calculations by considering the light clusters,
especially by the theoretical predictions of Esym. On the other
hand, the theoretical predictions of Esym without considering
light clusters significantly underestimate the experimental
data.

For the symmetry free energy, the theoretical predictions on
Fsym and Fpara are quite similar in all the cases considered here,
as shown in the lower panels of Fig. 12. The experimental data
on the symmetry free energy can be reasonably described by
the theoretical calculations by considering the light clusters,
especially by the theoretical predictions of Fpara. Similarly to
the case of the symmetry energy, the theoretical predictions of
Fsym without considering light clusters significantly underes-
timate the experimental data.

Based on the above discussions, we conclude that our
theoretical calculations considering light clusters can reason-
ably reproduce the general behaviors of the symmetry energy
and symmetry free energy extracted from experiments. These
results suggest that the clustering effects play a very important
role in describing the thermodynamic properties of low density
nuclear matter with density below about 0.02 fm−3, especially
at lower temperatures.
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IV. CONCLUSION

In the present work, using the generalized nonlinear
relativistic mean-field (gNL-RMF) model, we have systemati-
cally explored the thermodynamic properties of homogeneous
nuclear matter with light clusters at low densities and finite
temperatures. In the gNL-RMF model, light clusters up to
α (1 � A � 4) are included as explicit degrees of freedom
and treated as pointlike particles, the interactions among
various particles are described by meson exchanges, and the in-
medium effects on the cluster binding energies are considered
by density- and temperature-dependent energy shifts with the
parameters obtained by fitting the experimental Mott densities
of the clusters extracted from heavy-ion collisions around
Fermi energies.

First, we have found that the composition of low density
nuclear matter with light clusters is essentially determined
by the density and temperature dependence of the in-medium
cluster binding binding energies, while the interactions among
various particles play a minor role. In particular, our results in-
dicate that the light cluster fractions become significant at low
densities around 0.001 fm−3, especially at lower temperatures.
On the other hand, in the density region of n � 0.02 fm−3, the
fractions of light clusters in nuclear matter become insignifi-
cant and the nuclear matter is dominated overwhelmingly by
nucleons.

Second, for nuclear matter at low densities (n ∼ 10−3 fm−3)
and low temperatures (T � 3 MeV), compared with the
values of the conventional (second-order) symmetry energy,
symmetry free energy, and symmetry entropy, we have
demonstrated that the fourth-order symmetry energy, the
fourth-order symmetry free energy, and the fourth-order
symmetry entropy are significant, and the conventional isospin
asymmetry expansion for these nuclear matter properties is
hard to get convergent. These features imply that the empirical
parabolic law is invalid and the concept of the conventional
(second-order) symmetry energy becomes meaningless for
the description of the EOS of nuclear matter at these low
densities and low temperatures. Therefore, to describe the
EOS of nuclear matter with light clusters at low densities (n ∼
10−3 fm−3) and low temperatures (T � 3 MeV), full calcu-
lations (without isospin asymmetry expansion) are necessary.

Finally, we have compared the gNL-RMF model predic-
tions of the symmetry energy and symmetry free energy at
low densities and finite temperatures with the corresponding
experimental data extracted from heavy-ion collisions. We
have found that our theoretical calculations considering light
clusters can reasonably reproduce the general behaviors of
the symmetry energy and symmetry free energy extracted
from experiments. Moreover, our results indicate that the
clustering effects can be negligible for nuclear matter with
density above about 0.02 fm−3, but they play a very important
role in describing the symmetry energy and symmetry free
energy of low density nuclear matter with density below about
0.02 fm−3, especially at lower temperatures.

The present work has focused on the ideal infinite homoge-
nous nuclear matter system with six components, namely,
neutrons, protons, and light clusters including the deuteron,
triton, helium-3, and α particle, under thermal and chemical
equilibrium without considering Coulomb interactions. For a
more realistic system, one should additionally include heavier
nuclei, and the nucleons, light clusters, and heavy nuclei can
interact with each other via meson exchanges. In addition,
the Coulomb interaction should be considered for charged
particles. Furthermore, the system may include electrons under
the conditions of electrically charge neutrality and chemical
equilibrium. These studies are in progress and will be reported
elsewhere.
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