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Background: Microscopic calculations of heavy nuclei face considerable difficulties due to the sizes of the
matrices that need to be solved. Various approximation schemes have been invoked, for example by truncating
the spaces, imposing seniority limits, or appealing to various symmetry schemes such as pseudo-SU(3). This
paper proposes a new symmetry scheme also based on SU(3). This proxy-SU(3) can be applied to well-deformed
nuclei, is simple to use, and can yield analytic predictions.
Purpose: To present the new scheme and its microscopic motivation, and to test it using a Nilsson model
calculation with the original shell model orbits and with the new proxy set.
Method: We invoke an approximate, analytic, treatment of the Nilsson model, that allows the above vetting and
yet is also transparent in understanding the approximations involved in the new proxy-SU(3).
Results: It is found that the new scheme yields a Nilsson diagram for well-deformed nuclei that is very close to
the original Nilsson diagram. The specific levels of approximation in the new scheme are also shown, for each
major shell.
Conclusions: The new proxy-SU(3) scheme is a good approximation to the full set of orbits in a major shell.
Being able to replace a complex shell model calculation with a symmetry-based description now opens up the
possibility to predict many properties of nuclei analytically and often in a parameter-free way. The new scheme
works best for heavier nuclei, precisely where full microscopic calculations are most challenged. Some cases in
which the new scheme can be used, often analytically, to make specific predictions, are shown in a subsequent
paper.

DOI: 10.1103/PhysRevC.95.064325

I. INTRODUCTION

Microscopic approaches to the structure of atomic nuclei
are becoming increasingly sophisticated and complex, and
have made great strides, enabled by the rapid growth in
the feasibility of computer intensive approaches using large
bases and sophisticated interactions. Nevertheless, realistic
calculations of many observables in medium and heavy mass
nuclei, or in exotic nuclei generally where there may be many
valence nucleons, still (and for the foreseeable future) impose
the need to invoke various simplifications, truncations, and
approximations. There are many examples of such methods,
ranging from straightforward limitations on the Hilbert space
used, to, for example, seniority restrictions, or to symmetry-
based approximation schemes such as pseudo-SU(3).

Indeed, the present paper is inspired by the idea and success
of pseudo-SU(3) but is based on a different substitution
founded in the recognition that pairs of Nilsson orbits,
K[Nnz�], that are related by quantum numbers differing by
0[110], and have high spatial overlap and identical angular
momentum projection behavior. This leads to an approximate
oscillator shell symmetry. Of course, being based on an
idealized symmetry, it is not at all a replacement for detailed
microscopic shell model or ab initio calculations which
are achieving more and more success, with great potential
for the future. However, it does allow the possibility of
very simple, analytic, parameter free predictions of certain

nuclear properties, related especially to collective properties
and nuclear shapes, that are robustly dependent on counting
the number of nucleons (which determines the irreps of
an applicable symmetry) interacting under a quadrupole
interaction. It is applicable to deformed nuclei and provides
the most advantages in heavier nuclei.

In particular, the immediate purpose of this paper is to
present a Nilsson calculation that demonstrates that this new
scheme, called proxy-SU(3), leads to an excellent approxima-
tion to the actual Nilsson diagram. We carry out this calculation
in a transparent way that illuminates both the key ingredients
in the new scheme and the level of approximation it entails.

In the end, having vetted the approximate scheme, one can
then exploit it (which we do in a subsequent paper [1]), to make
specific predictions about the behavior of deformed nuclei.

II. SU(3) AND NUCLEAR DEFORMATION:
THE MOTIVATION AND NATURE OF A NEW

APPROXIMATE SU(3)-BASED SYMMETRY SCHEME

The relation of SU(3) symmetry to nuclear deformation
was discovered by Elliott [2,3] in the sd shell nuclei, in which
its microscopic origins have been demonstrated. The SU(3)
symmetry also appears in the framework of the microscopic
symplectic model [4], which can be seen as a generalization of
the Elliott SU(3) scheme to more than one nuclear shell. Since
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then the SU(3) symmetry has been used in a number of models,
including the interacting boson model (IBM) [5], the fermion
dynamical symmetry model (FDSM) [6], and the interacting
vector boson model (IVBM) [7], especially in heavier nuclei,
where the LS coupling scheme of the Elliott model breaks
down [8]. It also forms the rationale for pseudo-SU(3) [9–13],
which we will discuss below. Finally, a quasi-SU(3) symmetry
[14,15], based on the smallness of �j = 1 matrix elements,
leads to an approximate restoration of LS coupling in heavy
nuclei.

On the other hand, the Nilsson model [16–18], despite
its simplicity, has been very successful in describing in
detail many properties of heavy deformed nuclei. For large
deformations, its wave functions reach an asymptotic limit, in
which the number of oscillator quanta N , the number of quanta
along the cylindrical symmetry axis nz, and the projections of
the orbital angular momentum �, and of the spin �, along the
symmetry axis become good quantum numbers. They remain
rather good even at intermediate deformation values [17]. As
a consequence, Nilsson states for even nuclei are labeled by
K[Nnz�], where K = � + � is the projection of the total
angular momentum along the symmetry axis.

As remarked by Mottelson [19], the asymptotic quantum
numbers of the Nilsson model can be seen as a generalization of
Elliott’s SU(3), applicable to heavy deformed nuclei. Working
along this line, we demonstrate in the present paper that a
proxy-SU(3) symmetry of the Elliott type can be developed
in heavy deformed nuclei. In order to achieve this, we take
advantage of the large overlap of pairs of Nilsson orbits related
by �K[�N�nz��] = 0[110]. The high overlaps of such
pairs have already been shown, in the case of proton-neutron
pairs in the rare earth region [20,21], to play a key role in the
onset and development of nuclear deformation.

In the present work we also take advantage of nu-
cleon pairs with Nilsson quantum numbers differing by
�K[�N�nz��] = 0[110], but in a different way. Instead
of focusing attention on proton-neutron pairs, we use proton-
proton pairs and neutron-neutron pairs. This approach turns out
to be successful in several ways, since it reveals a proxy-SU(3)
symmetry in heavy deformed nuclei, which can be used
either for making predictions of nuclear properties within
the SU(3) symmetry using algebraic methods, or it might
be useful as an approximation scheme for simplifying shell
model calculations in heavy deformed nuclei away from closed
shells, that are not yet accessible because of computational
constraints.

In order to see how this works, it is best to use a specific
example, depicted in Fig. 1. We consider the 50–82 major shell
and enumerate the following steps in the development of the
new approximate scheme.

(1) The 50–82 major shell consists of the 3s1/2, 2d3/2,
2d5/2, and 1g7/2 orbitals (shown in Fig. 1 by solid lines),
which are the pieces of the full sdg shell remaining
after the spin-orbit force has lowered the 1g9/2 orbitals
(indicated by dashed lines) into the 28–50 nuclear shell.
In addition, it contains the 1h11/2 orbitals (shown by
dashed lines plus one dotted line), lowered into it from
the pf h shell, also by the spin-orbit force.

1g9/2

2d5/2

1g7/2

1h11/2

2d3/2

3s1/2

En
er
gy

FIG. 1. Schematic representation of the 50–82 shell and the
replacement leading to the proxy sdg shell. See Sec. II for further
discussion.

(2) The 1g9/2 orbital consists of the Nilsson orbitals
1/2[440], 3/2[431], 5/2[422], 7/2[413], 9/2[404].
Note that these are the 0[110] partners of the
1h11/2 Nilsson orbitals 1/2[550], 3/2[541], 5/2[532],
7/2[523], 9/2[514], in the same order. A pair of these
0[110] partners shares exactly the same values of the
quantum numbers corresponding to the projections of
orbital angular momentum, spin, and total angular mo-
mentum. Thus the orbitals in such a pair are expected to
exhibit identical behavior as far as properties related to
angular momentum projection are concerned. This has
been corroborated by calculating overlaps of orbitals
in Ref. [21].
One can thus think of replacing all of the 1h11/2 orbitals
(the upper group of dashed lines in Fig. 1), except
the 11/2[505] orbital (the dotted line in Fig. 1) in the
50–82 shell by their 1g9/2 counterparts (the lower group
of dashed lines in Fig. 1) and checking numerically
the accuracy of this approximation, taking carefully
into account that during this replacement the N and nz

quantum numbers have been changed by one unit each,
while the parity has changed sign. These changes will
obviously affect the selection rules of various relevant
matrix elements, as well as the avoided crossings [22]
in the Nilsson diagrams, as we shall discuss in detail
below.

(3) Note that the 1h11/2 11/2[505] orbit has been excluded
here since it has no partner in the 1g9/2 shell. This is the
sole orbit that has to be dropped in this approximation.
It is important to recognize, however, that this orbit
plays a very minor role in the evolution of structure in
heavy nuclei, since it lies at the very top of the 50–82
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shell in the Nilsson diagrams [16,17], and hence its
influence is expected to be minimal. Moreover, it only
comes into play in nuclei near the 82 shell closure that
are not likely to be well deformed in any case. The
same remark applies to analogous orbits in other shells
such as the 13/2[606] orbit in the 82–126 shell.

(4) After these two approximations have been made, we
are left with a collection of orbitals which is exactly
the same as the full sdg shell. The sdg shell of the
spherical harmonic oscillator is known to possess a
U(15) symmetry, having an SU(3) subalgebra [23].
Therefore we can expect that some of the SU(3)
features would appear within the approximate scheme.
Of course one should bear in mind that in axially
symmetric deformed nuclei the relevant symmetry
is not spherical, but cylindrical [24]. Therefore the
relevant algebras are not U(N) Lie algebras, but more
complicated versions of deformed algebras, in which,
among the angular momentum operators, only the
Lz operator has the same physical content as the Lz

operator in the Nilsson model [25–30].
(5) The same approach can be applied to the 28–50,

82–126, 126–184 shells, leading to approximate pf ,
pf h, sdgi shells, respectively, corresponding to U(10),
U(21), U(28) algebras having SU(3) subalgebras (see
[23] and references therein).

(6) An important consideration concerns the role and effect
of level crossings in the Nilsson model. Orbits with
different angular momentum and/or parity quantum
numbers cannot interact, while in the case of identical
angular momentum and parity, interactions and avoided
crossings [22] appear. As a result, one difference in
the present approximate scheme in comparison to the
original Nilsson model picture comes from the fact that
in a nuclear shell individual particles in the intruder
levels do not interact with those in the normal parity
levels, while the proxies for the intruder levels used
in the present approximate scheme will interact with
normal parity levels of the same angular momentum.
These interactions are spurious and a consequence
of our orbit substitution. Their effects need to be
carefully assessed. For the current scheme to be useful,
such interactions need to be small. We will show that
this is the case in the next section. We also note
that pair scattering can occur among both the shell
model orbitals and those in our scheme. The effect
of this does not come into the treatment below of the
Nilsson model for both situations, but will enter into
practical calculations for actual observables. This will
be addressed at the end and in a subsequent paper [1].

III. NILSSON HAMILTONIAN
FOR LARGE DEFORMATIONS

The Nilsson single particle Hamiltonian [16,17] is based on
a harmonic oscillator with cylindrical symmetry supplemented
with a spin-orbit term and an angular momentum squared term.

TABLE I. Parameters vls and vll [31] used in the Nilsson
Hamiltonian of Eq. (1). The corresponding values of the parameters
κ and μ of an alternative, widely used notation [17] are also shown.

Region vls vll κ μ

N,Z < 50 −0.16 0 0.08 0
50 < Z < 82 −0.127 −0.0382 0.0635 0.602
82 < N < 126 −0.127 −0.0268 0.0635 0.422
82 < Z < 126 −0.115 −0.0375 0.0575 0.652
126 < N −0.127 −0.0206 0.0635 0.324

The Hamiltonian reads

H = Hosc + vls h̄ω0(l · s) + vll h̄ω0(l2 − 〈l2〉N ), (1)

where

Hosc = p2

2M
+ 1

2
M

[
ω2

zz
2 + ω2

⊥(x2 + y2)
]

(2)

is the Hamiltonian of a harmonic oscillator with cylindrical
symmetry. The quantity

〈l2〉N = 1
2N (N + 3) (3)

is the average of the square of the angular momentum l within
the N th oscillator shell, M is the nuclear mass, s is the spin,
p is the momentum. The rotational frequencies ωz and ω⊥ are
related to the deformation parameter ε by

ωz = ω0

(
1 − 2

3
ε

)
, ω⊥ = ω0

(
1 + 1

3
ε

)
, (4)

leading to

ε = ω⊥ − ωz

ω0
, (5)

with ε > 0 corresponding to prolate shapes and ε < 0 corre-
sponding to oblate shapes. The standard values of the constants
vls and vll , determined from the available data on intrinsic
nuclear spectra [31], are shown in Table I. In an alternative
notation widely appearing in the literature [17], the parameters
κ and μ are used, with vls = −2κ and vll = −κμ. Their values
are given in Table I.

The eigenvalues of Hosc are

Eosc = h̄ω0

(
N + 3

2
− 1

3
ε(3nz − N )

)
. (6)

Taking advantage of the cylindrical symmetry, and using
the standard creation and annihilation operators a

†
x , ax , a

†
y ,

ay for the quanta of the harmonic oscillator in the Cartesian
coordinates x and y, one can define creation and annihilation
operators [17,32]

R+ = 1√
2

(a†
x + ia†

y), R = 1√
2

(ax − iay),

S+ = 1√
2

(a†
x − ia†

y), S = 1√
2

(ax + iay), (7)

satisfying the commutation relations

[R,R†] = [S,S†] = 1, (8)
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thus going over to a |nzrs�〉 basis, where r is the number of
quanta related to the harmonic oscillator formed by R† and R,
and s is the number of quanta related to the harmonic oscillator
formed by S† and S, for which

n⊥ = r + s = N − nz, � = r − s (9)

hold, where n⊥ is the number of quanta perpendicular to the
z axis. It is then a straightforward task, described in detail in
Ref. [17], to calculate the matrix elements of the l · s and l2

operators in the new basis, the explicit results being given in
the Appendix.

Note that our approach here is to use the asymptotic
wave functions (suitable for well-deformed nuclei) so that
we can obtain analytic matrix elements for each term in the
Hamiltonian. This enables us to isolate and explicitly exhibit
the facets of our replacement scheme and to compare those
with the traditional shell model level sequences. Our numerical
solutions are therefore not identical to those of the usual
Nilsson diagrams, although they are very close to them for
ε > 0.15.

The correspondence between states in the |nzrs�〉 basis and
the standard Nilsson orbitals K[Nnz�] can be easily obtained
using Eq. (9) and K = � + �, and is given in Table II. Results
for the matrix elements of l · s for the 50–82 and sdg shells are
given in Table III and those for the matrix elements of l2 for the
same shells are given in Table IV. It should be remembered that
the l · s and l2 terms are already relatively small perturbations
of the oscillator potential for well-deformed nuclei, therefore
the effects of the deformation on them can be neglected [31],
since they would correspond to second order corrections. As a
result, the l · s and l2 matrix elements appearing in Tables III
and IV are (within the approximation used) independent of the
deformation.

The calculation of the energy eigenvalues of the full
Hamiltonian becomes then a simple task of diagonalization of
a matrix in which the diagonal matrix elements depend on the
deformation, as given in Eq. (6), while the nondiagonal matrix
elements remain invariant, as stated in the last paragraph.
Therefore, the deformation enters formally only through the
linear dependence of the diagonal matrix elements of the
oscillator Hamiltonian on ε. In order for the proxy orbitals from
the next lower shell to be brought to the energies of the intruder
orbitals that they replace, their energies need to be uniformly
pushed up by 1 − 2ε/3, as implied by Eq. (6), since both N and
nz have to be increased by one unit. Numerical results for ε =
0.3 for the 50–82 and sdg proton shells are given in Table V.
Nilsson-like diagrams involving either just the diagonal terms
of the Hamiltonian, or obtained through the diagonalization of
the full Hamiltonian, are plotted for the 50–82 and sdg proton
shells in Fig. 2. Since the results have been obtained by using
the asymptotic wave functions, they are expected to be reliable
for large and moderate deformations [17], but they should fail
completely for ε � 0.1, where different approximate wave
functions, providing different slopes of the energy levels as a
function of ε, are appropriate [17,31].

Results for the 28–50 and pf shells, the 82–126 and pf h
shells, and the 126–184 and sdgi shells for the matrix elements
of l2 and l · s, as well as for those of the full Hamiltonian of
Eq. (1), are available in the Supplemental Material [33], which

TABLE II. Nilsson model states in the K[Nnz�] and |nzrs�〉
notation, in which � = +1/2 is represented by + and � = −1/2 is
represented by −. See Sec. III for further discussion.

K[Nnz�] |nzrs�〉 K[Nnz�] |nzrs�〉 K[Nnz�] |nzrs�〉
pf pf pf h pf h sdgi sdgi

1/2[301] 021− 1/2[501] 032− 1/2[611] 132−
1/2[321] 210− 1/2[521] 221− 1/2[600] 033+
3/2[312] 120− 3/2[512] 131− 3/2[602] 042−
1/2[310] 111+ 1/2[510] 122+ 1/2[631] 321−
3/2[301] 021+ 3/2[501] 032+ 3/2[622] 231−
5/2[303] 030− 5/2[503] 041− 5/2[613] 141−
1/2[330] 300+ 1/2[541] 410− 1/2[620] 222+
3/2[321] 210+ 3/2[532] 320− 3/2[611] 132+
5/2[312] 120+ 5/2[523] 230− 5/2[602] 042+
7/2[303] 030+ 7/2[514] 140− 7/2[604] 051−

1/2[530] 311+ 1/2[651] 510−
sdg sdg 3/2[521] 221+ 3/2[642] 420−
1/2[400] 022+ 5/2[512] 131+ 5/2[633] 330−
1/2[411] 121− 7/2[503] 041+ 7/2[624] 240−
3/2[402] 031− 9/2[505] 050− 9/2[615] 150−
1/2[420] 211+ 1/2[550] 500+ 1/2[640] 411+
3/2[411] 121+ 3/2[541] 410+ 3/2[631] 321+
5/2[402] 031+ 5/2[532] 320+ 5/2[622] 231+
1/2[431] 310− 7/2[523] 230+ 7/2[613] 141+
3/2[422] 220− 9/2[514] 140+ 9/2[604] 051+
5/2[413] 130− 11/2[505] 050+ 11/2[606] 060−
7/2[404] 040− 1/2[660] 600+
1/2[440] 400+ pf hj pf hj 3/2[651] 510+
3/2[431] 310+ 1/2[770] 700+ 5/2[642] 420+
5/2[422] 220+ 3/2[761] 610+ 7/2[633] 330+
7/2[413] 130+ 5/2[752] 520+ 9/2[624] 240+
9/2[404] 040+ 7/2[743] 430+ 11/2[615] 150+

9/2[734] 340+ 13/2[606] 060+
11/2[725] 250+
13/2[716] 160+
15/2[707] 070+

also contains figures similar to Figs. 2 and 3 below for the other
shells.

IV. DISCUSSION

A. l · s, l2, and H matrix elements

In the upper half of Table III the matrix elements of the spin-
orbit term in the 50–82 shell are shown. These are compared
to the relevant matrix elements appearing in the full sdg shell,
that is, the shell comprising the 3s, 2d, and 1g7/2 positive parity
orbits in the 50–82 shell and the 1g9/2 orbit from the next lower
shell that we are using as a proxy for the 1h11/2 orbit, seen in
the lower half of Table III. The boldface entries in the lower
half of Table III are the new values appearing in the case of
the modified shell occurring after replacing the 1h11/2 levels
of the 50–82 shell (the last six levels in the rows and columns
of the upper half of Table III) by their 0[110] counterparts of
the 1g9/2 levels (the last five levels in the rows and columns of
the lower half of Table III). Each half of the table is divided
into four blocks by straight lines.
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TABLE III. l · s matrix elements (in units of h̄ω0) for Nilsson orbitals in the 50–82 shell (upper part) and in the full sdg shell (lower part),
occurring after replacing the 1h11/2 orbitals of the 50–82 shell by their 0[110] counterparts in the 1g9/2 orbitals. These matrix elements, and
those in Tables IV and V, are calculated with the asymptotic Nilsson wave functions discussed in Sec. III. Therefore they are not precise
eigenstates of the Nilsson Hamiltonian but go over to the latter in the limit of large deformation where the off-diagonal matrix elements are
negligible compared to the diagonal ones. See Sec. IV A for further discussion. Note also that these are the matrix elements of the l · s operator
alone. In the full Nilsson Hamiltonian of Eq. (1) they will be multiplied by the vls coefficient (−0.127) which will reduce their contributions
to the Hamiltonian by a considerable factor. Both matrices are symmetric, so only the diagonal and the upper half of each matrix are shown.
The new matrix elements appearing in the lower part of the table are shown in boldface. Otherwise, the upper and lower parts of the table are
identical.

1
2 [400] 1

2 [411] 3
2 [402] 1

2 [420] 3
2 [411] 5

2 [402] 1
2 [431] 3

2 [422] 5
2 [413] 7

2 [404] 1
2 [550] 3

2 [541] 5
2 [532] 7

2 [523] 9
2 [514] 11

2 [505]

1/2[400] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2[411] −0.5 0 −1.414 0 0 0 0 0 0 0 0 0 0 0 0
3/2[402] −1 0 −1.225 0 0 0 0 0 0 0 0 0 0 0
1/2[420] 0 0 0 1.225 0 0 0 0 0 0 0 0 0
3/2[411] 0.5 0 0 1 0 0 0 0 0 0 0 0
5/2[402] 1 0 0 0.707 0 0 0 0 0 0 0
1/2[431] −0.5 0 0 0 0 0 0 0 0 0
3/2[422] −1 0 0 0 0 0 0 0 0
5/2[413] −1.5 0 0 0 0 0 0 0
7/2[404] −2 0 0 0 0 0 0

1/2[550] 0 0 0 0 0 0
3/2[541] 0.5 0 0 0 0
5/2[532] 1 0 0 0
7/2[523] 1.5 0 0
9/2[514] 2 0
11/2[505] 2.5

1
2 [400] 1

2 [411] 3
2 [402] 1

2 [420] 3
2 [411] 5

2 [402] 1
2 [431] 3

2 [422] 5
2 [413] 7

2 [404] 1
2 [440] 3

2 [431] 5
2 [422] 7

2 [413] 9
2 [404]

1/2[400] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2[411] −0.5 0 −1.414 0 0 0 0 0 0 0 0 0 0 0
3/2[402] −1 0 −1.225 0 0 0 0 0 0 0 0 0 0
1/2[420] 0 0 0 1.225 0 0 0 0 0 0 0 0
3/2[411] 0.5 0 0 1 0 0 0 0 0 0 0
5/2[402] 1 0 0 0.707 0 0 0 0 0 0
1/2[431] −0.5 0 0 0 −1.414 0 0 0 0
3/2[422] −1 0 0 0 −1.732 0 0 0
5/2[413] −1.5 0 0 0 −1.732 0 0
7/2[404] −2 0 0 0 −1.414 0

1/2[440] 0 0 0 0 0
3/2[431] 0.5 0 0 0
5/2[422] 1 0 0
7/2[413] 1.5 0
9/2[404] 2

We see that the upper part of Table III has one more column
(the last one) and one more row (the last one) than the lower
part of Table III because the 11/2[505] level of the 50–82
shell has no 0[110] counterpart in the sdg shell. The upper
left blocks of the two parts of the table are obviously identical,
since they refer to the same set of states. The lower right
blocks of the two parts of the table are also identical, since
the 0[110] pairs possess the same orbital angular momentum
and spin quantum numbers, taking also into account that the
last level of 1h11/2, 11/2[505], has no counterpart in 1g9/2.
Finally, the upper right block in the top half of Table III is
“empty,” since all matrix elements vanish, while in the bottom
half of Table III a few nonvanishing matrix elements (4 out
of 50 in each block) appear. They occur because the 1g9/2

orbitals have nonvanishing matrix elements with the same
parity orbits of the 50–82 shell, while the opposite parity
1h11/2 orbitals do not. These spurious matrix elements are
a consequence of the proxy scheme we are invoking here. We
will see that they are few and have very small effects, since
within the total Hamiltonian they get multiplied by the small
values of the coefficient vls , given in Table I. These spurious
nonvanishing matrix elements represent the “damage” made
by the approximation imposed. In what follows, it will be
clear that the spurious matrix elements are responsible for
a modification of the single particle energies resulting from
the diagonalization of the full Hamiltonian matrix, as well
as the occurrence of interactions connecting in each shell
the 0[110] proxies of the intruder orbitals with the normal
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TABLE IV. Same as Table III, but for the l2 matrix elements for Nilsson orbitals in the 50–82 shell (upper part) and in the sdg shell (lower
part). Note that these are the matrix elements of the l2 operator alone. In the full Nilsson Hamiltonian of Eq. (1) they will be multiplied by the vll

coefficient (−0.0382) which will reduce their contributions to the Hamiltonian by a considerable factor. See Sec. IV A for further discussion.

1
2 [400] 1

2 [411] 3
2 [402] 1

2 [420] 3
2 [411] 5

2 [402] 1
2 [431] 3

2 [422] 5
2 [413] 7

2 [404] 1
2 [550] 3

2 [541] 5
2 [532] 7

2 [523] 9
2 [514] 11

2 [505]

1/2[400] 4 0 0 −5.657 0 0 0 0 0 0 0 0 0 0 0 0
1/2[411] 12 0 0 0 0 −6.928 0 0 0 0 0 0 0 0 0
3/2[402] 8 0 0 0 0 −4.899 0 0 0 0 0 0 0 0
1/2[420] 14 0 0 0 0 0 0 0 0 0 0 0 0
3/2[411] 12 0 0 0 0 0 0 0 0 0 0 0
5/2[402] 8 0 0 0 0 0 0 0 0 0 0
1/2[431] 14 0 0 0 0 0 0 0 0 0
3/2[422] 18 0 0 0 0 0 0 0 0
5/2[413] 20 0 0 0 0 0 0 0
7/2[404] 20 0 0 0 0 0 0

1/2[550] 10 0 0 0 0 0
3/2[541] 18 0 0 0 0
5/2[532] 24 0 0 0
7/2[523] 28 0 0
9/2[514] 30 0
11/2[505] 30

1
2 [400] 1

2 [411] 3
2 [402] 1

2 [420] 3
2 [411] 5

2 [402] 1
2 [431] 3

2 [422] 5
2 [413] 7

2 [404] 1
2 [440] 3

2 [431] 5
2 [422] 7

2 [413] 9
2 [404]

1/2[400] 4 0 0 −5.657 0 0 0 0 0 0 0 0 0 0 0
1/2[411] 12 0 0 0 0 −6.928 0 0 0 0 0 0 0 0
3/2[402] 8 0 0 0 0 −4.899 0 0 0 0 0 0 0
1/2[420] 14 0 0 0 0 0 0 −6.928 0 0 0 0
3/2[411] 12 0 0 0 0 0 0 −6.928 0 0 0
5/2[402] 8 0 0 0 0 0 0 −4.899 0 0
1/2[431] 14 0 0 0 0 0 0 0 0
3/2[422] 18 0 0 0 0 0 0 0
5/2[413] 20 0 0 0 0 0 0
7/2[404] 20 0 0 0 0 0

1/2[440] 8 0 0 0 0
3/2[431] 14 0 0 0
5/2[422] 18 0 0
7/2[413] 20 0
9/2[404] 20

parity orbitals, resulting in additional avoided crossings in the
Nilsson diagrams.

Similar comments apply to all other shells starting with 28–
50, shown in [33]. The numbers of spurious matrix elements
for each shell are summarized in Table VI.

Qualitatively similar results are obtained in the case of the
matrix elements of the l2 operator, shown for the 50–82 and sdg
shells in the upper and lower halves of Table IV respectively,
and in the Supplemental Material [33] for the rest of the shells,
but also a few differences appear. In particular, no l2 term is
used in the 28–50 and pf shells. Also, in all pairs of shells, the
diagonal matrix elements appearing in the lower right block are
slightly different, since they depend on nz, as seen in Eq. (A3).
Table VI also contains a similar list for the number of these
spurious matrix elements.

Finally, in order to get a feeling of the number and
magnitude of matrix elements of the full Hamiltonian affected
by the approximation, we present results for the special case of
ε = 0.3 for the 50–82 and sdg proton shells in the upper and
lower halves of Table V respectively, and in [33] for the rest of

the shells. In each shell, the appropriate vls and vll values taken
from Table I are used. In all cases the numerical values of the
diagonal matrix elements are at least one order of magnitude
larger than the numerical values of the nondiagonal matrix
elements. Table VI includes the number of spurious matrix
elements for the full Hamiltonian as well.

From this analysis we see that a very small percentage of
matrix elements are affected by the approximations made in
the present scheme. In the sdg shell, 8.4% are spurious. In
heavier shells, this number drops to 5.4% in the pf h shell and
to 3.7% in the sdgi shell and, in general, our model is expected
to work best the heavier the nucleus. Therefore the example
shown in this discussion, the sdg shell, is the one in which the
“damages” caused by the approximation are the most severe.

B. Nilsson orbit energies

Numerical results for the normal 50–82 proton shell are
shown in Figs. 2(a) and 2(b), while results for the sdg proton
shell, resulting after the replacement of the 1h11/2 orbitals of
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TABLE V. Same as Table III, but for the H matrix elements with ε = 0.3 for Nilsson orbitals in the 50–82 proton shell (upper part) and
in the sdg proton shell (lower part). Note again that these calculations use the asymptotic wave functions defined in Sec. III. The deformation
comes in only through the linear dependence on epsilon of the diagonal matrix elements of Hosc. See Sec. IV A for further discussion.

1
2 [400] 1

2 [411] 3
2 [402] 1

2 [420] 3
2 [411] 5

2 [402] 1
2 [431] 3

2 [422] 5
2 [413] 7

2 [404] 1
2 [550] 3

2 [541] 5
2 [532] 7

2 [523] 9
2 [514] 11

2 [505]

1/2[400] 6.28 −0.13 0 0.22 0 0 0 0 0 0 0 0 0 0 0 0
1/2[411] 5.74 0 0.18 0 0 0.27 0 0 0 0 0 0 0 0 0
3/2[402] 6.26 0 0.16 0 0 0.19 0 0 0 0 0 0 0 0
1/2[420] 5.30 0 0 −0.16 0 0 0 0 0 0 0 0 0
3/2[411] 5.61 0 0 −0.13 0 0 0 0 0 0 0 0
5/2[402] 6.00 0 0 −0.09 0 0 0 0 0 0 0
1/2[431] 5.06 0 0 0 0 0 0 0 0 0
3/2[422] 5.27 0 0 0 0 0 0 0 0
5/2[413] 5.56 0 0 0 0 0 0 0
7/2[404] 5.93 0 0 0 0 0 0

1/2[550] 5.88 0 0 0 0 0
3/2[541] 5.81 0 0 0 0
5/2[532] 5.82 0 0 0
7/2[523] 5.90 0 0
9/2[514] 6.06 0
11/2[505] 6.30

1
2 [400] 1

2 [411] 3
2 [402] 1

2 [420] 3
2 [411] 5

2 [402] 1
2 [431] 3

2 [422] 5
2 [413] 7

2 [404] 1
2 [440] 3

2 [431] 5
2 [422] 7

2 [413] 9
2 [404]

1/2[400] 6.28 −0.13 0 0.22 0 0 0 0 0 0 0 0 0 0 0
1/2[411] 5.74 0 0.18 0 0 0.27 0 0 0 0 0 0 0 0
3/2[402] 6.26 0 0.16 0 0 0.19 0 0 0 0 0 0 0
1/2[420] 5.30 0 0 −0.16 0 0 0 0.27 0 0 0 0
3/2[411] 5.61 0 0 −0.13 0 0 0 0.27 0 0 0
5/2[402] 6.00 0 0 −0.09 0 0 0 0.19 0 0
1/2[431] 5.06 0 0 0 0.18 0 0 0 0
3/2[422] 5.27 0 0 0 0.22 0 0 0
5/2[413] 5.56 0 0 0 0.22 0 0
7/2[404] 5.93 0 0 0 0.18 0

1/2[440] 5.73 0 0 0 0
3/2[431] 5.74 0 0 0
5/2[422] 5.82 0 0
7/2[413] 5.98 0
9/2[404] 6.22

the 50–82 shell by their 0[110] 1g9/2 counterparts, are depicted
in Figs. 2(c) and 2(d). In Figs. 2(a) and 2(c) the diagonal matrix
elements are plotted, including the contributions from both the
Hosc term and the small perturbations (the l · s and l2 terms),
while in Figs. 2(b) and 2(d) the results of the diagonalization
of the full Hamiltonian, in which the nondiagonal matrix
elements are taken into account, are given.

Note that these figures are not the same as the usual Nilsson
diagrams since they use the approximate asymptotic basis,
where analytic results can be obtained for all terms in the
Hamiltonian. Thus these results are not valid (and not shown)
for small deformations. In the well-deformed region, however,
they closely approximate the usual diagonalizations of the
Nilsson Hamiltonian in the Nlj� basis [17]. In Figs. 2(a)
and 2(c), where only the diagonal results are shown, the
energies lie along straight lines without curvature. In Figs. 2(b)
and 2(d) the full Hamiltonian with off-diagonal elements is
used, resulting in the familiar curved trajectories and avoided
crossings.

To see the patterns in this figure, and in Fig. 3,
more easily, we have color coded groups of or-
bits in the panels of Fig. 2 so that the locations
of similar sequences of orbits can be identified at a
glance.

We first compare Fig. 2(a) with Fig. 2(c) (the two panels in
the left hand side of the figure), i.e., the diagonal terms in the
50–82 and sdg proton shells.

In Fig. 2(a) the normal parity levels are shown as solid lines,
while the six intruder 1h11/2 orbitals are indicated by dashed
lines.

In Fig. 2(c) the normal parity levels, shown again as solid
lines, correspond to those in Fig. 2(a), while the dashed lines
indicate the five 1g9/2 orbitals which have replaced the 1h11/2

orbitals.
We see that the five 1g9/2 orbitals in Fig. 2(c) lie at positions

very similar to those of their 0[110] partners in Fig. 2(a). For
example, 1/2[550] of Fig. 2(a) and 1/2[440] of Fig. 2(c) lie at
very similar positions.
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sdg proton shell (proxy for the 50-82 shell)
diagonal matrix elements

FIG. 2. Energies (in units of h̄ω0) of the Nilsson Hamiltonian as functions of the deformation parameter ε. Note that, in these panels,
the energies shown are not the usual solutions to the Nilsson Hamiltonian, but use matrix elements obtained analytically in the asymptotic
deformed basis. Therefore they are not valid for small deformations and would not go to the usual degeneracies at ε = 0. They are, however,
quite accurate for ε > 0.15. The panels in this figure therefore also start at ε = 0.15. The Nilsson parameters are taken from Table I. The 1h11/2

orbitals in (a) and (b), as well as the 1g9/2 orbitals in (c), are indicated by dashed lines. The 1h11/2 orbital labels in (a) and (b), as well as the
1g9/2 orbital labels in (c) and (d), appear in boldface. Orbitals are grouped in color only to facilitate visualizing the patterns of orbital evolution.
Note that the Nilsson labels at the right are always in the same order as the energies of the orbitals as they appear at the right as well (largest
deformation shown). Therefore, in some cases the order of the Nilsson orbitals changes slightly from panel to panel. (a) Energies (diagonal
matrix elements) for the 50–82 proton shell, including the contributions from both the Hosc term and the small perturbations (the l · s and l2

terms). Therefore the Nilsson trajectories are straight and exhibit crossings. (b) Results of the full diagonalization for the 50–82 proton shell, in
which the nondiagonal matrix elements are taken into account. Hence the Nilsson trajectories show the usual curvatures and avoided crossings.
(c) Energies (diagonal matrix elements) for the sdg proton shell, resulting after the replacement of the 1h11/2 orbitals of the 50–82 shell by their
0[110] 1g9/2 counterparts. Therefore the Nilsson trajectories are straight and exhibit crossings. (d) Results of the full diagonalization for the
sdg proton shell. Hence the Nilsson trajectories again show the curvatures [enhanced relative to Fig. 2(b) by the mixing related to the spurious
off-diagonal matrix elements of the 1g9/2 orbit] and avoided crossings. See Sec. IV B for further discussion.
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FIG. 3. Same as Fig. 2, but for the diagonal matrix elements (in units of h̄ω0) of the Nilsson Hamiltonian for the 82–126 (a) and pf h (c)
neutron shells compared to the results of the full diagonalization for the 82–126 (b) and pf h (d) neutron shells, as functions of the deformation
parameter ε. The Nilsson parameters are taken from Table I. The 1i13/2 orbitals in (a) and (b), as well as the 1h11/2 orbitals in (c), are indicated
by dashed lines. The 1i13/2 orbital labels in (a) and (b), as well as the 1h11/2 orbital labels in (c) and (d), appear in boldface. Orbitals are grouped
in color only to facilitate visualizing the patterns of orbital evolution. Note that the Nilsson labels at the right are always in the same order as
the energies of the orbitals as they appear at the right as well (largest deformation shown). Therefore, in some cases the order of the Nilsson
orbitals changes slightly from panel to panel.

The high-lying 11/2[505] orbital of Fig. 2(a) has no analog
in Fig. 2(c).

We now compare Fig. 2(a) with Fig. 2(b) (the two top panels
in the figure), i.e., we turn on the nondiagonal interactions in
the 50–82 proton shell.

The intruder 1h11/2 orbitals, shown by dashed lines in both
figures, are not affected, since there are no matrix elements

connecting them to other orbitals, as is clear from the upper
part of Table V.

The normal parity orbitals, shown by solid lines in both
figures, are changed by the nondiagonal matrix elements
interconnecting them, as seen in the upper part of Table V.
Since the nondiagonal matrix elements are at least one order
of magnitude smaller than the diagonal matrix elements, the
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TABLE VI. Number of matrix elements of the operators l · s,
l2, and H in the pf , sdg, pf h, and sdgi shells, differing from the
corresponding matrix elements in the 28–50, 50–82, 82–126, and
126–184 shells. The total number of matrix elements for each operator
is given in the last column. See Sec. IV A for further discussion.

Shell l · s l2 H Total

pf 6 6 100
sdg 8 11 19 225
pf h 10 14 24 441
sdgi 12 17 29 784

relative positions of the various lines are not affected much,
although the mixing of states is clear from the small curvatures
seen.

We can now compare Fig. 2(c) with Fig. 2(d) (the two
bottom panels in the figure), i.e., we turn on the nondiagonal
interactions in the sdg proton shell.

The 1g9/2 orbitals, which have replaced the 1h11/2 orbitals,
do interact with the normal parity orbitals, a shortcoming of
our approach, as seen in the lower part of Table V, with the
exception of 9/2[404], which is still indicated by a dashed
line in Fig. 2(d). However, as we shall see, the effects of
this approximation are modest. As a result of the nondiagonal
matrix elements, all lines in Fig. 2(d) (except 9/2[404]) are
curved, forming, however, a figure quite similar to Fig. 2(c).

We finally compare Fig. 2(b) with Fig. 2(d) (the two panels
in the right hand side of the figure), i.e., the final results for the
50–82 and sdg proton shells. The similarity of the two figures
is clear.

As noted above, the differences are due to the fact that
the 1g9/2 orbitals in Fig. 2(d) interact with the normal parity
orbitals (see lower part of Table V) while the 1h11/2 orbitals
in Fig. 2(c) do not interact with the normal parity orbitals
(upper part of Table V). These additional interactions, which
are spurious in the sense of arising from the introduction of
the 1g9/2 orbit in the approximate scheme we use, account for
the greater curvature in Fig. 2(d) than in Fig. 2(b).

Figure 3 shows similar results for the 82–126 and pdf
neutron shells where the similarity of patterns is even more
apparent than in Fig. 2. Similar plots can be made for other
shells, and are provided in the Supplemental Material [33].

In the case of the 28–50 and pf shells, nondiagonal matrix
elements are contributed only by the l · s term, since no l2 term
is used in these shells, resulting in very similar diagrams,
since only 6% of the matrix elements are affected by the
approximation (see Table VI).

In the cases of the 82–126 and pf h shells, as well as of
the 126–184 and sdgi shells, the resulting diagrams are also
very similar (as noted above for the first of these shells for
Fig. 3), since the percentage of matrix elements affected by the
approximation is very low, being 5.4% and 3.7% respectively
(see Table VI).

It should be noticed that the example of the 50–82 and sdg
shells, shown in Fig. 2, is therefore the worst possible one,
since the percentage of the matrix elements affected by the
approximation is highest, 8.4% (again, see Table VI). Indeed,

as noted above, the agreement in Fig. 3 between the exact and
the approximate cases is greatly improved compared to Fig. 2.

In all shells one sees that the changes inflicted on the
Nilsson diagrams by the replacement of the intruder parity
orbitals with their 0[110] counterparts do not affect the main
features of the diagrams. Thus we have obtained a new
approximate symmetry scheme which models the role of
quadrupole interactions throughout a major oscillator shell
that resembles the actual shell. As such we can imagine that
it can be used to predict the evolution of observables that
depend robustly on the number of nucleons interacting in
a quadrupole field. Such predictions will obviously ignore
other interactions, such as pairing, the roles of other shells,
and the like, and it remains to be seen how that affects
them. This is discussed again in a companion paper [1].
Importantly, we remark that our approach is intended as a
complement, not a replacement for, more comprehensive (and
often computer-intensive) approaches such as large scale shell
model calculations or multishell symplectic models.

V. CONCLUSIONS

In this paper we propose that a proxy-SU(3) symmetry
appears in heavy deformed nuclei, very similar to the Elliott
SU(3) symmetry appearing in light (sd shell) nuclei. In order
to demonstrate this fact, we use an elementary and completely
transparent Nilsson calculation, in which it becomes clear
that the changes induced by replacing in each major shell the
intruder parity Nilsson orbitals by their 0[110] counterparts are
small, therefore offering the basis for a reliable approximate
scheme. The main reasons behind the good quality of this
approximation are as follows:

(1) the fact that the intruder parity orbitals have exactly
the same orbital angular momentum, spin, and total
angular momentum projection quantum numbers as
their 0[110] substitutes,

(2) the small number and small contribution to the total
Hamiltonian of the additional nonvanishing spin-orbit
and angular-momentum-squared matrix elements ap-
pearing because of the approximation induced, which
implies that the additional avoided crossings caused by
the approximation are of small size, thus not affecting
drastically the form of the Nilsson diagrams,

(3) because of (1) and (2), the real Nilsson diagrams have
nearly the same structure as they would have had if
the missing normal parity orbitals were present in
the place of the intruder parity orbitals, completing
an oscillator major shell with the appropriate U(N)
symmetry algebra, having an SU(3) subalgebra.

The main open question is whether this proxy-SU(3)
scheme can be of any practical use, in other words if the
approximations made result in an SU(3) scheme from which
reliable conclusions on physical quantities can be drawn. The
demonstration that the Nilsson diagram based on the present
proxy-SU(3) scheme is a good approximation to the actual one
can be taken as a validation to use this scheme to carry out
actual predictions for nuclear behavior.
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More specifically, the new set of states comprising the
proxy scheme now allows the system to be described by a
symmetry (instead of a collection of orbits that have to be
solved in a complex diagonalization process) corresponding
to full sets of oscillator states such as the sdg orbits or the
pf h orbits. Having a symmetry means that many results can
now be obtained analytically, often by inspection, and often
in a parameter-free way. This could involve, for example, how
various observables behave across a set of nuclei. It can also
provide initial predictions for currently inaccessible nuclei.
Ultimately, deviations from those predictions may help point
to changes in shell structure or for the enhancement of certain
interactions in unstable nuclei. A first application is given
in Ref. [1], in which it is shown that the present scheme
can predict the prolate-over-oblate dominance in deformed
nuclei, the location of the prolate-oblate shape phase transition
in rare earth nuclei, and specific predictions of the γ and
β deformation values for deformed nuclei that are in good
overall agreement with the data without any free parameters.
We stress again that we do not view the proxy-SU(3) scheme as
a substitute for detailed microscopic calculations or that it can
even make plausible predictions for many of the spectroscopic
results of such calculations. But we do suggest that it can
be a valuable, and certainly extremely simple, complement to
such approaches, and a way of predicting certain more global
properties of deformed nuclei related to their collectivity and
shapes.
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APPENDIX

The spin-orbit term, l · s, has diagonal matrix elements

〈nzrs�|l · s|nzrs�〉 = (r − s)� = ��, (A1)

as well as nondiagonal matrix elements

〈nz − 1,r + 1,s,� − 1|l · s|nzrs�〉 = − 1√
2

√
nz(r + 1),

〈nz + 1,r,s − 1,� − 1|l · s|nzrs�〉 = 1√
2

√
(nz + 1)s,

〈nz + 1,r − 1,s,� + 1|l · s|nzrs�〉 = − 1√
2

√
(nz + 1)r,

〈nz − 1,r,s + 1,� + 1|l · s|nzrs�〉 = 1√
2

√
nz(s + 1. (A2)

The orbital angular momentum term l2 has diagonal matrix
elements

〈nzrs�|l2|nzrs�〉 = 2nz(r + s + 1) + (r + s) + (r − s)2,

(A3)

as well as nondiagonal matrix elements

〈nz + 2,r − 1,s − 1,�|l2|nzrs�〉 = −2
√

(nz + 2)(nz+1)rs,

〈nz − 2,r + 1,s + 1,�|,l2|nzrs�〉
= −2

√
(nz − 1)nz(r + 1)(s + 1). (A4)

The above equations are equivalent to those given in
Ref. [17] in a |nzn⊥��〉 notation. Additional results for matrix
elements in various notations can be found in Refs. [34–36].

Tabulations of l · s, l2, and H matrix elements for the 28–50
and pf , 82–126 and pf h, as well as 126–184 and sdgi shells
as well as figures of spectra for the same shells, either involving
only the diagonal terms of the Hamiltonian, or derived through
the diagonalization of the full Hamiltonian, are provided in the
Supplemental Material [33].
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