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Toroidal, compressive, and E1 properties of low-energy dipole modes in 10Be
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We studied dipole excitations in 10Be based on an extended version of the antisymmetrized molecular dynamics,
which can describe 1p-1h excitations and large amplitude cluster modes. Toroidal and compressive dipole
operators are found to be good proves to separate the low-energy and high-energy parts of the isoscalar dipole
excitations, respectively. Two low-energy 1− states, the toroidal dominant 1−

1 state at E ∼ 8 MeV and the E1
dominant 1−

2 state at E ∼ 16 MeV, were obtained. By analysis of transition current densities, the 1−
1 state is

understood as a toroidal dipole mode with exotic toroidal neutron flow caused by rotation of a deformed 6He
cluster, whereas the 1−

2 state is regarded as a neutron-skin oscillation mode, which are characterized by surface
neutron flow with inner isoscalar flow caused by the surface neutron oscillation against the 2α core.
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I. INTRODUCTION

In recent developments in physics of unstable nuclei,
low-energy dipole excitations have being attracting great
interests and intensively studied in experimental and theo-
retical works (see, e.g., reviews in Refs. [1–4], and references
therein). Remarkable progress has been made in these years
in experimentally studying isospin characters of low-energy
dipole excitations for various nuclei, in particular, neutron-rich
nuclei [4–9]. For stable nuclei, familiar dipole excitations
in high-energy region known to be giant dipole resonances
(GDRs) have been systematically observed in various nuclei
by means of photonuclear reactions and α (or 6Li) inelastic
scatterings, which can probe isovector (IV) and isoscalar
(IS) dipole excitations, respectively [10–14]. The low-energy
dipole strengths below the GDR energy are often called as
pigmy dipole resonances (PDR) and considered to be new
excitation modes decoupled from the GDR modes. In IV
dipole (E1) excitations, the IV GDR (IVGDR) is understood
as the collective vibration mode originating in the opposite
oscillation between protons and neutrons. To understand
the low-energy E1 strengths, a picture of surface neutron
oscillation against a core has been proposed. In this paper,
we call this mode “neutron-skin oscillation mode”. (In some
works, the word “PDR” is used to call this specific mode.) Also
in IS dipole (ISD) excitations, low-energy strengths known
in such nuclei as 16O, 40Ca, and 208Pb [12,15,16] have been
discussed in relation to an exotic dipole mode, i.e., the toroidal
dipole (TD) mode [1,14,17–23].

The TD mode carries vorticity and its character is much
different from the compressive dipole (CD) mode, which is
the normal mode for the ISGDR. In this decade, IS and
IV properties of low-energy dipole excitations have been
intensively studied to clarify essential nature of low-energy
dipole modes [1,3,4]. One of the interesting problems is
whether the vorticity origin TD mode arises as low-energy
resonances in nuclear systems. In works with a quasiparticle
phonon model (QPM) and random phase approximation (RPA)
for such nuclei as 208Pb and 132Sn [19,21–23], it has been
shown that the TD mode dominates the low-energy part of
the ISD strengths whereas the CD mode mainly excites the
high-energy part for the ISGDR, indicating that the toroidal

property is a key for low-energy dipole resonances. The TD
dominant nature of the low-energy E1 resonances has been
demonstrated by toroidal flow in transition current densities
[1,18,19,21–23]. In the works of Refs. [22,23], no low-energy
E1 resonances for the pure neutron-skin oscillation mode has
been obtained.

For light stable nuclei, low-energy IS strengths can be good
probes also for cluster states [24–36]. As discussed by Yamada
et al. [29] and Chiba et al. [35], cluster states can be strongly
excited by IS compressive modes such as IS monopole (ISM)
and ISD modes. For instance, in 12C and 16O, the enhanced
low-energy ISM strengths are understood as cluster states.
Moreover, significant low-energy ISD strengths observed in
such nuclei as 12C and 16O [38,39] are considered to probe 1−
cluster states as discussed in Ref. [33].

In light neutron-rich nuclei, a further rich variety of cluster
states are expected to appear in excited states because of excess
neutrons surrounding clusters (see, for example, Refs. [40–42],
and references therein). A typical example is the cluster struc-
tures consisting of a 2α-cluster core and surrounding valence
neutrons in neutron-rich Be (see also a review in Ref. [43]). The
ISM strengths in Be isotopes have been theoretically studied
by cluster models and suggested to be a good probe for cluster
states [43–45]. One of the authors, Y.K-E., has studied the E1
and compressive ISD strengths of Be isotopes and discussed
the dipole excitations for cluster states [46].

Our main aim is to investigate toroidal nature of the low-
energy dipole excitations in 10Be. We are going to show how
the toroidal, compressive, and E1 operators excite low-energy
cluster states and high-energy GDRs. A particular attention is
paid on two components, the toroidal and the neutron-skin
oscillation modes, in the low-energy dipole strengths for
cluster states.

Usually, either a mean-field approach or a cluster model
fails to describe low-energy cluster states and high-energy
GRs in a unified manner because cluster states are large
amplitude modes of highly correlated many nucleons beyond
mean-field approaches, whereas GR modes are collective
vibrations described by coherent 1p-1h excitations, which are
not contained in ordinary cluster model space. To take into
account large amplitude cluster modes and coherent 1p-1h
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excitations, we have recently developed a new method based on
the antisymmetrized molecular dynamics (AMD) [42,47–51]:
the shifted-basis AMD (sAMD) combined with the cluster gen-
erator coordinate method (GCM) [32,33,46]. In the method, we
superpose various configurations including 1p-1h and cluster
states expressed by AMD wave functions. In the framework,
angular-momentum and parity projections are microscopically
performed and the center-of-mass motion is exactly removed.
The method has been applied to investigate ISM excitations in
16O and ISM and ISD in 12C, and proved to be a useful method
to describe monopole and dipole excitations in a wide energy
region including low-energy cluster modes and higher-energy
GR modes in a unified framework. In our previous work [46],
we applied the method for E1 and ISD excitations in neutron-
rich Be isotopes and showed that low-energy E1 and ISD
strengths for cluster states appear separating from high-energy
strengths for GDRs. In this paper, we investigate toroidal, com-
pressive, and E1 properties of dipole excitations in 10Be based
on reanalysis of the previous calculation. By analysis of transi-
tion current densities in the low-energy dipole excitations, we
show a toroidal feature of cluster states. We also perform a clus-
ter model analysis to obtain intuitive understanding of toroidal
dominance in the 1−

1 state and E1 dominance in the 1−
2 states.

This paper is organized as follows. The definition of
dipole operators and transitions are explained in Sec. II.
The calculation scheme and results of dipole excitations
in 10Be are shown in Sec. III, and properties of low-
energy dipole modes are discussed in Sec. IV. The paper
concludes with a summary and an outlook in Sec. V.
In the Appendixes, we explain definitions of operators
and matrix elements.

II. DEFINITIONS OF TD, CD, AND E1 OPERATORS
AND STRENGTHS

Vortical nature of nuclear current has been discussed for a
long time (see, e.g., a review in Ref. [21]). However, the defi-
nition of vorticity in nuclear systems has yet to be confirmed.
To measure the nuclear vorticity, two different modes have
been proposed. One is the mode originally determined by the
second-order correction in the long-wave approximation of the
transition Eλ operator in an electromagnetic field [52,53], and
the other is that defined based on multipole decomposition of
the transition current density following Ravenhall-Wambach’s
prescription [54]. In Ref. [21], they call the former and
the latter, the toroidal and vortical modes, respectively, and
described the general treatment of toroidal, compressive, and
vortical modes and their relation to each other. In this paper, we
basically follow the descriptions of the TD, CD, and vortical
dipole (VD) operators in Ref. [21].

The TD, CD, and VD operators are defined as

MTD(μ) = −i

2
√

3c

∫
d r j (r)

·
[√

2

5
r2Y 12μ(r̂) + r2Y 10μ(r̂)

]
, (1)

MCD(μ) = −i

2
√

3c

∫
d r j (r)

·
[

2
√

2

5
r2Y 12μ(r̂) − r2Y 10μ(r̂)

]
, (2)

MVD(μ) = −i

2
√

3c

∫
d r j (r)

·
[

3
√

2

5
r2Y 12μ(r̂)

]
, (3)

where j (r) is the current density operator and YλLμ is the
vector spherical harmonics. Note that MVD = MTD + MCD. In
this paper, we take into account only the convection part of
the nuclear current but skip its magnetization (spin) part. The
definition of j (r) as well as that of density ρ(r) are given in
Appendix A. The term Y 10μ(r̂) includes the L = 1 excitation
of the center-of-mass motion, but it gives no contribution to
the transition matrix element in the AMD framework because
the center-of-mass motion of the AMD wave function is fixed
to be an S-wave state and can be exactly removed.

The TD operator can be written using a curl of the transition
current density as MTD ∝ ∫

d r(∇ × j ) · (r3Y 11μ), and the
CD operator, MCD ∝ ∫

d r(∇ · j )r3Y1μ, is regarded as the
counter part of the TD operator. In a hydrodynamical sense,
the TD and CD modes are considered to be vortical and
irrotational, respectively. On the other hand, the VD operator
measures the Y 12μ component of the transition current j and
free from the Y 10μ component. In the Ravenhall-Wambash’s
prescription [54], Yλλ+1μ and Yλλ−1μ components of j are
interpreted as vortical and irrotational parts. In their definition,
the VD operator is vortical, whereas the TD and CD operators
are mixed modes of both vortical (Yλλ+1μ) and irrotational
(Yλλ−1μ) components. Kvasil and his collaborators argued that
the TD operator is a natural measure of the nuclear vorticity
[21,22], though there exist studies with the TD operator
and those with the VD one. They demonstrated with RPA
calculations that the TD operator is a good mode to separate
the low-energy dipole mode from the high-energy CD mode.

For a dipole transition from the ground state, |0〉 → |f 〉,
matrix elements of these operators are written with the
transition current density δ j (r) ≡ 〈f | j (r)|0〉 as

〈f |MTD(μ)|0〉 = −i

2
√

3c

∫
d rδ j (r)

·
[√

2

5
r2Y 12μ(r̂) + r2Y 10μ(r̂)

]
, (4)

〈f |MCD(μ)|0〉 = −i

2
√

3c

∫
d rδ j (r)

·
[

2
√

2

5
r2Y 12μ(r̂) − r2Y 10μ(r̂)

]
, (5)

〈f |MVD(μ)|0〉 = −i

2
√

3c

∫
d rδ j (r)

·
[

3
√

2

5
r2Y 12μ(r̂)

]
. (6)
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By using the continuity equation

∇ · j = − i

h̄
[H,ρ], (7)

the matrix element of the CD operator is straightforwardly
transformed to that of the familiar IS dipole (IS1) operator as

〈f |MCD(μ)|i〉 = − 1

10

E

h̄c
〈f |MIS1(μ)|i〉, (8)

MIS1(μ) ≡
∫

d rρ(r)r3Y1μ(r̂), (9)

where E is the excitation energy E ≡ Ef − E0 given with the
initial energy (E0) and final energy (Ef ). The E1 operator is
written with the IV density operator ρIV(r) as

ME1(μ) ≡
∫

d rρIV(r)rY1μ(r̂), (10)

and also written with the IV current density operator j IV(r) as

ME1(μ) = − ih̄

E

√
3

4π

∫
d rj IV

μ (r). (11)

The transition strength for a dipole operator MD is given as

B(D; 0 → f ) = 1

2J0 + 1
|〈f |MD|0〉|2, (12)

where J0 is the angular momentum of the initial state. We
define scaled strengths of the TD, VD, and CD transitions

B̃(TD,VD,CD) =
(

10h̄c

E

)2

B(TD,VD,CD), (13)

so that B̃(CD) corresponds to the ordinary ISD strength
B(IS1).

III. DIPOLE EXCITATIONS OF 10Be

A. Calculation scheme of sAMD + αGCM

We calculate the ground and 1− states of 10Be with the
sAMD combined with the α-cluster GCM (αGCM). The
sAMD method with the GCM has been constructed and applied
for study of ISM, ISD, and E1 excitations in light nuclei
such as 12C and 16O, and neutron-rich Be [32,33,46]. For the
detailed scheme of the present calculation of 10Be, the reader is
referred to the previous paper [46]. A similar method has been
recently applied to study E1 and ISD excitations in 26Ne by
Kimura [37].

In the AMD framework, a basis wave function is given by
a Slater determinant,

�AMD(Z) = 1√
A!

A{ϕ1,ϕ2, . . . ,ϕA}, (14)

whereA is the antisymmetrizer, and ϕi is the ith single-particle
wave function written by a product of spatial, spin, and isospin

wave functions as

ϕi = φX i
χiτi, (15)

φX i
(rj ) =

(
2ν

π

)3/4

exp[−ν(rj − X i)
2], (16)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓, (17)

where φX i
and χi are the spatial and spin functions, respec-

tively, and τi is the isospin function fixed to be proton or neu-
tron. The width parameter ν is chosen to be ν = 0.19 fm−2 so
as to minimize the ground state energy of 10Be. The condition

1

A

∑
i=1,...,A

X i = 0 (18)

is kept for all basis AMD wave functions so that the
center-of-mass motion can be exactly separated from the total
wave function. An AMD wave function is specified by a set
of variational parameters, Z ≡ {X1, . . . ,XA,ξ1, . . . ,ξA}, for
centroids of single-nucleon Gaussian wave packets and spin
orientations of all nucleons.

To obtain the wave function for the lowest Jπ state, we
perform variation after projections (VAP) with the AMD
wave function. Namely, the parameters Z are determined by
the energy variation after the angular-momentum and parity
projections,

δ

δX i

〈�|H |�〉
〈�|�〉 = 0, (19)

δ

δξi

〈�|H |�〉
〈�|�〉 = 0, (20)

� = P Jπ
MK�AMD(Z), (21)

where P Jπ
MK is the angular-momentum and parity projection

operator. For 10Be, the variation is performed after the
Jπ = 0+ and Jπ = 1− projections to obtain the wave
functions for the ground and the lowest 1− states, respectively.
We denote the obtained parameter set Z for the ground state as

Z0
VAP = {X0

1, . . . ,ξ
0
1 , . . .}, and those for the 1−

1 state as Z
1−

1
VAP.

To take into account 1p-1h excitations on the ground state,
we consider a small variation of single-particle wave functions
of �AMD(Z0

VAP) by shifting the Gaussian centroid of the ith
single-particle wave function, X0

i → X0
i + εeσ , where ε is an

enough small constant and eσ (σ = 1, . . . ,8) are unit vectors
for eight directions defined in the previous paper. For the
spin part of the shifted single-particle wave function, the
spin-nonflip and spin-flip states given by parameters ξ 0

i and
ξ̄ 0
i = −1/(4ξ 0

i )∗ are adopted. In the sAMD method, totally
16A wave functions of the spin-nonflip and spin-flip shifted
AMD wave functions with the parameters

Z0
s (i,σ ) ≡ {

X0
1
′
, · · · ,X0

i

′ + εeσ , · · · ,X0
A

′
,

ξ 0
1 , · · · ,ξ 0

i , · · · ,ξ 0
A

}
, (22)

Z0
s̄ (i,σ ) ≡ {

X0
1
′
, · · · ,X0

i

′ + εeσ , · · · ,X0
A

′
,

ξ 0
1 , · · · ,ξ̄ 0

i , · · · ,ξ 0
A

}
(23)
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are adopted as basis wave functions in addition to the original
ground state wave function �AMD(Z0

VAP). Here, we take into
account the recoil effect and choose X0

j

′ = X0
j − εeσ /(A − 1)

to keep the condition (18).
As discussed in the previous paper, the 10Be ground state

obtained by the AMD+VAP shows a 6He + α cluster structure
with an intercluster distance D0 = 2.8 fm even though any
clusters are not a priori assumed in the AMD framework.
To take into account large amplitude intercluster motion, we
apply the αGCM by changing the intercluster distance (the
α-cluster distance from 6He) D0 → D0 + �D. We label the
parameter set as Z0

α(�D), which is specified by the shift �D
of the intercluster distance. The basis wave functions given
by Z0

α(�D) (�D = −1,0,1, . . . ,19,20 fm) are superposed in
the αGCM.

Finally, we combine the sAMD and αGCM by superposing
all the basis wave functions in addition to the VAP wave
functions, �AMD(Z0

VAP) and �AMD(Z
1−

1
VAP). Consequently, the

final wave functions for the 0+
1 and 1−

k states are given as

�
(
Jπ

k

) =
∑
K

c0
(
Jπ

k ; K
)
P Jπ

MK�AMD
(
Z0

VAP

)

+
∑
K

c1
(
Jπ

k ; K
)
P Jπ

MK�AMD
(
Z

1−
1

VAP

)

+
∑

i=1,...,A

∑
σ

∑
K

c2
(
Jπ

k ; i,σ,K
)

×P Jπ
MK�AMD

(
Z0

s (i,σ )
)

+
∑

i=1,...,A

∑
σ

∑
K

c3
(
Jπ

k ; i,σ,K
)

×P Jπ
MK�AMD

(
Z0

s̄ (i,σ )
)

+
∑
�D

∑
K

c4
(
Jπ

k ; �D,K
)

×P Jπ
MK�AMD

(
Z0

α(�D)
)
, (24)

where coefficients ci are determined by diagonalization of
the norm and Hamiltonian matrices. Note that the present
calculation corresponds to that labeled as “sAMD + αGCM +
cfg” in the previous paper.

For the dipole excitations 0+
1 → 1−

k , the transition strength
of a dipole operator MD are calculated with the obtained
sAMD + αGCM wave functions, �(Jπ

k ), as

B(D; 0+
1 → 1−

k ) = |〈�(1−
k )|MD|�(0+

1 )〉|2. (25)

In the present framework of the sAMD+αGCM, the ground
state is obtained by the VAP, and therefore, it contains
correlations such as cluster correlations beyond mean field
approximation. Moreover, 1p-1h excitations on the ground
state are taken into account in the sAMD model space, and
also large amplitude cluster motion is treated by means of the
αGCM.

B. Effective interactions

The adopted effective interaction is the same as that used in
the previous paper. It consists of the central force of the MV1

force [55] and the spin-orbit term of the G3RS force [56,57].
The MV1 force is given by two-range Gaussian two-body
terms and a zero-range three-body term. For parametrization
of the MV1 force, case 1 with the Bartlett, Heisenberg, and
Majorana parameters, b = h = 0 and m = 0.62, is used. As
for strengths of the G3RS spin-orbit force with a two-range
Gaussian form, uI = −uII ≡ uls = 3000 MeV are used. This
set of interaction parameters describes well properties of the
ground and excited states of 10Be and 12C with the AMD+VAP
calculations [58–60]. For matter properties, the MV1 force
with the present parameters gives the saturation density
ρs = 0.192 fm−3, the saturation energy Es = −17.9 MeV,
the effective nucleon mass m∗

SNM = 0.59 m for symmetric
nuclear and m∗

PNM = 0.80 m for pure neutron matters, the
incompressibility K = 245 MeV, the symmetry energy S =
37.6 MeV, and the slope parameter of the symmetry energy
L = 47.7 MeV.

C. Results of 10Be calculated with sAMD + αGCM

Dipole strengths

Energy-weighted dipole strength distributions obtained
with the sAMD + αGCM are shown in Fig. 1. The calculated
results for ordinary IS and IV dipole, i.e., CD (IS1) and E1
strengths correspond to those shown in the previous paper. In
the E1 excitations [see Fig. 1(d)], a remarkable low-energy
strength at E = 16 MeV [23% of the Thomas-Reiche-Kuhn
(TRK) sum rule] appears below the IVGDR energy because
of valence neutron motion against the 2α core. The IVGDR
strengths in E � 20 MeV originate in the 2α-core E1, namely,
opposite oscillations between protons and neutrons in the 2α
core part. Because of the prolate deformation of the 2α core,
the IVGDR shows a two-peak structure, the narrow peak at
E ∼ 25 MeV for the the longitudinal mode and the broad
bump around E ∼ 40 MeV for the transverse mode, which is
largely fragmented because of the coupling with the valence
neutron motion. In the CD excitations [see Fig. 1(a)], the broad
strengths for the ISGDR are obtained in E = 25–50 MeV
region, relatively higher energy than the IVGDR. Below the
ISGDR, the low-energy CD strengths with 2% of the ISD sum
rule [12] are obtained.

ISD strengths for the TD and VD modes are compared with
the CD mode in Fig. 1(a). In contrast to the CD mode which
strongly excites the ISGDR in the high-energy region, the TD
strengths are dominantly distributed in the low-energy region
rather than the high energy region. The VD mode excites both
the low-energy and high-energy dipole resonances. It means
that the TD and CD operators are suitable to separately probe
the low-energy and high-energy parts of the ISD excitations,
respectively, whereas the VD operator may not be a good
probe to decouple the low-energy and high-energy modes.
This result is consistent with the result of the RPA calculation
for 208Pb [21]. The proton and neutron contributions in the
CD and TD strengths are shown in Figs. 1(b) and 1(c). In the
CD excitations, the proton contribution dominates the strength
at E = 16 MeV and also that around E ∼ 50 MeV, whereas
the neutron contribution is significant for the strength around
E ∼ 40 MeV. In the TD excitations, a remarkable strength at
E = 8 MeV comes from the neutron part.
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FIG. 1. Energy-weighted dipole strengths EB̃(CD),EB̃(TD),
EB̃(VD), and EB(E1) for the CD, TD, VD, and E1 modes of
10Be calculated with the sAMD+αGCM. The proton and neutron
contributions in the CD and TD modes are shown in (b) and (c). The
smearing width is γ = 1 MeV.

Let us discuss the low-energy dipole excitations in E �
20 MeV. Two 1− resonances are obtained at E = 8 MeV and
E = 16 MeV. In this paper, we call the lower and higher ones
the 1−

1 (E = 8 MeV) and 1−
2 (E = 16 MeV), which were

labeled as “B1” and“B2” in the previous paper, respectively.

In the E1 mode, the transition to the 1−
1 almost vanishes,

whereas that to the 1−
2 is remarkably strong. In the CD mode,

the strengths for both the 1−
1 and 1−

2 are not so enhanced but
visible in the strength distribution. In the TD mode, the 1−

1
has a remarkably strong TD transition, but the 1−

2 shows a
relatively weak TD transition. Thus, two low-energy dipole
excitations show quite different transition properties; the TD
dominance in the 1−

1 and the E1 dominance in the 1−
2 .

It should be noted that the 1−
1 state has large overlap with

the the VAP wave function and corresponds to the band-
head state of the K = 1 band assigned to the experimental
1−

1 state at 5.960 MeV as discussed in the work with the
AMD+VAP in Ref. [59]. The calculated B(E1; 1−

1 → 0+
1 )

value is as small as 1.1 × 10−2 W.u., which is almost consistent
with the theoretical value 7.9 × 10−3 W.u. calculated by a
molecular orbital model [61]. The experimental B(E1; 1−

1 →
0+

1 ) reported in Ref. [62] is in the range of 5.4 × 10−5 to
1.1 × 10−3. Our result of the weak E1 transition for the
1−

1 is qualitatively supported by the experimental data, but
it one-order overestimates the experimental B(E1). There is
no experimental information for the 1−

2 .

IV. PROPERTIES OF LOW-ENERGY DIPOLE
MODES OF 10Be

As discussed previously, we obtain two low-energy dipole
excitations, the TD dominant 1−

1 and E1 dominant 1−
2 . Such

a difference in the transition properties may indicate the
coexistence of two kinds of low-energy dipole modes. In
this section, we discuss properties of the low-energy dipole
excitations focusing on toroidal features. At first, we discuss
intrinsic structures and transition current densities based on
analysis of the AMD wave functions. Next we perform an
analysis using a simple cluster model of 6He + α to obtain
intuitive understanding of the dipole modes.

A. Structures and transition current densities for the 1−
1 and 1−

2

states in the intrinsic frame

The sAMD + αGCM wave functions, �(0+
1 ) and �(1−

1 ),
for the ground and 1−

1 states, have more than 90% overlap with
the Jπ -projected VAP wave functions, P 0+

00 �AMD(Z0
VAP) and

P 1−
MK=1�AMD(Z

1−
1

VAP), respectively. Therefore, �AMD(Z0
VAP)

and �AMD(Z
1−

1
VAP) are regarded as approximate intrinsic wave

functions for the ground and 1−
1 states. Since each AMD

wave function before the projections is expressed by a single
Slater determinant, we can investigate intrinsic structure of
each state in the intrinsic (body-fixed) frame. We choose the
intrinsic frame XYZ with the principal axes, which satisfy
〈Y 2〉 � 〈X2〉 � 〈Z2〉 and 〈XY 〉 = 〈YZ〉 = 〈ZX〉 = 0. Here
the expectation values are defined for the intrinsic state without
the projections.

The intrinsic proton and neutron densities of �AMD(Z0
VAP)

and �AMD(Z
1−

1
VAP) are shown in Fig. 2. It is found that the

0+
1 and 1−

1 show a 2α core with two neutrons. One of the α

clusters and two neutrons compose a deformed 6He cluster,
which is placed in the transverse orientation on the Z axis at
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FIG. 2. Intrinsic density distributions of protons and neutrons in
10Be(0+

1 ) and 10Be(1−
1 ) obtained with the AMD+VAP calculation.

Density integrated along the Y axis is plotted on the X-Z plane.

the 6He-α distance D = 2.8 fm in the 0+
1 , and in the tilted

(rotated) orientation at D = 3.9 fm in the 1−
1 .

The 1−
2 state has significant overlap with the αGCM basis

wave functions P Jπ
MK=0�AMD(Z0

α(�D)) indicating that it arises
from the inter-cluster (6He-α) excitation from the ground state.
As shown in Fig. 3, �(1−

2 ) has the maximum overlap at D =
3.8 fm (�D = 1 fm) somewhat larger than the distance D0 =
2.8 fm of the ground state. In the following analysis, we simply
consider the basis AMD wave function �AMD(Z0

α(�D)) at the
maximum overlap as an approximate intrinsic wave function
for the 1−

2 state, though it has 60% overlap with �(1−
2 ) at most.

0
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S
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D  (fm)

0+
1

1-
2

FIG. 3. Squared overlap of �(J π
k ) with the αGCM basis wave

functions P Jπ
M0�AMD(Z0

α(�D)). The overlaps for �(0+
1 ) and �(1−

2 )
are plotted as functions of the 6He-α distance (D = D0 + �D).

We label the parity eigenstates projected from these
approximate intrinsic wave functions as

|0+
1,int〉 ≡ P +�AMD

(
Z0

VAP

)
, (26)

|1−
1,int〉 ≡ P −�AMD

(
Z

1−
1

VAP

)
, (27)

|1−
2,int〉 ≡ P −�AMD

(
Z0

α(�D=1 fm)
)
. (28)

Using the parity-projected intrinsic wave functions, we calcu-
late the transition current densities,

δ j (X,Y,Z) = 〈1−
k,int| j |0+

1,int〉, (29)

in the intrinsic frame. The calculated δ j (X,Y,Z) for |0+
1,int〉 →

|1−
1,int〉 and |0+

1,int〉 → |1−
2,int〉 at Y = 0 on the X-Z plane

are shown in Figs. 4 and 5. As seen in Figs. 4(a) and
4(d), the transition current density for |0+

1,int〉 → |1−
1,int〉 shows

toroidal neutron flow induced by the 6He-cluster rotation (see
schematic figures in Fig. 6). In contrast, the transition current
density for |0+

1,int〉 → |1−
2,int〉 (Fig. 5) shows no toroidal feature

but translational flow parallel to the Z axis, namely, surface
neutron flow with inner isoscalar flow caused by the valence
neutron oscillation against the 2α core, which is regarded as
the neutron-skin oscillation mode [see Fig. 6(e)].

These transition current densities describe characteristics of
the low-energy dipole excitations, i.e., the TD dominance in the
1−

1 and the E1 dominance in the 1−
2 . In the transition 0+

1 → 1−
1 ,

the toroidal current gives significant contribution to the TD
strength but it gives no contribution to the E1 strength because
it does not contain the translational mode. On the other hand,
in the transition 0+

1 → 1−
2 arising from the valence neutron

motion against the 2α core, the 2α motion contributes only to
the IS component but not to the IV component. Therefore, the
surface neutron current simply enhances the E1 strength. By
contrast, in the IS component, the contribution of the surface
neutron current is canceled by the opposite inner IS current.
As a result of this cancellation by the recoil effect from the
core, the TD transition is weak in 0+

1 → 1−
2 .

B. Properties of dipole modes based on 6He + α-cluster
model analysis

In the present result of 10Be, we obtain the remarkable E1
strength for the 1−

2 state because of the valence neuron motion
against the 2α core. This corresponds to the neutron-skin
oscillation mode, which has been expected to appear in low-
energy E1 strength of neutron-rich nuclei. For the 1−

2 state, the
TD strength almost vanishes because of the cancellation of the
surface neutron current and the inner IS current of the recoiled
core. The vanishing of the TD strength is not trivial because
the neutron-skin oscillation mode could contain some toroidal
component through the neutron flow along the surface. Indeed,
the transition current density in 0+

1 → 1−
2 shows such the

surface neutron flow, which is naively expected to somewhat
contribute to the TD strength if the opposite contribution from
the recoiled core is absent. Moreover, there is no obvious
reason why the CD strength for the 1−

2 state is visible in
the CD strength distribution compared with the TD strength.
Unfortunately, at a glance on the transition current densities,
it is not easy to understand quantitatively the cancellation
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FIG. 4. Vector plots of the transition current densities for
|0+

1,int〉 → |1−
1,int〉. (a) IS, (b) IV, (c) proton, and (d) neutron transition

current densities (cfm−3 unit) at Y = 0 are plotted on the X-Z plane
(scaled by a factor of 103). Red solid (magenta dashed) lines in (a)
and (b) show contours for the matter density ρ(X,0,Z) = 0.08 fm−3

of |0+
1,int〉 (|1−

1,int〉), and those in (c) and (d) show contours for the
proton and neutron densities ρp,n(X,0,Z) = 0.04 fm−3, respectively.
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FIG. 5. Same as Fig. 4 but for |0+
1,int〉 → |1−

2,int〉.

between the valence neutron and core contributions in the
TD strength.

To discuss essential properties of the TD and CD compo-
nents in 0+

1 → 1−
1 and 0+

1 → 1−
2 , we simply consider 6He + α-

064319-7



YOSHIKO KANADA-EN’YO AND YUKI SHIKATA PHYSICAL REVIEW C 95, 064319 (2017)

(d)

(e)

 
α

α

α

 α

α
−

−

(b)

(a)

(c)

+

α

α

α

He6

He6

α α

αα
He6

α

α

α

α
+

FIG. 6. Schematic figures of (a) 10Be(0+
1 ), (b) 10Be(1−

1 ), and (c)
10Be(1−

2 ), (d) transition current in 0+
1 → 1−

1 , and (e) that in 0+
1 → 1−

2 .

cluster model wave functions instead of the AMD wave func-
tions and analyze detailed contributions of transition current
density to the TD and CD strengths in the strong coupling
picture. We here introduce the parity-projected Brink-Bloch
(BB) cluster wave functions of 6He + α clustering,

�π
BB(β; D) = 1

n0
P πA[

�
β
6He

(S1)�α(S2)
]
, (30)

S1 =
(

0,0,
2

5
D

)
, (31)

S2 =
(

0,0, − 3

5
D

)
, (32)

where n0 is the normalization factor determined by the
condition |�π

BB(β; D)| = 1, and �
β
6He

(S) and �α(S) are 6He-
and α-cluster wave functions given by the harmonic oscillator
(h.o.) shell model (0s)4p2 and (0s)4 configurations localized
around the position S. β is the label for the valence neutron
configuration in p shell. We label p2

x (transverse) configuration
as β = CT, and [(px − pz)/

√
2]2 (rotated) one as β = CR.

In short, we denote �+
BB(CT), �−

BB(CR), and �−
BB(CT) as

“C+
T ”, “C−

R ”, and “C−
T ”, which correspond to the intrinsic

states of the 0+
1 ,1−

1 , and 1−
2 , respectively. Schematic figures

for these three configurations are drawn in Figs. 6(a)–6(c). In
the present analysis, we take the h.o. width ν = 0.19 fm−1 and
the inter-cluster distance D = 3 fm.

These wave functions have planer configurations restricted
on the X-Z plane, and therefore they are suitable to discuss
essential features of the transition current densities projected
onto the X-Z plane. The transition current densities for C+

T →
C−

R and C+
T → C−

T are shown in Figs. 7 and 8, respectively.
The transition, C+

T → C−
R , shows the toroidal current similar

to that found in |0+
1,int〉 → |1−

1,int〉, and C+
T → C−

T shows the
translational current similarly to |0+

1,int〉 → |1−
2,int〉.

Let us discuss detailed contributions of the transition current
densities to the TD and CD modes in the intrinsic frame. For

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

(b) IV

(c) p

(d) n

x500

x500

x500

x500

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

Z
  (

fm
)

X  (fm)

Z
  (

fm
)

X  (fm)
Z

  (
fm

)

X  (fm)

Z
  (

fm
)

(a) IS

X  (fm)

FIG. 7. Same as Fig. 4 but calculated for C+
T → C−

R with the
6He + α cluster model at D = 3 fm. The current densities (cfm−3

unit) are scaled by a factor of 500.

this aim, we define K components of the TD and CD operators
in the intrinsic frame, MTD,CD(K = 0) and MTD,CD(|K| = 1).
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FIG. 8. Same as Fig. 4 but calculated for C+
T → C−

T with the
6He + α cluster model at D = 3 fm. The current densities (cfm−3

unit) are scaled by a factor of 500.

The definition and explicit notation of MTD,CD(K = 0) and
MTD,CD(|K| = 1) are given in Appendix B. In the strong

coupling picture, the TD and CD transition matrix elements
are proportional to the integration of the following TD and CD
transition densities at Y = 0 on the X-Z plane,

MK=0
TD (X,0,Z) = −i

20c

√
3

π

× (2X2δjZ + Z2δjZ − ZXδjX), (33)

MK=0
CD (X,0,Z) = −i

20c

√
3

π

× (−X2δjZ − 3Z2δjZ − 2ZXδjX),
(34)

M|K|=1
TD (X,0,Z) = −i

20c

√
3

π

× (2Z2δjX + X2δjX − XZδjZ),
(35)

M|K|=1
CD (X,0,Z) = −i

20c

√
3

π

× (−Z2δjX − 3X2δjX − 2XZδjZ),
(36)

meaning that MK
TD,CD can be decomposed into three terms.

For C+
T → C−

R corresponding to 0+
1 → 1−

1 , we consider
the K = 1 transition because of the K = 1 feature of the
1−

1 state. As given in Eq. (35), the ratio of weight factors
of three terms Z2δjX,X2δjX, and XZδjZ in the TD mode
is 2 : 1 : −1, which indicates that Z2δjX is the major term.
Similarly, X2δjX is the major term in the K = 1 CD mode.
The K = 1 component of the TD and CD transition densities
for C+

T → C−
R and its decomposition are shown in Figs. 9

and 10. Clearly seen in the decomposition, the TD transition is
enhanced because of remarkable contribution from the Z2jX

term [Fig. 10(e)]. In addition, the XZδjZ term [Fig. 10(d)]
gives coherent contribution to the TD transition. Consequently,
the TD transition is remarkably strong for 0+

1 → 1−
1 . However,

the CD transition is not enhanced because of the cancellation
between positive and negative contributions in the major term,
X2δjX [Fig. 10(c)]. Moreover, further cancellation is caused
by decoherent contribution from the Z2jX term [Fig. 10(e)].

For C+
T → C−

T corresponding to 0+
1 → 1−

2 , we consider
the K = 0 transition because of the K = 0 feature of the 1−

2
state. As given in Eqs. (33) and (34), the major terms of the
TD and CD modes are X2δjZ and Z2δjZ , respectively. The
K = 0 component of the TD and CD transition densities for
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FIG. 9. |K| = 1 component of (a) TD and (b) CD transition
densities [(−i)cfm−1]x at Y = 0 on the X-Z plane for C+

T → C−
R .
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current densities, (c) X2jX , (d) XZjZ , and (e) Z2jX (cfm−1), at Y = 0
are plotted on the X-Z plane.

C+
T → C−

T and its decomposition are shown in Figs. 11 and 12.
As seen in Fig. 11(a), the TD transition almost vanishes
because of the cancellation between positive contribution from
the 2α core part and the negative contribution from valence
neutrons in the TD transition density. In the decomposition of
the TD transition density, the X2JZ and Z2JZ terms cancel
each other, whereas the ZXJX term vanishes itself. Note
that the factor X2 in X2JZ enhances the surface neutron
contribution and the factor Z2 in Z2JZ enhances the 2α core
contribution. It means that the TD transition is suppressed
because the contribution of the surface neutron current is
canceled by the recoil effect of the 2α core. Also in the
CD transition, the Z2JZ (surface neutron) contribution is
somewhat canceled by the X2JZ (core) contribution. However,
since the Z2JZ term dominates the K = 0 component of
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FIG. 11. K = 0 component of (a) TD and (b) CD transition
current densities [(−i)cfm−1] at Y = 0 on the X-Z plane for
C+

T → C−
T .
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FIG. 12. Decomposition of the K = 0 component of the tran-
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weighted transition current densities, (c) ZXjX , (d) XX2jZ , and (e)
ZZjZ (cfm−1), at Y = 0 are plotted on the X-Z plane.

the CD mode with the factor of 3, the surface neutron
contribution remains in the CD mode. As a result, the neutron-
skin oscillation mode in 0+

1 → 1−
2 contains almost no TD

component but some CD component.
Based on the present analysis of the transition current

densities in the intrinsic frame, we can obtain the following
understanding of transition current contributions to the TD,
CD, and E1 strengths. The 0+

1 → 1−
1 transition is characterized

by the toroidal neutron current. In particular, the surface
neutron current in the longitudinal part gives significant
contribution to the K = 1 TD mode [Fig. 13(a)]. On the other
hand, the toroidal neutron current gives small contribution to
the K = 1 CD mode because of the cancellation in the side
region [Fig. 13(b)]. The 0+

1 → 1−
2 transition is characterized

by the surface neutron and inner IS currents along the Z
axis, which are induced by opposite oscillation between
valence neutrons and the 2α core. In the K = 0 TD mode,
the contribution of the inner IS current from the core part
cancels that of the surface neutron current in the side region
[Fig. 13(c)]. In the K = 0 CD mode, the longitudinal part of
the IS current from the recoiled core gives some contribution
[Fig. 13(d)]. In the E1 mode, the surface neutron current
along the Z axis simply contributes to the E1 strength without
cancellation by the core IS current [Fig. 13(e)].

It should be commented that the BB cluster model wave
functions reach to shell-model wave functions in a small limit
of the intercluster distance. The shell model limit of C+

T is
the (000)4(001)4(100)2 configuration. Here, (nxnynz) is the
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(a) TD(K=1)

(d) CD(K=0)

(e) E1(K=0)

(b) CD(K=1)

(c) TD(K=0)

FIG. 13. Schematic figures for transition current densities and
their contributions to TD, CD, and E1 strengths. (a),(b) Contributions
of the toroidal current to K = 1 component of the TD and CD modes
in 0+

1 → 1−
1 . (c),(d),(e) Contributions of the translational current to

K = 0 component of the TD, CD, and E1 modes in 0+
1 → 1−

2 .

notation for oscillator quanta of single-particle orbits in a
h.o. potential. The shell model limit of C−

R is dominated by
the (000)4(001)4(100)(002) configuration, which corresponds
to the 1p-1h excitation, (100)−1(002)1 on the vacuum state
(000)4(001)4(100)2. Strictly speaking, it also contains addi-
tional 1p-1h configurations because of the recoil effect along
the Z axis, but they do not contribute to the |K| = 1 dipole
excitations. The shell model limit of C−

T is expressed by a linear
combination of (100)−1(101)1 and (001)−1(002)1 excitations
on the vacuum state. The former is neutron excitation, and
the latter is the core recoil effect and gives IS contributions
(coherent proton and neutron contributions).

V. SUMMARY AND OUTLOOK

We studied dipole excitations in 10Be based on the sAMD +
αGCM calculation. The present model takes into account 1p-
1h excitations and large amplitude cluster modes, and is useful
to describe low-energy dipole strengths for cluster modes and
high-energy ones for GDRs. It should be stressed that the
parity and angular-momentum projections are performed and
the center-of-mass motion can be exactly separated in the
present model.

By calculations of the TD, CD, E1 strengths, the toroidal
and compressive properties of the ISD excitations as well as
the E1 property have been investigated. It was found that the

TD and CD modes dominate the low-energy and high-energy
parts of the ISD strengths, respectively. It indicates that the
toroidal operator is a good mode to probe the low-energy
dipole resonances separately from the ISGDR.

In the low-energy region E � 20 MeV, we obtained two
1− states, the TD dominant 1−

1 state at E = 8 MeV and the
E1 dominant 1−

2 state at E = 16 MeV. The 0+
1 ,1−

1 , and 1−
2

states have cluster structures with a 2α core and two neutrons
regarded as the 6He + α clustering. The 0+

1 → 1−
1 excitation

is interpreted as rotation mode of the deformed 6He cluster,
whereas the 0+

1 → 1−
2 excitation arises from the intercluster

(6He-α) motion. The transition current density for 0+
1 → 1−

1
shows the toroidal neutron flow caused by the 6He-cluster
rotation. In contrast, that for 0+

1 → 1−
2 shows no toroidal

feature but the surface neutron flow with the inner IS flow
caused by the surface neutron oscillation against the 2α core,
i.e., the neutron-skin oscillation mode. These properties of
transition current densities describe the TD dominance in the
1−

1 and the E1 dominance in the 1−
2 .

We obtained the weak E1 for the 1−
1 and predicted the strong

E1 for the 1−
2 . The 1−

1 state corresponds to the band-head state
of the K = 1 band and is assigned to the experimental 1−

1 state
at 5.960 MeV. Our result of the weak E1 transition for the 1−

1
is qualitatively supported by the experimental data, but it one-
order overestimates the experimental B(E1). Such the weak
E1 strength is determined by tiny components of the 1−

1 state.
More detailed description of the 1−

1 state might be necessarily
to describe the experimental B(E1) value. For the 1−

2 , there is
no experimental information. Future experiments to observe
the remarkable E1 strength for the predicted 1−

2 are requested.
In 10Be, valence neutron motion around the axial symmetric

core is essential for the low-energy dipole modes. The
coexistence of two different modes, the toroidal mode and the
neutron-skin oscillation one, in the low-energy region might be
related to decoupling of the K = 1 and K = 0 dipole modes in
the deformed system. An interesting question is whether such
phenomena generally appear in deformed neutron-rich nuclei.
It is also interesting to search for TD dominant states caused by
rotation of a deformed cluster in other nuclei. Experimentally,
there is no established method to directly measure TD strengths
in unstable nuclei. Analysis of hadronic scatterings based on
a reliable reaction theory might be a promising tool.
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APPENDIX A: DENSITY AND CURRENT DENSITY
OPERATORS

The density and current density operators for nuclear matter
are defined as

ρ(r) =
∑

k

δ(r − rk), (A1)

j (r) = − ih̄

2m

∑
k

∇kδ(r − rk) + δ(r − rk)∇k. (A2)
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The current considered here is the convective part of the
nuclear current but does not contain the magnetization (spin)
part. The transition current density for |0〉 → |f 〉 is defined as

δ j (r) = 〈f | j (r)|0〉. (A3)

The IV, proton, and neutron components are

ρIV(r) = N

A
ρp(r) − Z

A
ρn(r), (A4)

ρp(n)(r) =
∑

k∈p(n)

δ(r − rk), (A5)

j IV(r) = N

A
jp(r) − Z

A
jn(r), (A6)

jp(n) = − ih̄

2m

∑
k∈p(n)

× [∇kδ(r − rk) + δ(r − rk)∇k], (A7)

δ j IV(r) = N

A
δ jp(r) − Z

A
δ jn(r), (A8)

δ jp(n)(r) = 〈f | jp(n)(r)|0〉. (A9)

APPENDIX B: TRANSITIONS IN INTRINSIC FRAME

We define the K = 0 and K = 1 components of the TD and
CD operators in the intrinsic (body-fixed) frame, XYZ, as

MTD,CD(K = 0) ≡ MTD,CD(μ = 0), (B1)

MTD,CD(|K| = 1) ≡ − 1√
2

[MTD,CD(μ = +1)

−MTD,CD(μ = −1)]. (B2)

In the strong-coupling picture, the K = 0 and |K| = 1 transi-
tions for |0int〉 → |fint〉 are expressed as

〈fint|MTD,CD(K = 0,|K| = 1)|0int〉

=
∫

d r intMK=0,|K|=1
TD,CD (r int) (B3)

with

MK=0
TD (r int) = −i

20c

√
3

π
[2(X2 + Y 2)δjZ + Z2δjZ

−ZXδjX − ZYδjY ], (B4)

MK=0
CD (r int) = −i

20c

√
3

π
[−(X2 + Y 2)δjZ − 3Z2δjZ

− 2ZXδjX − 2ZYδjY ], (B5)

M|K|=1
TD (r int) = −i

20c

√
3

π
[2(Y 2 + Z2)δjX + X2δjX

−XYδjY − XZδjZ], (B6)

M|K|=1
CD (r int) = −i

20c

√
3

π
[−(Y 2 + Z2)δjX − 3X2δjX

− 2XYδjY − 2XZδjZ], (B7)

where r int = (X,Y,Z). We callMTD(CD) the TD(CD) transition
density. For jY = 0 case, the TD and CD transition densities

at Y = 0 are written as

MK=0
TD (X,0,Z) = −i

20c

√
3

π

× (2X2δjZ + Z2δjZ − ZXδjX),

(B8)

MK=0
CD (X,0,Z) = −i

20c

√
3

π

× (−X2δjZ − 3Z2δjZ − 2ZXδjX),

(B9)

M|K|=1
TD (X,0,Z) = −i

20c

√
3

π

× (2Z2δjX + X2δjX − XZδjZ),

(B10)

M|K|=1
CD (X,0,Z) = −i

20c

√
3

π

× (−Z2δjX − 3X2δjX − 2XZδjZ).

(B11)

APPENDIX C: VECTOR SPHERICAL HARMONICS

For given vectors a and b,

â · YλLμ(b̂) =
√

4π

3
[YL(b̂) ⊗ Y1(â)]λμ, (C1)

[YL(b̂) ⊗ Yl(â)]λμ ≡
∑
M,m

〈LMlm|λμ〉

×YLM (b̂)Ylm(â). (C2)

Explicit expressions of a · [rλ+1YλLμ(r̂)] for λ = 1 and μ = 0
are

a · [r2Y 100(r̂)] =
√

4π

3
ar2Y00(r̂)Y10(â)

= 1√
4π

(x2 + y2 + z2)az, (C3)

a · [r2Y 120(r̂)] =
√

4π

3
ar2

[√
3

10
Y21(r̂)Y1−1(â)

−
√

2

5
Y20(r̂)Y10(â)

+
√

3

10
Y2−1(r̂)Y11(â)

]

= 1√
8π

(x2az + y2az − 2z2az

− 3yzay − 3zxax). (C4)

We define the x component

Y 1Lx(r̂) ≡ − 1
2 [Y 1L1(r̂) − Y 1L−1(r̂)] (C5)

064319-12



TOROIDAL, COMPRESSIVE, AND E1 PROPERTIES OF . . . PHYSICAL REVIEW C 95, 064319 (2017)

and get similar expressions as

a · [r2Y 10x(r̂)] = 1√
4π

(x2 + y2 + z2)ax, (C6)

a · [r2Y 12x(r̂)] = 1√
8π

(y2ax + z2ax − 2x2ax

− 3zxaz − 3xyay). (C7)

Here, we follow the transformation of the basis set (x,y,z) →
(1,0, − 1),

e1 ≡ − 1
2 (ex + iey), e0 ≡ ez, e−1 ≡ 1

2 (ex − iey),

(C8)

leading to the relation

a1 = − 1
2 (ax + iay),

a0 = az, (C9)

a−1 = 1
2 (ax − iay),

and its inverse relation

ax = − 1

2
(a1 − a−1), ay = i

2
(a1 + a−1), az = a0.

(C10)

APPENDIX D: MATRIX ELEMENTS OF DIPOLE
OPERATORS FOR AMD WAVE FUNCTION

For the single-particle operator of the the current density

j sp(r) ≡ − ih̄

2m
∇kδ(r − rk) + δ(r − rk)∇k, (D1)

the matrix element for single-particle wave functions of the
AMD wave function is given as

〈ϕi | j sp(r)|ϕj 〉 = h̄

m
K ij φ

∗
X i

(r)φXj
(r)

×〈χi |χj 〉〈τi |τj 〉, (D2)

K ij ≡ −i
√

ν(X∗
i − Xj ), (D3)

and the matrix element of j sp(r) · [r2Y 1Lμ(r̂)] is given
as

〈ϕi | j sp(r) · [r2Y 1Lμ(r̂)]|ϕj 〉

=
√

4π

3
R2

ijKij [YL(R̂ij ) ⊗ Y1(K̂ ij )]1μ

×φ∗
X i

(r)φXj
(r)〈χi |χj 〉〈τi |τj 〉, (D4)

Rij ≡ 1

2
√

ν
(X∗

i + Xj ). (D5)
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