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Using a new approximate analytic parameter-free proxy-SU(3) scheme, we make simple predictions of shape
observables for deformed nuclei, namely γ and β deformation variables, the global feature of prolate dominance,
and the locus of the prolate-oblate shape transition. The predictions are compared with empirical results.
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I. INTRODUCTION

The existence of both prolate (cigar shaped) and oblate
(pancake shaped) deformed nuclei, the possible transitions
between the two shapes, as well as the experimentally observed
dominance of prolate-over-oblate shapes in the ground state
bands of even nuclei have been focuses of attention for decades
and from many different viewpoints.

It is the purpose of this paper to exploit a new approximate
SU(3) symmetry to obtain analytic, parameter-free predictions,
essentially by inspection, of the dominance of prolate shapes in
atomic nuclei and of the locus of the prolate-oblate transition.
The new symmetry scheme, called a proxy-SU(3), is similar
in spirit to pseudo-SU(3) [1–3] but involves a different ansatz
in order to obtain a valence space symmetry.

The proxy-SU(3) concept has been introduced and vetted
in Ref. [4] where it was shown that the Nilsson diagrams
for well-deformed nuclei obtained with the new symmetry
are very similar to the traditional Nilsson diagrams. Briefly,
proxy-SU(3) simply replaces all but one of the intruder unique
parity orbitals in medium and heavy mass nuclei by the highest
j -orbit from the next lower shell that is very similar in spatial
overlap and which has identical angular momentum projection
properties. This produces a new proxy set of orbits, very similar
to the original set, that constitutes a full oscillator shell (all even
or all odd orbital angular momenta up to some maximum value,
such as the s, d, and g orbits, with l = 0, 2, and 4 and with both
j = l + 1/2 and j = l − 1/2 total angular momenta). Such a
set of orbits has symmetry U(X) where X is half the number
of nucleons in the proxy shell (30 nucleons for 50-82 and 42
for 82-126). Bear in mind that the highest lying unique parity
orbital, like 11/2[505] in the 50-82 shell, which contains two
particles, is lost in the proxy shell approximation.

Having such a symmetry allows a number of simple
predictions resulting solely from the group structure of
the symmetry itself. The motivation for this approximate
symmetry and its detailed character are further described in
[4] and summarized at the beginning of Sec. II below. These
predictions arise simply from filling the nucleon orbitals in

a deformed quadrupole field, and the consequent changes
in ground state irreducible representations (irreps) for the
relevant group (see below).

Over the years, there have been many efforts to understand
nuclear shapes and the locus of prolate and oblate shapes
in nuclei from many different perspectives. Microscopic
calculations have evolved from early applications of the pairing
plus quadrupole model to the prolate-oblate difference [5]
and the prolate-oblate transition [6] to recent self-consistent
Skyrme Hartree-Fock plus BCS calculations [7] and Hartree-
Fock-Bogoliubov calculations [8–10] studying the structural
evolution in neutron-rich Yb, Hf, W, Os, and Pt isotopes,
reaching the conclusion that N ≈ 116 nuclei in this region
can be identified as the transition point between prolate and
oblate shapes. In a related projected shell model study [11],
a rotation-driven prolate-to-oblate shape phase transition has
been found in 190W. The prolate-oblate shape phase transition
has been considered [12–14] within the O(6) symmetry of
the interacting boson model [15]. In particular, the O(6)
symmetry has been considered [16,17] as a critical point of the
prolate-to-oblate shape phase transition within the interacting
boson model. An analytically solvable prolate-to-oblate shape
phase transition has been found [18] within the SU(3) limit
of the interacting boson model. The collection of data of
the chain of even nuclei (differing by two protons or two
neutrons) 180Hf, 182−186W, 188,190Os, 192−198Pt, considered in
Ref. [18], suggests that the transition occurs between 190Os
and 192Pt, in agreement with their theoretical predictions. The
dominance of prolate-over-oblate nuclear shapes in the ground
state bands of deformed even-even nuclei has been considered
both in the framework of the Nilsson model [19,20] as well
as by studying the effects of the spin-orbit potential within
the framework of the Nilsson-Strutinsky method [21–23].
Nevertheless, the almost complete dominance of prolate-over-
oblate deformations in the ground states of even-even nuclei
is still considered as not adequately understood [24].

From the experimental point of view, 192Os [25] and 190W
[26] have been suggested as lying at the prolate-oblate border,
with 194Os [27] and 198Os [28] having an oblate character. Data
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on nuclei from Hf to Pt, discussed in Ref. [29], also suggests
that the transition occurs between 192Os and 194Pt.

In the present work, we consider nuclear shapes in terms of
the standard variables γ and β, as well as the prolate-oblate
competition within the framework of the recently proposed
[4] parameter-free proxy-SU(3) symmetry in nuclei. Our main
results are as follows:

(1) predictions of nuclear quadrupole deformations and
axial asymmetry for deformed nuclei and a comparison with
empirical results,

(2) the dominance of prolate-over-oblate deformation,
(3) the occurrence of the prolate-oblate transition at N ≈

116 in agreement with the data in the W and Os chains of
isotopes, while predictions are made for Z < 74 (i.e., below
W),

(4) predictions are made concerning the prolate-oblate
transition in the region of the (yet unknown) neutron-deficient
rare earths around N ≈ 72.

II. PROXY-SU(3) SCHEME

A proxy-SU(3) symmetry scheme, applicable in heavy
deformed nuclei, has been recently introduced [4], based on the
asymptotic Nilsson wave functions |Nqnz��〉 [30,31], where
Nq is the total number of oscillator quanta (the subscript q
is added in order to distinguish this number from the neutron
number N ), nz is the number of the oscillator quanta along the
z axis, � is the z projection of the orbital angular momentum,
and � is the z projection of the spin. Nilsson orbitals in
even-even nuclei are then denoted by K[Nqnz�], where K
is the projection of the total angular momentum on the z axis,
given by K = � + �.

The key to the new scheme is the great similarity between
Nilsson orbitals differing by �K[�Nq�nz��] = 0[110].
Proton-neutron 0[110] pairs were found to play a key role
in the deformation of heavy nuclei, especially in those with
equal numbers of valence protons and valence neutrons
[32,33]. It was subsequently realized that 0[110] orbitals can
be used for the construction of a proxy-SU(3) scheme for
heavy deformed nuclei, similar to the Elliott SU(3) symmetry
[34–36] appearing in light nuclei. In both cases, the standard
Elliott notation (λ,μ) is used for the irreducible representations
(irreps) of SU(3).

The proxy-SU(3) scheme results in a description of nuclei
in terms of SU(3) representations from a direct product of the
proton and neutron spaces. For a given nucleus (λ, μ) values
are directly related to the number of valence nucleons and, for
the highest weight state (the ground state), tend to grow with
those numbers up to the middle of the shell. The Elliott labels λ
and μ are known [37–39] to be connected to the shape variables
of the collective model [40]. This connection is achieved
by employing a linear mapping between the eigenvalues of
invariant operators of the two theories, namely between the
invariants β2 and β3 cos 3γ of the collective model (where β
and γ stand for the usual collective variables) and the invariants
of SU(3), which are the second and third order Casimir
operators of SU(3), respectively [15] (see Appendix A for
further discussion). The mapping results in the angle collective

variable γ given by [38,39]

γ = arctan

( √
3(μ + 1)

2λ + μ + 3

)
, (1)

and in the square of the deformation parameter β being
proportional to the second order Casimir operator of SU(3)
[15],

C2(λ,μ) = 2
3 (λ2 + λμ + μ2 + 3λ + 3μ), (2)

and given by [38,39]

β2 = 4π

5

1

(Ar̄2)2
(λ2 + λμ + μ2 + 3λ + 3μ + 3), (3)

where A is the mass number of the nucleus and r̄2 is related

to the dimensionless mean square radius [41],
√

r̄2 = r0A
1/6.

The dimensionless mean square radius is obtained by dividing
the mean square radius, which is proportional to A1/3, by the
oscillator length, which grows as A1/6 [41]. The constant r0 is
determined from a fit over a wide range of nuclei [42,43]. We
use the value in Ref. [38], r0 = 0.87, in agreement to Ref. [43].

Alternatively, one can use the invariants as formulated in
Ref. [37]. In that case, the expression resulting for β2 is
identical to Eq. (3) (the only difference being that the last
term in the parantheses, +3, is missing), while for γ the result
reads

cos 3γ = (λ − μ)(λ + 2μ + 3)(2λ + μ + 3)

2(λ2 + μ2 + λμ + 3λ + 3μ)3/2
, (4)

in agreement to the result obtained in Ref. [44]. It can be seen
that Eqs. (1) and (4) yield almost identical results, except for
values very close (less than one degree away) to 0 or to π/3,
where Eq. (1) still works without any problem, while Eq. (4)
fails, the reason being that the approximations involved in both
cases induce small errors, which are insignificant if the tangent
is used, but lead to violation of the condition |cos3γ | � 1 if
the cosine is used.

For a given nucleus, (λ,μ) for the ground state are given
through the outer product of the relevant proton and neutron
SU(3) irreps [that is, by the sum of the proton and neutron
(λ,μ)s; see below] and thus can be used to determine predicted
values of both β and γ . One sees from these equations that

(1) within a given mass region (roughly constant A value),
β increases with λ and μ and therefore tends to maximize near
midshell in agreement with the data;

(2) for λ � μ one has γ ≈ 0, while for λ > μ one has
30◦ > γ > 0, corresponding to prolate shapes;

(3) for λ � μ one has γ ≈ arctan
√

3 = 60◦, while for λ <
μ one has 60◦ > γ > 30◦, corresponding to oblate shapes;

(4) in the special case of λ = μ one has γ =
arctan(1/

√
3) = 30◦, corresponding to maximal triaxiality.

Below we will see how these ideas are borne out in practice
and compare the predictions made with Eqs. (1) and (3) with
empirical results

The asymmetry of the dependence on λ,μ in Eq. (1), the
asymmetry in the (λ,μ) values themselves about midshell (see
below), and the A dependence in Eq. (3) have an important
consequence: the proxy-SU(3) predictions for β and γ and for
prolate and oblate character are not symmetric about midshell,
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in contrast to some other models, leading to predictions that
are in fact reflected in the data.

In the proxy-SU(3) scheme [4], the protons of the 50-82
shell live in a proxy sdg shell, having an approximate U(15)
symmetry, which is obtained by leaving out the (very high-
lying) 11/2[505] orbital and replacing the rest of the 1h11/2

subshell orbitals (1/2[550], 3/2[541], 5/2[532], 7/2[523],
9/2[514]) by their 0[110] counterparts [32,33] (1/2[440],
3/2[431], 5/2[422],7/2[413], 9/2[404]), which form a 1g9/2

subshell.
Similarly, in the same scheme [4], the neutrons of the

82-126 shell live in a proxy pf h shell, having an approximate
U(21) symmetry, which is obtained by leaving out the
(very high-lying) 13/2[606] orbital and replacing the rest
of the 1i13/2 subshell orbitals (1/2[660], 3/2[651], 5/2[642],
7/2[633], 9/2[624],11/2[615]) by their 0[110] counterparts
[32,33] (1/2[550], 3/2[541], 5/2[532],7/2[523], 9/2[514],
11/2[505]), which form a 1h11/2 subshell.

For the valence protons of each nucleus, the relevant SU(3)
irreducible representations (irreps) of the U(15) ⊃ SU(3)
decomposition, obtained by use of the code UNTOU3 [45], can
be seen in Table I (in the hw column). For example, for 146Ba
and 168Er, which have 6 and 18 valence protons, respectively,
the relevant irreps are (18,0) and (18,6), respectively.

In the same table, the relevant SU(3) irreps of the U(21) ⊃
SU(3) decomposition, corresponding to the valence neutrons
of each nucleus, can be seen. For example, for 146Ba and
168Er which have 8 and 18 valence neutrons, respectively, the
relevant irreps are (26,4) and (36,6), respectively.

By taking the sum of these two irreps for each nucleus,
one can obtain the SU(3) irrep in which the ground state band
(and possibly additional bands, according to the value of μ)
is located. For example, for 146Ba and 168Er one has (18,0) +
(26,4) = (44,4) and (18,6) + (36,6) = (54,12), respectively.

III. PROLATE DOMINANCE AND THE
PROLATE-TO-OBLATE TRANSITION

The results for the rare earths within the 50-82 proton shell
and the 82-126 neutron shell are summarized in Table II. We
first note that prolate nuclei are predicted to dominate this
region by far, and oblate nuclei only appear at its end in Hf-Pt
with large neutron numbers of N � 116 (N � 118 for Hf).
This prediction is parameter-free in the proxy-SU(3) symmetry
and hence constitutes a specific prediction.

These results are consistent with the experimental data.
First, the overall prolate dominance has been well known for
decades, for example, through measurements of quadrupole
moments and the success of the Nilsson model on the prolate
side. Second, while it is more difficult to obtain direct evidence
for oblate shapes, quite a number of quadrupole moments are
known [29] in Os-Hg and suggest a shape change at 192Os116 −
194Os118. In γ -soft nuclei, as these are, oblate shapes develop
through a prolate-oblate shape transition passing through a γ
unstable phase, as, for example, in 196Pt118. Therefore, strong,
but indirect, evidence also comes from the systematic behavior
of signature observables with neutron number. These are the
energy ratio R4/2 = E(41

+)/E(21
+) [formation of bubblelike

patterns at specific (N,Z) values], the energy difference

E(22
+) − E(41

+), which crosses zero at the prolate-oblate
phase transition, the ratio E(22

+)/E(21
+), which minimizes

for large γ values, and the B(E2 : 22
+ → 21

+) value which
increases at the shape transition (it is allowed and stronger in
γ -soft nuclei than in well-deformed prolate or oblate nuclei).
This shape transition has been studied in Refs. [16,17,25–29]
with strong suggestions that the first oblate nucleus in W
is indeed at 190W (N = 116) and in the 192−194Os isotopes
(N = 116–118). The requisite data are not yet known for Hf.

The Pt series of isotopes is not expected to exhibit the
SU(3) symmetry, 196Pt being the textbook example of the
O(6) symmetry [15,47]. However, if one blindly ascribes
SU(3) irreps to the series of Pt isotopes, the first oblate
one appears to be 194Pt116, approximately in agreement with
empirical observations [16,17,29] and theoretical predictions
[7–10]. This is also in rough agreement with the empirical
observations and theoretical findings of Ref. [18], carried
out within the SU(3) limit of the interacting boson model,
locating 192Pt114 near the prolate-oblate transition point. It is
also consistent with the expectation that the O(6) symmetry
represents the critical point of a prolate-to-oblate shape phase
transition [16,17].

Using the same method one can also consider the rare earths
with protons in the 50-82 shell and neutrons also in the 50-
82 shell, the results being summarized in Table III. We see
that once again the quadrupole deformation maximizes near
midshell, while a prolate-to-oblate transition also appears at
the lower right part of the table. In the W, Os, and Pt series
of isotopes, the first oblate nuclei appear at N = 72, i.e., they
are 146W, 148Os, 150Pt, all of them lying far away from the
region experimentally accessible at present [46], while in the
Hf series of isotopes, the first oblate nucleus is 146Hf, having
N = 74.

These predictions should be considered with extreme care,
since in this shell protons and neutrons occupy the same
major shell, thus the role of formation of proton-neutron pairs
by protons and neutrons occupying identical or very similar
orbitals should be examined before any conclusions could be
drawn.

It should be noticed that the prolate-over-oblate dominance
in heavy N = Z nuclei has been recently obtained in the
framework of the quasi-SU(3) symmetry [48,49], focused in
the region from 56

28Ni28 to 96
48Cd48 [49].

In any case, the generic behavior of the deformation
variables is robust and the prolate-over-oblate dominance is
clear in both tables, since in both cases the oblate nuclei are
limited to the lower right part of the tables, i.e., just below the
filling of the proton shell and the simultaneous filling of the
neutron shell.

IV. BREAKING OF PARTICLE-HOLE SYMMETRY

The results reported in Table II exhibit clearly that no
particle-hole symmetry appears within the framework of
proxy-SU(3) symmetry [24]. From the mathematical point of
view, this fact is already made clear by Table I. For example, six
valence protons in U(15) correspond to the (18,0) irrep, while
six valence proton holes correspond to 82 − 6 = 76 protons,
i.e., to 26 valence protons and the (2,12) irrep. Similarly,
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TABLE I. Highest weight SU(3) irreps (which are always unique) for U(n), n = 6, 10, 15, 21 given in the columns labeled by hw, contained
in the relevant U(n) irrep for M valence protons or M valence neutrons, compared to SU(3) irreps with the highest eigenvalue of the second
order Casimir operator of SU(3), given in the columns labeled by C. Above the U(n) algebra, the relevant shell of the shell model and the
corresponding proxy-SU(3) shell are given. The upper half of C columns is identical to that of the corresponding hw column. The lower half of
the C columns is a mirror image of their upper half, while in the lower half of hw columns violations of the mirror symmetry appear, indicated
by boldface characters. The code UNTOU3 [45] has been used for producing these results. Note that the proxy-SU(3) scheme omits the highest
K Nilsson orbital from the unique parity orbit (e.g., 13/2[606] for the 82-126 shell) and therefore the sizes of the proxy sdg and proxy pf h

shells are 30 and 42 nucleons instead of the normal 32 and 44 nucleons for the 50-82 and 82-126 shells, respectively. Exactly at midshell [n
particles in the case of U(n)], there exist two irreps possessing the same maximum eigenvalue of the Casimir operator, the highest weight irrep
and its mirror image. For exampe, in U(15) for n = 15 the highest weight leads to the (19,7) irrep, while the highest eigenvalue of the Casimir
operator is possessed by the (19,7) and (7,19) irreps. See Sec. IV and Appendix B for further discussion.

M irrep 8-20 8-20 28-50 28-50 50-82 50-82 82-126 82-126
sd sd pf pf sdg sdg pf h pf h

U(6) U(6) U(10) U(10) U(15) U(15) U(21) U(21)
hw C hw C hw C hw C

0 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
1 [1] (2,0) (2,0) (3,0) (3,0) (4,0) (4,0) (5,0) (5,0)
2 [2] (4,0) (4,0) (6,0) (6,0) (8,0) (8,0) (10,0) (10,0)
3 [21] (4,1) (4,1) (7,1) (7,1) (10,1) (10,1) (13,1) (13,1)
4 [22] (4,2) (4,2) (8,2) (8,2) (12,2) (12,2) (16,2) (16,2)
5 [221] (5,1) (5,1) (10,1) (10,1) (15,1) (15,1) (20,1) (20,1)
6 [23] (6,0) (0,6) (12,0) (12,0) (18,0) (18,0) (24,0) (24,0)
7 [231] (4,2) (1,5) (11,2) (11,2) (18,2) (18,2) (25,2) (25,2)
8 [24] (2,4) (2,4) (10,4) (10,4) (18,4) (18,4) (26,4) (26,4)
9 [241] (1,4) (1,4) (10,4) (10,4) (19,4) (19,4) (28,4) (28,4)
10 [25] (0,4) (0,4) (10,4) (4,10) (20,4) (20,4) (30,4) (30,4)
11 [251] (0,2) (0,2) (11,2) (4,10) (22,2) (22,2) (33,2) (33,2)
12 [26] (0,0) (0,0) (12,0) (4,10) (24,0) (24,0) (36,0) (36,0)
13 [261] (9,3) (2,11) (22,3) (22,3) (35,3) (35,3)
14 [27] (6,6) (0,12) (20,6) (20,6) (34,6) (34,6)
15 [271] (4,7) (1,10) (19,7) (7,19) (34,7) (34,7)
16 [28] (2,8) (2,8) (18,8) (6,20) (34,8) (34,8)
17 [281] (1,7) (1,7) (18,7) (3,22) (35,7) (35,7)
18 [29] (0,6) (0,6) (18,6) (0,24) (36,6) (36,6)
19 [291] (0,3) (0,3) (19,3) (2,22) (38,3) (38,3)
20 [210] (0,0) (0,0) (20,0) (4,20) (40,0) (40,0)
21 [2101] (16,4) (4,19) (37,4) (4,37)
22 [211] (12,8) (4,18) (34,8) (0,40)
23 [2111] (9,10) (2,18) (32,10) (3,38)
24 [212] (6,12) (0,18) (30,12) (6,36)
25 [2121] (4,12) (1,15) (29,12) (7,35)
26 [213] (2,12) (2,12) (28,12) (8,34)
27 [2131] (1,10) (1,10) (28,10) (7,34)
28 [214] (0,8) (0,8) (28,8) (6,34)
29 [2141] (0,4) (0,4) (29,4) (3,35)
30 [215] (0,0) (0,0) (30,0) (0,36)
31 [2151] (25,5) (2,33)
32 [216] (20,10) (4,30)
33 [2161] (16,13) (4,28)
34 [217] (12,16) (4,26)
35 [2171] (9,17) (2,25)
36 [218] (6,18) (0,24)
37 [2181] (4,17) (1,20)
38 [219] (2,16) (2,16)
39 [2191] (1,13) (1,13)
40 [220] (0,10) (0,10)
41 [2201] (0,5) (0,5)
42 [221] (0,0) (0,0)
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TABLE II. Most leading SU(3) irreps [34,35] for nuclei with protons in the 50-82 shell and neutrons in the 82-126 shell. Boldface numbers
indicate nuclei with R4/2 = E(4+

1 )/E(2+
1 ) � 2.8, while * denotes nuclei with 2.8 > R4/2 � 2.5, and ** labels a few nuclei with R4/2 ratios

slightly below 2.5, shown for comparison, while no irreps are shown for any other nuclei with R4/2 < 2.5. For the rest of the nuclei shown
(using normal fonts and without any special signs attached) the R4/2 ratios are still unknown [46]. Irreps corresponding to oblate shapes are
underlined.

N Nval Z Ba Ce Nd Sm Gd Dy Er Yb Hf W Os Pt
Zval 56 58 60 62 64 66 68 70 72 74 76 78

irrep 6 8 10 12 14 16 18 20 22 24 26 28
(18,0) (18,4) (20,4) (24,0) (20,6) (18,8) (18,6) (20,0) (12,8) (6,12) (2,12) (0,8)

88 6 (24,0) (42,0)* (42,4)* (44,4)*
90 8 (26,4) (44,4) (44,8) (46,8) (50,4) (46,10) (44,12) (44,10)* (46,4)* (38,12)*
92 10 (30,4) (48,4) (48,8) (50,8) (54,4) (50,10) (48,12) (48,10) (50,4) (42,12)*
94 12 (36,0) (54,0) (54,4) (56,4) (60,0) (56,6) (54,8) (54,6) (56,0) (48,8) (42,12) (38,12)*
96 14 (34,6) (52,6) (52,10) (54,10) (58,6) (54,12) (52,14) (52,12) (54,6) (46,14) (40,18) (36,18)*
98 16 (34,8) (52,8) (52,12) (54,12) (58,8) (54,14) (52,16) (52,14) (54,8) (46,16) (40,20) (36,20)*
100 18 (36,6) (54,6) (54,10) (56,10) (60,6) (56,12) (54,14) (54,12) (56,6) (48,14) (42,18) (38,18) (36,14)*
102 20 (40,0) (58,0) (58,4) (60,4) (64,0) (60,6) (58,8) (58,6) (60,0) (52,8) (46,12) (42,12) (40,8)*
104 22 (34,8) (52,8) (52,12) (54,12) (58,8) (54,14) (52,16) (52,14) (54,8) (46,16) (40,20) (36,20) (34,16)*
106 24 (30,12) (48,12) (48,16) (50,16) (54,12) (50,18) (48,20) (48,18) (50,12) (42,20) (36,24) (32,24) (30,20)*
108 26 (28,12) (46,12) (46,16) (48,16) (52,12) (48,18) (46,20) (46,18) (48,12) (40,20) (34,24) (30,24) (28,20)*
110 28 (28,8) (46,8) (46,12) (48,12) (52,8) (48,14) (46,16) (46,14) (48,8) (40,16) (34,20) (30,20) (28,16)*
112 30 (30,0) (48,0) (48,4) (50,4) (54,0) (50,6) (48,8) (48,6) (50,0) (42,8) (36,12) (32,12) (30,8)**
114 32 (20,10) (38,10) (38,14) (40,14) (44,10) (40,16) (38,18) (38,16) (40,10) (32,18) (26,22) (22,22) (20,18)**
116 34 (12,16) (30,6) (30,10) (32,10) (36,6) (32,12) (30,14) (30,12) (32,6) (24,14) (18,28)∗ (14,28) (12,24) ∗ ∗
118 36 (6,18) (24,18) (24,22) (26,22) (30,18) (26,24) (24,16) (24,24) (26,18) (18,26) (12,30) (8,30)∗ (6,26) ∗ ∗
120 38 (2,16) (20,16) (20,20) (22,20) (26,16) (22,22) (20,24) (20,22) (22,16) (14,24) (8,28) (4,28)∗ (2,24) ∗ ∗

ten valence neutrons in U(21) correspond to the (30,4) irrep,
while ten valence neutron holes correspond to 126 − 10 = 116
neutrons, i.e., to 34 valence neutron holes and the (12,16) irrep.
As a result, in Table II one can see that 148Ba, possessing six
valence protons and ten valence neutrons corresponds to the
(18,0) + (30,4) = (48,4) prolate irrep, while its particle-hole
conjugate, 192Os, possessing six valence proton holes and ten
valence neutron holes corresponds to the completely different
oblate irrep (2,12) + (12,16) = (14,28).

We now discuss the particle-hole symmetry breaking in
more detail, since it plays a crucial role in obtaining the prolate-
oblate transition at the right place.

There are two paths for the selection of the irrep which will
be used for the description of the lowest lying band(s) in a
nucleus:

(1) In several cases [50,51], the irreps are ranked according
to the eigenvalue of the second order Casimir operator,
C2(λ,μ) of SU(3). The irrep possessing the highest eigenvalue

TABLE III. Same as Table II, but for the most leading SU(3) irreps [34,35] for nuclei with protons in the 50-82 shell and neutrons in the
50-82 shell.

N Nval Z Ba Ce Nd Sm Gd Dy Er Yb Hf W Os Pt
Zval 56 58 60 62 64 66 68 70 72 74 76 78

irrep 6 8 10 12 14 16 18 20 22 24 26 28
(18,0) (18,4) (20,4) (24,0) (20,6) (18,8) (18,6) (20,0) (12,8) (6,12) (2,12) (0,8)

56 6 (18,0) (36,0) (36,4) (38,4) (42,0) (38,6) (36,8) (36,6) (38,0) (30,8) (24,12) (20,12) (18,8)
58 8 (18,4) (36,4) (36,8) (38,8) (42,4) (38,10) (36,12) (36,10) (38,4) (30,12) (24,16) (20,16) (18,12)
60 10 (20,4) (28,4) (38,8) (40,8) (44,4) (40,10) (38,12) (38,10) (40,4) (32,12) (26,16) (22,16) (20,12)
62 12 (24,0) (42,0) (42,4) (44,4) (48,0) (44,6) (42,8) (42,6) (44,0) (36,8) (30,12) (26,12) (24,8)
64 14 (20,6) (38,6) (38,10) (40,10) (44,6) (40,12) (38,14) (38,12) (40,6) (32,14) (26,18) (22,18) (20,14)
66 16 (18,8) (36,8) (36,12) (38,12) (32,8) (38,14) (36,16) (36,14) (38,8) (30,16) (24,20) (20,20) (18,16)
68 18 (18,6) (36,6) (36,10) (38,10) (42,6) (38,12) (36,14) (36,12) (38,6) (30,14) (24,18) (20,18) (18,14)
70 20 (20,0) (38,0)* (38,4) (40,4) (44,0) (40,6) (38,8) (38,6) (40,0) (32,8) (26,12) (22,12) (20,8)
72 22 (12,8) (30,8)* (30,12)* (32,12) (36,8) (32,14) (30,16) (30,14) (32,8) (24,16) (18,20) (14,20) (12,16)
74 24 (6,12) (24,12)* (24,16)* (26,16)* (30,12)* (26,18)* (24,20) (24,18) (26,12) (18,20) (12,24) (8,24) (6,20)
76 26 (2,12) (20,16)* (22,16)* (26,12)* (22,18)* (20,20)* (20,18) (22,12) (14,20) (8,24) (4,24) (2,20)
78 28 (0,8) (18,14) (20,8) (12,16) (6,20) (2,20) (0,16)
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of C2(λ,μ) is supposed to lie lowest in energy, called the most
leading irrep.

(2) In proxy-SU(3) [4], the irreps are ranked according to
highest weight, as obtained from [45]. Interestingly, this is in
accordance with the choice made in the original pseudo-SU(3)
work [1].

The outcome of the two paths is shown in Table I for several
shells. Up to the middle of the shell, the two paths lead to
identical results. In the first half of the shell (upper half of
the table), the use of the Casimir operator leads to results
which are a mirror image of the second half of the shell (the
lower half of the table), i.e., perfect particle-hole, and therefore
prolate-oblate, symmetry about midshell appears.

In contrast, the use of the highest weight leads in the first
half of the shell (upper half of the table) to results different
from the mirror image of the second half of the shell (the lower
half of the table), except for the last five irreps in each shell,
for which the particle-hole symmetry is valid. As a result, the
irreps just below the middle of the table (bold in Table I) are not
symmetric [reversed (λ,μ)] from those just above the middle of
the table. Because of this, the particle-hole symmetry in proxy-
SU(3) is destroyed, except for the last five irreps. Therefore,
the larger the shell, the larger the percentage of irreps breaking
the particle-hole symmetry (i.e., the irreps shown in boldface
in Table I).

In the work of Elliott [34–36] in the sd shell the difference
between the two paths is almost invisible, since only one irrep
is affected, as seen in Table I. The choice of path also makes
no difference up to midshell, thus the results obtained in the
pseudo-SU(3) framework [50,51] are completely valid.

However, the breaking of the particle-hole symmetry in
the proxy-SU(3) scheme is instrumental in obtaining the right
position in the nuclear chart for the prolate-to-oblate transition
in the rare earths. Without this breaking, the prolate-oblate
transition would have taken place in the middle of the shell.

From the physics point of view, looking at the Nilsson
diagrams [30,31] immediately reveals that particle-hole sym-
metry is not present. For example, in the 50-82 proton shell, at
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C
2
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FIG. 1. Values of the square root of the second order Casimir
operator of SU(3), obtained from Eq. (2), vs particle number M , for
different shells, obtained through proxy-SU(3) or through the particle-
hole symmetry assumption. See Sec. IV for further discussion.

ε = 0.3, the first eight particles will occupy the 1
2 [431], 1

2 [550],
3
2 [422], and 1

2 [420] orbitals, while the last eight particles will
occupy the 1

2 [400], 3
2 [402], 11

2 [505], and 9
2 [514] orbitals. In

the last two orbitals of the latter case high values of K occur,
which do not appear in the former case. But high K values
require high μ values in the (λ,μ) irreps of SU(3), in order
to be accommodated, since K = min{λ,μ}, min{λ,μ} − 2,
min{λ,μ} − 4, 1, or 0 [15,34].

The effect of the particle-hole symmetry breaking is visible
in Fig. 1, where the square root of the second order Casimir
operator of SU(3), which, according to Eq. (2) is proportional
to β, is plotted as a function of the particle number M . Proxy-
SU(3) and particle-hole symmetry provide identical results up
to midshell and at the end of the shell, while between midshell
and end of the shell the differences show up.

V. RESULTS FOR THE β VARIABLE

One can go much further in using the proxy-SU(3) than
simply the prolate-oblate systematics. It is also straightforward
to use Eqs. (1) and (3) to obtain predictions for the shape
variables β and γ themselves for any given deformed nucleus
[any given (λ, μ)]. These predictions are parameter free [except
for the global constant r0 in Eq. (3), for which the value of 0.87
provided in the literature [38,42,43] will be used for all nuclei
throughout]. Of course, since they are based solely on the
SU(3) highest weight irreps, and neglect all interactions except
quadrupole, and utilize only the valence shell, they cannot be
expected to be very precise. Nevertheless, it is interesting to
see what emerges and how well they do work.

The predictions of the proxy-SU(3) model for the
quadrupole deformation β will be compared to the detailed
predictions of the relativistic mean field theory [52], as well
as to experimental values obtained from the B(E2) transition
rates from the ground to the first excited 2+ state of even-even
nuclei [53].

At this point the question of scaling according to the size
of the shell arises. For example, in the case of the geometrical
limit [54] of the interacting boson model [15], a rescaling

TABLE IV. Below each shell of the shell model, its proxy-SU(3)
content is shown, followed by the relevant unitary algebra and the size
S of the shell. Further down the highest weight SU(3) irreps are given
for nucleon number M . The code UNTOU3 [45] has been used for
producing these results. The sd shell is also shown, up to midshell,
for comparison. See Sec. V for further discussion.

S 8-20 28-50 50-82 82-126 126-184 184-258
M sd pf sdg pf h sdgi pf hj

U(6) U(10) U(15) U(21) U(28) U(36)
12 22 32 44 58 74

2 (4,0) (6,0) (8,0) (10,0) (12,0) (14,0)
4 (4,2) (8,2) (12,2) (16,2) (20,2) (24,2)
6 (6,0) (12,0) (18,0) (24,0) (30,0) (36,0)
8 (10,4) (18,4) (26,4) (34,4) (42,4)
10 (10,4) (20,4) (30,4) (40,4) (50,4)
12 (12,0) (24,0) (36,0) (48,0) (60,0)

064326-6



ANALYTIC PREDICTIONS FOR NUCLEAR SHAPES, . . . PHYSICAL REVIEW C 95, 064326 (2017)

10 20 30 40 50 60 70 80

10

20

30

40

50

60

(a)

M=2
M=4
M=6
M=8
M=10
M=12

λ

size of shell
10 20 30 40 50 60 70 80

10

20

30

40

50

60

(b)

size of shell

C
2

FIG. 2. (a) Values of the Elliott quantum number λ vs the size of the shell, for different nucleon numbers M , as shown in Table IV. (b)
Values of the square root of the second order Casimir operator of SU(3), obtained from Eq. (2) and related to β through Eq. (3), vs the size of
the shell, for different nucleon numbers M . See Sec. V for further discussion.

factor of 2NB/A is used, where NB is the number of bosons
(half of the number of valence nucleons) present in a nucleus
with mass number A. In other words, the rescaling factor is the
number of valence nucleons over the total number of nucleons.

By analogy here one should have a rescaling factor related
to the size of the shells used by the valence protons and valence
neutrons as compared to the size of the whole nucleus. From
the contents of Table IV and Fig. 2(a) it is clear that (at least
for the low values of M shown) λ is nearly proportional to
the size of the shell, while from Eq. (3) it is clear that (at
least in the case of λ � μ) β is roughly proportional to λ.
As a result, β turns out to be roughly proportional to the size
of the shell. If we could accommodate all A particles within
a large shell possessing an SU(3) subalgebra, the λ of the

irrep representing the nucleus would have been proportional
to A. Here we use the valence protons, for which the relevant
λp is proportional to the size Sp of the proton shell, and the
valence neutrons, for which the relevant λn is proportional to
the size Sn of the neutron shell. The total irrep characterizing
the nucleus has λ = λp + λn, therefore λ is proportional to
Sp + Sn. This implies that the β values obtained from Eq. (3)
should be multiplied by A/(Sp + Sn). In the case of the rare
earth region, where the neutrons fill the 82-126 shell and the
protons the 50-82 shell, this gives a rescaling factor of A/76.

Figure 3 shows typical results for β, for four elements
spanning the region, and compares these with tabulated β
values [53] and also with predictions from relativistic mean
field theory [52]. Overall, the agreement, both qualitatively and
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FIG. 3. Proxy-SU(3) predictions for β, obtained from Eq. (3), compared with tabulated β values [53] and also with predictions from
relativistic mean field theory [52]. See Sec. V for further discussion.
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FIG. 4. Proxy-SU(3) predictions for β. See Sec. V for further
discussion.

even quantitatively, is surprisingly good given the simplicity
of the approach. For each element, β rises to a maximum near
midshell and then drops off sharply, heading, in the case of
Os, towards the prolate-oblate transition discussed above.

In Fig. 4, all the proxy-SU(3) predictions for β for nuclei in
the rare earth region are collected. Interestingly, there is a dip in
the elements up to Hf at N = 116, which, for heavier elements,
is the locus of the prolate-oblate transition. Moreover, there
even appears to be support for the particle-hole symmetry
breaking inherent in proxy-SU(3) just after midshell.

VI. RESULTS FOR THE γ VARIABLE

Figure 5 shows for this entire region numerical results for
the proxy-SU(3) predictions for γ , compared to empirical
values extracted from ratios of the γ vibrational bandhead
to the first 2+ state,

R = E(22
+)

E(21
+)

, (5)

according to [19,55,56]

sin 3γ = 3

2
√

2

√
1 −

(
R − 1

R + 1

)2

. (6)

Values extracted from other observables such as B(E2) values
can differ by 2−3◦ giving a feeling for the experimental
uncertainties (see Refs. [19,57]).

The comparisons are particularly interesting. First, the
data in Fig. 5 show two distinct patterns—roughly constant
values near 10−15◦ for well deformed nuclei, and a sharp
rise toward maximum axial asymmetry in the Os (Z = 76)
and Pt (Z = 78) isotopes. It is important to note that physical
differences in the ground and γ band wave functions for γ
values below about 15◦ are extremely small. For example,
probabilities for K = 2 components in the ground state band
4+ state are about 1% or less [19,55,57]. Hence, differences
of a few degrees in predicted and empirical γ values in this
range are not physically very significant and the qualitative
agreement is quite good.

We note that there are, however, two obvious areas of
disagreement. Near the end of the shell the empirical γ values
(determined in the way described above) saturate at about 30
degrees (maximum axial asymmetry), while the proxy-SU(3)
predictions show a return to axial symmetry for oblate shapes
(γ approaching 60◦).

Also the empirical values from Z = 62 to 72 are rather
smooth and gradually increasing, while the predictions show
rather strong oscillations. It is our speculation that this reflects
the effects of pairing which are ignored here and which will
tend to spread the orbit occupancies in the ground state (and
hence in the γ mode which is related to the ground state
through a Y22 operator) and mute these oscillations. Further
work is needed to test this hypothesis. Nevertheless, despite
this discrepancy we note an interesting common feature: The
empirical values do show a drop going to Z = 62 and a soft
bottoming out at Z = 70, just where proxy-SU(3) also has
(more distinct) minima.

In Fig. 6 we show detailed comparisons for four elements
spaced out over the region, including, for Os and Pt, the
results of Gogny D1S predictions [8]. Overall the agreement
is reasonable. Both empirical values and the proxy-SU(3)
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FIG. 5. Proxy-SU(3) predictions for γ , obtained from Eq. (1), compared to empirical values extracted from ratios of the γ vibrational
bandhead to the first 2+ state. See Sec. VI for further discussion.
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FIG. 6. Proxy-SU(3) predictions for γ , obtained from Eq. (1),
compared with empirical values obtained from Eq. (6) [19,56], as
well as with predictions of Gogny D1S calculations [8]. The small
light triangles for the heaviest Pt isotopes at 30◦ are used because
their experimental values for the ratio R of Eq. (5) are a few percent
below the limiting value for 30◦ and hence γ cannot be rigorously
extracted; however there is abundant evidence that these isotopes have
asymmetry values near 30◦. The corresponding theoretical values are
denoted by open circles. See Sec. VI for further discussion.

predictions are uniformly below about 15◦ for Dy and Yb,
although the proxy-SU(3) results show strong oscillations for
Yb with a distinct minimum near N = 102. This latter may be
related to the onset of a bosonic SU(3) axial symmetry, which
has been argued for in these nuclei near N = 102, 104 [58]. In
Os and Pt, both the empirical values and the predictions agree
on a sharp increase in γ beyond N ∼ 110. The proxy-SU(3)
results are certainly no worse than those using a Gogny D1S
interaction [8], but the agreement is only qualitative.

The same analysis can be carried out for the Z = 50-82,
N = 50-82 shell. Again, the axial asymmetry variable γ has
modest values around 10−15◦ near midshell, and rises towards
30◦ near the end of the shell. We thus see that the behavior of
these variables is similar in different shells, as again reflected
in abundant data.

Finally, we again stress the extreme simplicity of these
predictions, based on an approximate group structure and on
the filling of nucleons in a quadrupole field. No account is taken
of pairing, the contributions of other shells, or other higher
multipole or other interactions. In particular, one expects the
effects of pairing to wash out the predicted oscillations as

pairing scatters pairs of particulars among several orbitals
near the Fermi surface. Taking pairing into account would
presumably therefore improve the agreement. We are pursuing
an implementation of pairing but that is beyond the scope of
the current paper.

VII. CONCLUSIONS

In the present work the prolate-over-oblate dominance in
deformed rare earth nuclei is obtained within the framework of
a parameter-free proxy SU(3) symmetry, using the symmetry
properties alone. In addition, within the same SU(3) frame-
work, the point of the prolate-oblate shape phase transition
is predicted to be at N ≈ 116, as supported by the existing
experimental data and recent microscopic calculations. Finally,
we have used Eqs. (1) and (3) to obtain simple, analytic,
parameter-free (except for a single global value of r0 in the
case of β) predictions of the β and γ deformation variables
for the rare earth region. Similar results for other regions are
trivially obtainable once the irreps (analogous to Table II)
are obtained. The predictions are broadly consistent with
the empirical results. The quadrupole deformation β has the
observed roughly parabolic behavior across deformed nuclei.
For γ , the empirical results of values near 10−15◦ for most of
the deformed rare earth nuclei and the sharp rise towards 30◦
at the upper end is also reproduced. Clearly the predictions
show oscillations not evident, or at least highly muted, in the
data. We suspect that this is due to the neglect of pairing for
which pair scattering would have the tendency to smooth out
the variations, but that needs to be checked by further study.

SU(3) symmetry in nuclei is known to be connected
to the dominance of the quadrupole-quadrupole interaction
[34,35,50,51]. Therefore one could think that the prolate-over-
oblate dominance in the deformed rare earths as well as the
prolate-oblate shape phase transition are direct consequences
of the quadrupole-quadrupole interaction dominance.

It should be remembered that the Nilsson levels are not
changed much by the approximation involved in the proxy-
SU(3) scheme [4], since in each shell the normal parity orbitals
remain intact, while the intruder parity orbitals are replaced by
their 0[110] partners. In particular, downwards leading prolate
orbits remain downwards leading, while upwards moving
oblate orbits remain upwards moving. Moreover, the enhanced
mixing of single particle states on the prolate side also persists,
leading to avoided crossings and a further lowering of the
prolate states [19]. As a result, it is expected that this simple
approximate scheme should provide results consistent with
microscopic treatments concerning nuclear properties related
to the prolate or oblate character of deformed nuclei.

The present work suggests that it is worth investigating
how far one can go in the description of the properties of
heavy deformed nuclei taking advantage of the proxy-SU(3)
symmetry scheme. There are, however, important caveats
about what this approach can and cannot accomplish and
about its inherent limitations. It invokes, through SU(3), the
valence space quadrupole interaction. Hence effects such as
pairing, or a larger space involving additional major oscillator
shells, or more complex interactions, are so far ignored. In
no way can it replace large scale shell model calculations,
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ab initio, first principles methods, nor is it intended to do so. It
is complementary to such microscopic approaches and is adept
at predicting, in a very simple way, as illustrated in this paper,
those observables that robustly depend primarily on valence
nucleon number and the quadrupole interactions amongst
them. In this first application of the proxy-SU(3) scheme, we
feel that the simplest approach is reasonable, in order to see
what the model can do on its own. To go further, of course,
some ways of incorporating at least some additional degrees of
freedom, such as pairing, will need to be studied. For now, we
feel that the success of the proxy-SU(3) has exhibited its poten-
tial for the prediction of global nuclear properties and that this
should encourage further study of it and its possible extensions.

A possible path is briefly mentioned here. For the nuclei
shown in Table II the most leading SU(3) irrep will contain
bands with K = μ, μ − 2, . . . ,0 [35]. As a consequence, in
principle several bands will coexist within the most leading
irrep. In the case of μ = 6, for example, the K = 0 ground
state band, the K = 2 γ1 band, the first K = 4 band, and the
first K = 6 band will coexist. The degeneracy among these
bands can be broken through the use of three-body and/or
four-body terms which are known to be O(3) scalars belonging
to the SU(3) ⊃ O(3) integrity basis [50,51,59]. Although this
goes beyond proxy-SU(3) per se, since it involves additional
interactions, the proxy-SU(3) starting point may simplify such
calculations. Work along these lines is in progress.

ACKNOWLEDGMENTS

The authors are grateful to J. P. Draayer for providing
the code UNTOU3 and for helpful discussions. Support by
the Bulgarian National Science Fund (BNSF) under Contract
No. DFNI-E02/6 is gratefully acknowledged by N.M. Work
was supported in part by the U.S. DOE under Grant No. DE-
FG02- 91ER-40609, and by the MSU-FRIB laboratory. R.B.C.
acknowledges support from the Max Planck Partner Group,
TUBA-GEBIP, and Istanbul University Scientific Research
Project No. 54135.

APPENDIX A: ORIGINS OF EQS. (1) AND (3)

In this Appendix the concepts behind the derivation of
Eqs. (1) and (3) [37–39] are discussed.

Equations (1) and (3) are obtained through a linear mapping
[38,39] between the eigenvalues of the invariant operators
of the collective model [40], β2 and β3 cos 3γ , and the
eigenvalues of the invariants of SU(3). The basic idea behind
this approach is that if the invariant quantities of two theories
are used to describe the same physical phenomena, their
measures must agree [37–39]. The derivation is based on the
fact that SU(3) contracts [60] to the quantum rotor algebra
[61] for low values of angular momentum and large values of
the second order Casimir operator of SU(3), the eigenvalues of
which are given in Eq. (2). Large values of C2 occur for large
values of λ and/or μ. The SU(3) irreps appearing in Tables II
and III do have λ and/or μ large, thus the use of the contraction
limit is justified in these cases. Furthermore, it turns out that

to each (λ,μ) irrep corresponds a unique value of the (β,γ )
variables.

APPENDIX B: U(N) ⊃ SU(3) DECOMPOSITIONS

In this Appendix we briefly explain the way in which the
results reported in Table I are obtained.

1. U(15) ⊃ SU(3) decomposition

In the U(15) algebra the fundamental irreducible repre-
sentation (irrep) is [1] (a Young tableau with one box). Since
U(15) is the algebra describing the sdg shell, the corresponding
SU(3) irrep should contain the angular momenta L = 0, 2,
4. It is known [34] that the angular momentum eigenvalues
appearing within an irrep (λ,μ) with K = 0 are

L = max{λ,μ}, max{λ,μ} − 2, . . . , 1 or 0. (B1)

Therefore in this case the SU(3) irrep has to be (4,0).
The outer product [62] of U(15) irreps [1] ⊗ [1] results in

the symmetric irrep [2] and the antisymmetric irrep [11]. Using
the standard techniques [62] of calculating the outer product of
SU(3) irreps (4,0) ⊗ (4,0) one finds that the symmetric U(15)
irrep [2] contains the SU(3) irreps (8,0), (4,2), (0,4), while the
antisymmetric U(15) irrep [11] contains the SU(3) irreps (6,1)
and (2,3). Among these SU(3) irreps, the most leading one,
defined as the one possessing the highest value of the second
order Casimir operator of SU(3), given in Eq. (2), is (8,0),
belonging to the irrep [2] of U(15).

Since we are considering a system of protons or neutrons,
larger U(15) irreps will be limited by the Pauli principle to
a maximum of two columns (allowed because of the two
possible orientations of spin). Soon enough the calculation
for larger irreps becomes cumbersome, thus one has to rely
on the computational method described in Ref. [45]. An
earlier tabulation of several results for the U(15) ⊃ SU(3)
decomposition have been given in Ref. [63].

2. U(21) ⊃ SU(3) decomposition

The decomposition of U(21) is similar. Since U(21) is
the algebra describing the pf h shell, the corresponding
SU(3) irrep should contain the angular momenta L = 1, 3,
5. Therefore in this case from Eq. (B1) one sees that the SU(3)
irrep has to be (5,0).

The outer product [62] of U(21) irreps [1] ⊗ [1] results
in the symmetric irrep [2] and the antisymmetric irrep [11].
Calculating the outer product of SU(3) irreps (5,0) ⊗ (5,0) one
finds that the symmetric U(21) irrep [2] contains the SU(3)
irreps (10,0), (6,2), (2,4), while the antisymmetric U(21) irrep
[11] contains the SU(3) irreps (8,1), (4,3), and (0,5). The most
leading SU(3) irrep is (10,0), belonging to the irrep [2] of
U(21).

064326-10



ANALYTIC PREDICTIONS FOR NUCLEAR SHAPES, . . . PHYSICAL REVIEW C 95, 064326 (2017)

[1] R. D. Ratna Raju, J. P. Draayer, and K. T. Hecht, Search for a
coupling scheme in heavy deformed nuclei: The pseudo SU(3)
model, Nucl. Phys. A 202, 433 (1973).

[2] J. P. Draayer, K. J. Weeks, and K. T. Hecht, Strength of the
Qπ · Qν interaction and the strong-coupled pseudo-SU(3) limit,
Nucl. Phys. A 381, 1 (1982).

[3] J. N. Ginocchio, Pseudospin as a Relativistic Symmetry, Phys.
Rev. Lett. 78, 436 (1997).

[4] D. Bonatsos, I. E. Assimakis, N. Minkov, A. Martinou, R. B.
Cakirli, R. F. Casten, and K. Blaum, Proxy-SU(3) symmetry
in heavy deformed nuclei, preceding paper, Phys. Rev. C 95,
064325 (2017).

[5] K. Kumar, Prolate-oblate difference and its effect on en-
ergy levels and quadrupole moments, Phys. Rev. C 1, 369
(1970).

[6] K. Kumar, Nuclear shapes, energy gaps and phase transitions,
Phys. Scr. 6, 270 (1972).

[7] P. Sarriguren, R. Rodríguez-Guzmán, and L. M. Robledo, Shape
transitions in neutron-rich Yb, Hf, W, Os, and Pt isotopes within
a Skyrme Hartree-Fock + BCS approach, Phys. Rev. C 77,
064322 (2008).

[8] L. M. Robledo, R. Rodríguez-Guzmán, and P. Sarriguren, Role
of triaxiality in the ground-state shape of neutron-rich Yb, Hf,
W, Os and Pt isotopes, J. Phys. G: Nucl. Part. Phys. 36, 115104
(2009).

[9] K. Nomura, T. Otsuka, R. Rodríguez-Guzmán, L. M. Robledo,
P. Sarriguren, P. H. Regan, P. D. Stevenson, and Zs. Podolyák,
Spectroscopic calculations of the low-lying structure in exotic
Os and W isotopes, Phys. Rev. C 83, 054303 (2011).

[10] K. Nomura, T. Otsuka, R. Rodríguez-Guzmán, L. M. Robledo,
and P. Sarriguren, Collective structural evolution in neutron-
rich Yb, Hf, W, Os, and Pt isotopes, Phys. Rev. C 84, 054316
(2011).

[11] Y. Sun, P. M. Walker, F.-R. Xu, and Y.-X. Liu, Rotation-driven
prolate-to-oblate shape phase transition in 190W: A projected
shell model study, Phys. Lett. B 659, 165 (2008).

[12] G. Thiamova and P. Cejnar, Prolateoblate shape-phase transition
in the O(6) description of nuclear rotation, Nucl. Phys. A 765,
97 (2006).

[13] L. Bettermann, V. Werner, E. Williams, and R. J. Casperson,
New signature of a first order phase transition at the O(6) limit
of the IBM, Phys. Rev. C 81, 021303(R) (2010).

[14] Yu. Zhang and Z. Zhang, The robust O(6) dynamics in the
prolateoblate shape phase transition, J. Phys. G: Nucl. Part. Phys.
40, 105107 (2013).

[15] F. Iachello and A. Arima, The Interacting Boson Model
(Cambridge University Press, Cambridge, England, 1987).

[16] J. Jolie, R. F. Casten, P. von Brentano, and V. Werner, Quantum
Phase Transition for γ -Soft Nuclei, Phys. Rev. Lett. 87, 162501
(2001).

[17] J. Jolie, P. Cejnar, R. F. Casten, S. Heinze, A. Linnemann, and V.
Werner, Triple Point of Nuclear Deformations, Phys. Rev. Lett.
89, 182502 (2002).

[18] Yu. Zhang, F. Pan, Y.-X. Liu, Y.-A. Luo, and J. P. Draayer,
Analytically solvable prolate-oblate shape phase transitional
description within the SU(3) limit of the interacting boson
model, Phys. Rev. C 85, 064312 (2012).

[19] R. F. Casten, Nuclear Structure from a Simple Perspective
(Oxford University Press, Oxford, 2000).

[20] I. Hamamoto and B. R. Mottelson, Further examination of
prolate-shape dominance in nuclear deformation, Phys. Rev. C
79, 034317 (2009).

[21] N. Tajima and N. Suzuki, Prolate dominance of nuclear shape
caused by a strong interference between the effects of spin-orbit
and l2 terms of the Nilsson potential, Phys. Rev. C 64, 037301
(2001).

[22] S. Takahara, N. Onishi, Y. R. Shimizu, and N. Tajima, The role of
spin–orbit potential in nuclear prolate-shape dominance, Phys.
Lett. B 702, 429 (2011).

[23] S. Takahara, N. Tajima, and Y. R. Shimizu, Nuclear prolate-
shape dominance with the Woods-Saxon potential, Phys. Rev.
C 86, 064323 (2012).

[24] I. Hamamoto and B. Mottelson, Shape deformations in atomic
nuclei, Scholarpedia 7, 10693 (2012).

[25] R. F. Casten, A. I. Namenson, W. F. Davidson, D. D. Warner, and
H. G. Borner, Low-lying levels in 194Os and the prolateoblate
phase transition, Phys. Lett. B 76, 280 (1978).

[26] N. Alkhomashi et al., β-delayed spectroscopy of neutron-
rich tantalum nuclei: Shape evolution in neutron-rich tungsten
isotopes, Phys. Rev. C 80, 064308 (2009).

[27] C. Wheldon, J. Garcés Narro, C. J. Pearson, P. H. Regan, Zs.
Podolyák, D. D. Warner, P. Fallon, A. O. Macchiavelli, and
M. Cromaz, Yrast states in 194Os: The prolate-oblate transition
region, Phys. Rev. C 63, 011304(R) (2000).

[28] Zs. Podolyák et al., Weakly deformed oblate structures in
198
76 Os122, Phys. Rev. C 79, 031305(R) (2009).

[29] J. Jolie and A. Linnemann, Prolate-oblate phase transition in the
Hf-Hg mass region, Phys. Rev. C 68, 031301(R) (2003).

[30] S. G. Nilsson, Binding states of individual nucleons in strongly
deformed nuclei, Mat. Fys. Medd. K. Dan. Vidensk. Selsk.
29(16), 1 (1955).

[31] S. G. Nilsson and I. Ragnarsson, Shapes and Shells in Nuclear
Structure (Cambridge University Press, Cambridge, England,
1995).

[32] R. B. Cakirli, K. Blaum, and R. F. Casten, Indication of a mini-
valence Wigner-like energy in heavy nuclei, Phys. Rev. C 82,
061304(R) (2010).

[33] D. Bonatsos, S. Karampagia, R. B. Cakirli, R. F. Casten, K.
Blaum, and L. Amon Susam, Emergent collectivity in nuclei and
enhanced proton-neutron interactions, Phys. Rev. C 88, 054309
(2013).

[34] J. P. Elliott, Collective motion in the nuclear shell model I.
Classification schemes for states of mixed configurations, Proc.
R. Soc. London, Ser. A 245, 128 (1958).

[35] J. P. Elliott, Collective motion in the nuclear shell model II. The
introduction of intrinsic wave-functions, Proc. R. Soc. London,
Ser. A 245, 562 (1958).

[36] J. P. Elliott and M. Harvey, Collective motion in the nuclear shell
model III. The calculation of spectra, Proc. R. Soc. London, Ser.
A 272, 557 (1963).

[37] J. P. Elliott, J. A. Evans, and P. Van Isacker, Definition of the
Shape Parameter γ in the Interacting Boson Model, Phys. Rev.
Lett. 57, 1124 (1986).

[38] O. Castaños, J. P. Draayer, and Y. Leschber, Shape variables and
the shell model, Z. Phys. A 329, 33 (1988).

[39] J. P. Draayer, S. C. Park, and O. Castaños, Shell-Model Interpre-
tation of the Collective-Model Potential-Energy Surface, Phys.
Rev. Lett. 62, 20 (1989).

064326-11

https://doi.org/10.1016/0375-9474(73)90635-0
https://doi.org/10.1016/0375-9474(73)90635-0
https://doi.org/10.1016/0375-9474(73)90635-0
https://doi.org/10.1016/0375-9474(73)90635-0
https://doi.org/10.1016/0375-9474(82)90497-3
https://doi.org/10.1016/0375-9474(82)90497-3
https://doi.org/10.1016/0375-9474(82)90497-3
https://doi.org/10.1016/0375-9474(82)90497-3
https://doi.org/10.1103/PhysRevLett.78.436
https://doi.org/10.1103/PhysRevLett.78.436
https://doi.org/10.1103/PhysRevLett.78.436
https://doi.org/10.1103/PhysRevLett.78.436
https://doi.org/10.1103/PhysRevC.95.064325
https://doi.org/10.1103/PhysRevC.95.064325
https://doi.org/10.1103/PhysRevC.95.064325
https://doi.org/10.1103/PhysRevC.95.064325
https://doi.org/10.1103/PhysRevC.1.369
https://doi.org/10.1103/PhysRevC.1.369
https://doi.org/10.1103/PhysRevC.1.369
https://doi.org/10.1103/PhysRevC.1.369
https://doi.org/10.1088/0031-8949/6/5-6/013
https://doi.org/10.1088/0031-8949/6/5-6/013
https://doi.org/10.1088/0031-8949/6/5-6/013
https://doi.org/10.1088/0031-8949/6/5-6/013
https://doi.org/10.1103/PhysRevC.77.064322
https://doi.org/10.1103/PhysRevC.77.064322
https://doi.org/10.1103/PhysRevC.77.064322
https://doi.org/10.1103/PhysRevC.77.064322
https://doi.org/10.1088/0954-3899/36/11/115104
https://doi.org/10.1088/0954-3899/36/11/115104
https://doi.org/10.1088/0954-3899/36/11/115104
https://doi.org/10.1088/0954-3899/36/11/115104
https://doi.org/10.1103/PhysRevC.83.054303
https://doi.org/10.1103/PhysRevC.83.054303
https://doi.org/10.1103/PhysRevC.83.054303
https://doi.org/10.1103/PhysRevC.83.054303
https://doi.org/10.1103/PhysRevC.84.054316
https://doi.org/10.1103/PhysRevC.84.054316
https://doi.org/10.1103/PhysRevC.84.054316
https://doi.org/10.1103/PhysRevC.84.054316
https://doi.org/10.1016/j.physletb.2007.10.067
https://doi.org/10.1016/j.physletb.2007.10.067
https://doi.org/10.1016/j.physletb.2007.10.067
https://doi.org/10.1016/j.physletb.2007.10.067
https://doi.org/10.1016/j.nuclphysa.2005.11.006
https://doi.org/10.1016/j.nuclphysa.2005.11.006
https://doi.org/10.1016/j.nuclphysa.2005.11.006
https://doi.org/10.1016/j.nuclphysa.2005.11.006
https://doi.org/10.1103/PhysRevC.81.021303
https://doi.org/10.1103/PhysRevC.81.021303
https://doi.org/10.1103/PhysRevC.81.021303
https://doi.org/10.1103/PhysRevC.81.021303
https://doi.org/10.1088/0954-3899/40/10/105107
https://doi.org/10.1088/0954-3899/40/10/105107
https://doi.org/10.1088/0954-3899/40/10/105107
https://doi.org/10.1088/0954-3899/40/10/105107
https://doi.org/10.1103/PhysRevLett.87.162501
https://doi.org/10.1103/PhysRevLett.87.162501
https://doi.org/10.1103/PhysRevLett.87.162501
https://doi.org/10.1103/PhysRevLett.87.162501
https://doi.org/10.1103/PhysRevLett.89.182502
https://doi.org/10.1103/PhysRevLett.89.182502
https://doi.org/10.1103/PhysRevLett.89.182502
https://doi.org/10.1103/PhysRevLett.89.182502
https://doi.org/10.1103/PhysRevC.85.064312
https://doi.org/10.1103/PhysRevC.85.064312
https://doi.org/10.1103/PhysRevC.85.064312
https://doi.org/10.1103/PhysRevC.85.064312
https://doi.org/10.1103/PhysRevC.79.034317
https://doi.org/10.1103/PhysRevC.79.034317
https://doi.org/10.1103/PhysRevC.79.034317
https://doi.org/10.1103/PhysRevC.79.034317
https://doi.org/10.1103/PhysRevC.64.037301
https://doi.org/10.1103/PhysRevC.64.037301
https://doi.org/10.1103/PhysRevC.64.037301
https://doi.org/10.1103/PhysRevC.64.037301
https://doi.org/10.1016/j.physletb.2011.07.030
https://doi.org/10.1016/j.physletb.2011.07.030
https://doi.org/10.1016/j.physletb.2011.07.030
https://doi.org/10.1016/j.physletb.2011.07.030
https://doi.org/10.1103/PhysRevC.86.064323
https://doi.org/10.1103/PhysRevC.86.064323
https://doi.org/10.1103/PhysRevC.86.064323
https://doi.org/10.1103/PhysRevC.86.064323
https://doi.org/10.4249/scholarpedia.10693
https://doi.org/10.4249/scholarpedia.10693
https://doi.org/10.4249/scholarpedia.10693
https://doi.org/10.4249/scholarpedia.10693
https://doi.org/10.1016/0370-2693(78)90787-6
https://doi.org/10.1016/0370-2693(78)90787-6
https://doi.org/10.1016/0370-2693(78)90787-6
https://doi.org/10.1016/0370-2693(78)90787-6
https://doi.org/10.1103/PhysRevC.80.064308
https://doi.org/10.1103/PhysRevC.80.064308
https://doi.org/10.1103/PhysRevC.80.064308
https://doi.org/10.1103/PhysRevC.80.064308
https://doi.org/10.1103/PhysRevC.63.011304
https://doi.org/10.1103/PhysRevC.63.011304
https://doi.org/10.1103/PhysRevC.63.011304
https://doi.org/10.1103/PhysRevC.63.011304
https://doi.org/10.1103/PhysRevC.79.031305
https://doi.org/10.1103/PhysRevC.79.031305
https://doi.org/10.1103/PhysRevC.79.031305
https://doi.org/10.1103/PhysRevC.79.031305
https://doi.org/10.1103/PhysRevC.68.031301
https://doi.org/10.1103/PhysRevC.68.031301
https://doi.org/10.1103/PhysRevC.68.031301
https://doi.org/10.1103/PhysRevC.68.031301
https://doi.org/10.1103/PhysRevC.82.061304
https://doi.org/10.1103/PhysRevC.82.061304
https://doi.org/10.1103/PhysRevC.82.061304
https://doi.org/10.1103/PhysRevC.82.061304
https://doi.org/10.1103/PhysRevC.88.054309
https://doi.org/10.1103/PhysRevC.88.054309
https://doi.org/10.1103/PhysRevC.88.054309
https://doi.org/10.1103/PhysRevC.88.054309
https://doi.org/10.1098/rspa.1958.0072
https://doi.org/10.1098/rspa.1958.0072
https://doi.org/10.1098/rspa.1958.0072
https://doi.org/10.1098/rspa.1958.0072
https://doi.org/10.1098/rspa.1958.0101
https://doi.org/10.1098/rspa.1958.0101
https://doi.org/10.1098/rspa.1958.0101
https://doi.org/10.1098/rspa.1958.0101
https://doi.org/10.1098/rspa.1963.0071
https://doi.org/10.1098/rspa.1963.0071
https://doi.org/10.1098/rspa.1963.0071
https://doi.org/10.1098/rspa.1963.0071
https://doi.org/10.1103/PhysRevLett.57.1124
https://doi.org/10.1103/PhysRevLett.57.1124
https://doi.org/10.1103/PhysRevLett.57.1124
https://doi.org/10.1103/PhysRevLett.57.1124
https://doi.org/10.1103/PhysRevLett.62.20
https://doi.org/10.1103/PhysRevLett.62.20
https://doi.org/10.1103/PhysRevLett.62.20
https://doi.org/10.1103/PhysRevLett.62.20


DENNIS BONATSOS et al. PHYSICAL REVIEW C 95, 064326 (2017)

[40] A. Bohr and B. R. Mottelson, Nuclear Deformations, Nuclear
Structure Vol. II (Benjamin, New York, 1975).

[41] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer, Berlin, 1980).

[42] H. De Vries, C. W. De Jager, and C. De Vries, Nuclear charge-
density-distribution parameters from elastic electron scattering,
At. Data Nucl. Data Tables 36, 495 (1987).

[43] J. R. Stone, N. J. Stone, and S. Moszkowski, Incompressibility
in finite nuclei and nuclear matter, Phys. Rev. C 89, 044316
(2014).

[44] D. Troltenier, C. Bahri, and J. P. Draayer, Effects of pairing in
the pseudo-SU(3) model, Nucl. Phys. A 589, 75 (1995).

[45] J. P. Draayer, Y. Leschber, S. C. Park, and R. Lopez, Repre-
sentations of U(3) in U(N), Comput. Phys. Commun. 56, 279
(1989).

[46] Brookhaven National Laboratory ENSDF database
http://www.nndc.bnl.gov/ensdf/.

[47] J. A. Cizewski, R. F. Casten, G. J. Smith, M. L. Stelts, W. R.
Kane, H. G. Börner, and W. F. Davidson, Evidence for a New
Symmetry in Nuclei: The Structure of 196Pt and the O(6) Limit,
Phys. Rev. Lett. 40, 167 (1978).

[48] A. P. Zuker, J. Retamosa, A. Poves, and E. Caurier, Spherical
shell model description of rotational motion, Phys. Rev. C 52,
R1741 (1995).

[49] A. P. Zuker, A. Poves, F. Nowacki, and S. M. Lenzi, Nilsson–
SU(3) self-consistency in heavy N=Z nuclei, Phys. Rev. C 92,
024320 (2015).

[50] J. P. Draayer and K. J. Weeks, Shell-Model Description of the
Low-Energy Structure of Strongly Deformed Nuclei, Phys. Rev.
Lett. 51, 1422 (1983).

[51] J. P. Draayer and K. J. Weeks, Towards a shell model description
of the low-energy structure of deformed nuclei I. Even-even
systems, Ann. Phys. (N.Y.) 156, 41 (1984).

[52] G. A. Lalazissis, S. Raman, and P. Ring, Ground-state properties
of even-even nuclei in the relativistic mean-field theory, At. Data
Nucl. Data Tables 71, 1 (1999).

[53] S. Raman, C. W. Nestor Jr., and P. Tikkanen, Transition
probability from the ground to the first-excited 2+ state of
even-even nuclides, At. Data Nucl. Data Tables 78, 1 (2001).

[54] J. N. Ginocchio and M. W. Kirson, An intrinsic state for the
Interacting Boson Model and its relationship to the Bohr–
Mottelson model, Nucl. Phys. A 350, 31 (1980).

[55] A. S. Davydov and G. F. Filippov, Rotational states in even
atomic nuclei, Nucl. Phys. 8, 237 (1958).

[56] L. Esser, U. Neuneyer, R. F. Casten, and P. von Brentano,
Correlations of the deformation variables β and γ in even-even
Hf, W, Os, Pt, and Hg nuclei, Phys. Rev. C 55, 206 (1997).

[57] R. F. Casten, A. Aprahamian, and D. D. Warner, Axial
asymmetry and the determination of effective γ values in
the interacting boson approximation, Phys. Rev. C 29, 356
(1984).

[58] R. F. Casten, P. von Brentano, and A. M. I. Haque, Evidence
for an underlying SU(3) structure near neutron number N=104,
Phys. Rev. C 31, 1991(R) (1985).

[59] G. Vanden Berghe, H. E. De Meyer, and P. Van Isacker,
Symmetry-conserving higher-order interaction terms in the
interacting boson model, Phys. Rev. C 32, 1049 (1985).

[60] D. J. Rowe, Dynamical symmetries of nuclear collective models,
Prog. Part. Nucl. Phys. 37, 265 (1996).

[61] H. Ui, Quantum mechanical rigid rotator with an arbitrary
deformation. I, Prog. Theor. Phys. 44, 153 (1970).

[62] B. G. Wybourne, Classical Groups for Physicists (Wiley, New
York, 1974).

[63] K. V. Krishna Brahmam and R. D. Ratna Raju, Reduction
of U(15) representations into SU(3) irreducible components,
At. Data Nucl. Data Tables 16, 165 (1975).

064326-12

https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1103/PhysRevC.89.044316
https://doi.org/10.1103/PhysRevC.89.044316
https://doi.org/10.1103/PhysRevC.89.044316
https://doi.org/10.1103/PhysRevC.89.044316
https://doi.org/10.1016/0375-9474(95)00078-F
https://doi.org/10.1016/0375-9474(95)00078-F
https://doi.org/10.1016/0375-9474(95)00078-F
https://doi.org/10.1016/0375-9474(95)00078-F
https://doi.org/10.1016/0010-4655(89)90024-6
https://doi.org/10.1016/0010-4655(89)90024-6
https://doi.org/10.1016/0010-4655(89)90024-6
https://doi.org/10.1016/0010-4655(89)90024-6
http://www.nndc.bnl.gov/ensdf/
https://doi.org/10.1103/PhysRevLett.40.167
https://doi.org/10.1103/PhysRevLett.40.167
https://doi.org/10.1103/PhysRevLett.40.167
https://doi.org/10.1103/PhysRevLett.40.167
https://doi.org/10.1103/PhysRevC.52.R1741
https://doi.org/10.1103/PhysRevC.52.R1741
https://doi.org/10.1103/PhysRevC.52.R1741
https://doi.org/10.1103/PhysRevC.52.R1741
https://doi.org/10.1103/PhysRevC.92.024320
https://doi.org/10.1103/PhysRevC.92.024320
https://doi.org/10.1103/PhysRevC.92.024320
https://doi.org/10.1103/PhysRevC.92.024320
https://doi.org/10.1103/PhysRevLett.51.1422
https://doi.org/10.1103/PhysRevLett.51.1422
https://doi.org/10.1103/PhysRevLett.51.1422
https://doi.org/10.1103/PhysRevLett.51.1422
https://doi.org/10.1016/0003-4916(84)90210-0
https://doi.org/10.1016/0003-4916(84)90210-0
https://doi.org/10.1016/0003-4916(84)90210-0
https://doi.org/10.1016/0003-4916(84)90210-0
https://doi.org/10.1006/adnd.1998.0795
https://doi.org/10.1006/adnd.1998.0795
https://doi.org/10.1006/adnd.1998.0795
https://doi.org/10.1006/adnd.1998.0795
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1016/0375-9474(80)90387-5
https://doi.org/10.1016/0375-9474(80)90387-5
https://doi.org/10.1016/0375-9474(80)90387-5
https://doi.org/10.1016/0375-9474(80)90387-5
https://doi.org/10.1016/0029-5582(58)90153-6
https://doi.org/10.1016/0029-5582(58)90153-6
https://doi.org/10.1016/0029-5582(58)90153-6
https://doi.org/10.1016/0029-5582(58)90153-6
https://doi.org/10.1103/PhysRevC.55.206
https://doi.org/10.1103/PhysRevC.55.206
https://doi.org/10.1103/PhysRevC.55.206
https://doi.org/10.1103/PhysRevC.55.206
https://doi.org/10.1103/PhysRevC.29.356
https://doi.org/10.1103/PhysRevC.29.356
https://doi.org/10.1103/PhysRevC.29.356
https://doi.org/10.1103/PhysRevC.29.356
https://doi.org/10.1103/PhysRevC.31.1991
https://doi.org/10.1103/PhysRevC.31.1991
https://doi.org/10.1103/PhysRevC.31.1991
https://doi.org/10.1103/PhysRevC.31.1991
https://doi.org/10.1103/PhysRevC.32.1049
https://doi.org/10.1103/PhysRevC.32.1049
https://doi.org/10.1103/PhysRevC.32.1049
https://doi.org/10.1103/PhysRevC.32.1049
https://doi.org/10.1016/0146-6410(96)00058-0
https://doi.org/10.1016/0146-6410(96)00058-0
https://doi.org/10.1016/0146-6410(96)00058-0
https://doi.org/10.1016/0146-6410(96)00058-0
https://doi.org/10.1143/PTP.44.153
https://doi.org/10.1143/PTP.44.153
https://doi.org/10.1143/PTP.44.153
https://doi.org/10.1143/PTP.44.153
https://doi.org/10.1016/0092-640X(75)90028-5
https://doi.org/10.1016/0092-640X(75)90028-5
https://doi.org/10.1016/0092-640X(75)90028-5
https://doi.org/10.1016/0092-640X(75)90028-5



