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Three-body decay of linear-chain states in 14C
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The decay properties of the linear-chain states in 14C are investigated by using antisymmetrized molecular
dynamics. The calculation predicts two rotational bands with linear-chain configurations having the π -bond
and σ -bond valence neutrons. For the π -bond linear-chain, the calculated excitation energies and the widths of
α-decay to the ground state of 10Be reasonably agree with the experimental candidates observed by the α + 10Be
resonant scattering. On the other hand, the σ -bond linear-chain is the candidate of the higher-lying resonant states
reported by the breakup reaction. As the evidence of the σ -bond linear chain, we discuss its decay pattern. It is
found that the σ -bond linear chain not only decays to the excited band of 10Be but also decays to the three-body
channel of 6He + α + α, and the branching ratio of these decays are comparable. Hence, we suggest that this
characteristic decay pattern is a strong signature of the linear-chain formation and a key observable to distinguish
two different linear chains.
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I. INTRODUCTION

Since the linear-chain configuration of 3α clusters (linearly
aligned 3α clusters) was suggested in 1950s [1], many studies
have been devoted to search it in the excited states of 12C
[2–10]. Nevertheless, no positive evidence has been obtained,
and it is considered that the linear chain is unstable against the
bending motion [5,8].

Instead of 12C, neutron-rich C isotopes have attracted much
interest in these decades as new candidates of the linear chain,
because it is expected that the valence neutrons will play a glue-
like role and stabilize the linear chain against the bending mo-
tion [11]. Theoretical studies predict the rotational bands with
the linear-chain configurations in C isotopes [12–22]. It was
pointed out that the motion of the valence neutron can be qual-
itatively interpreted in terms of the molecular orbits analogous
to the Be isotopes [23–29], which are called π and σ orbits.
Concurrently, rather promising candidates of the linear chain
were reported in 14C and 16C by several experiments [30–38].

In our previous study [22], based on an antisymmetrized
molecular dynamics (AMD) calculation, we pointed out
that two positive-parity rotational bands in 14C have the
linear-chain configurations. The first band, which we call
a π -bond linear chain, has two valence neutrons in a π
orbit and is built on the 0+ state at 14.6 MeV which is
just above the α + 10Be threshold but below the 2α + 6He
threshold. It was found that the energies and widths of the
resonances observed by the α + 10Be elastic scattering [36,37]
qualitatively agree with the theoretical calculations [15,18]
including ours. Therefore, they are regarded as the π -bond
linear-chain candidates, although the experimental spin-parity
assignment was somewhat ambiguous. The other band, named
the σ -bond linear chain, has valence neutrons in a σ orbit
and is built on the 0+ state above the α + 10Be and 2α + 6He
thresholds. It has a more elongated linear-chain configuration
and larger moment of inertia than the former band, but the
experimental counterpart was not known at that time.

Quite recently, very interesting data were reported by two
groups. Yamaguchi et al. [39] reported the result of the

α + 10Be elastic scattering and updated the information about
the candidates of the π -bond linear chain. Although the
spin-parity assignments for several states are not consistent
with those found in previous experiments [35–37,39], they
first observed a candidate of the bandhead of the linear
chain (Jπ = 0+), which should be compared with theoretical
calculations. The other experiment was reported by Tian
et al. [40] and Li et al. [41] who observed the resonances
populated by the 9Be(9Be,α + 10Be)α reaction. In addition
to the same resonances reported by Yamaguchi et al., they
reported the decay properties of several resonances located
above the α + 10Be and 2α + 6He thresholds. Based on the
observed energies and decay pattern, these new resonances
were suggested as the candidates of the σ -bond linear chain.

These new data motivated us to perform an additional anal-
ysis and to summarize the calculated and observed properties
of the linear-chain bands in 14C. We investigated several decay
modes of the linear-chain bands whose wave functions were
obtained in our previous work [22]. By comparison with the
new data, it is found that the agreement between the calculated
and observed π -bond linear-chain band is plausible. It is also
shown that the observed unique decay pattern of the resonances
reported by Tian et al. is similar to that of the calculated
σ -bond linear-chain band, which supports the existence of
two different linear-chain bands with π and σ bonding. In
addition to these analysis, it was found that the σ -bond linear
chain decays to the 6He + 8Be channel as well as the α + 10Be
channel, and their branching ratios are comparable. Hence,
we suggest that the sequential three-body decay of 14C∗ →
6He + 8Be → 6He + α + α constitutes important evidence of
the σ -bond linear chain.

The paper is organized as follows: The AMD framework
and the method used to estimate the reduced widths amplitude
for the α + 10Be and 6He + 8Be decays are explained in the
next section. In Sec. III, the excitation energies and decay
widths of the linear-chain states are shown and compared with
the observed data to suggest the assignment of the linear-chain
bands. In the last section, we summarize this work.
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II. THEORETICAL FRAMEWORK

In this study, we analyze the wave functions of linear-chain
states obtained in our previous work [22]. For the sake of
self-containedness, in Sec. II A, we briefly explain how those
wave functions were calculated. In Sec. II B and II C, we
explain the method to evaluate the decay modes of linear-chain
states used in the present study.

A. Variational calculation and generator coordinate method

We use the microscopic A-body Hamiltonian,

Ĥ =
A∑

i=1

t̂i − t̂c.m. +
A∑

i<j

v̂N
ij +

Z∑
i<j

v̂C
ij , (1)

where the Gogny D1S interaction [42] is used as an effective
nucleon-nucleon interaction v̂N . The Coulomb interaction v̂C

is approximated by a sum of seven Gaussians. The kinetic
energy of the center-of-mass t̂c.m. is exactly removed.

The variational wave function �� is a parity-projected
intrinsic wave function �int, and �int is represented by a Slater
determinant of single-particle wave packets,

�� = P̂ ��int, (2)

�int = A{ϕ1,ϕ2, . . . ,ϕA}, (3)

where P̂ � denotes parity projector. In this study, we focus
on the positive-parity states (π = +). ϕi is the single-particle
wave packet which is a direct product of the deformed
Gaussian spatial part [43], spin (χi), and isospin (ξi) parts,

ϕi(r) = φi(r) ⊗ χi ⊗ ξi, (4)

φi(r) = exp

{
−

∑
σ=x,y,z

νσ

(
rσ − Ziσ√

νσ

)2
}

, (5)

χi = aiχ↑ + biχ↓, ξi = p or n.

The centroids of the Gaussian wave packets, Zi , the direction
of nucleon spin, ai, bi , and the width parameter of the deformed
Gaussian, νσ , are the variational parameters. The variational
parameters are determined so that E�, which is a sum of the
energy and constraint potential is minimized:

E� = 〈��|Ĥ |��〉
〈��|��〉 + vβ(〈β〉 − β)2 + vγ (〈γ 〉 − γ )2, (6)

where 〈β〉 and 〈γ 〉 are the quadrupole deformation parameters
of the intrinsic wave function defined in Ref. [44], and
vβ, vγ are chosen to be a sufficiently large value. E� is
minimized by the frictional cooling method, and we obtain
the optimized wave function ��(β,γ ) = P̂ ��int(β,γ ) which
has the minimum energy for each set of β and γ .

After the variational calculation, the eigenstate of the total
angular momentum J is projected out,

�J�
MK (β,γ ) = P̂ J

MK��(β,γ ). (7)

Here, P̂ J
MK is the angular-momentum projector. Next, we

perform the generator coordinate method (GCM) calculation

by employing the quadrupole deformation parameters β and γ
as the generator coordinate. The wave function of GCM reads

�J�
Mn =

∑
i

∑
K

cJ�
Kin�

J�
MK (βi,γi), (8)

where the coefficients cJ�
Kin and eigenenergies EJ�

n are ob-
tained by solving the Hill–Wheeler equation [45].

B. Reduced width amplitude and decay width

By using the GCM wave function, we estimate the reduced
width amplitudes (RWA) yljπ

n
(r) for the α + 10Be and 6He +

8Be decays, which are defined as

yljπ
n

(r) =
√

A!

AHe!ABe!

〈
φHe

[
φBe

(
jπ
n

)
Yl0(r̂)

]
J�M

∣∣�J�
Mn

〉
, (9)

where φHe denotes the ground-state wave function for 4He
or 6He, and φBe(jπ

n ) denotes the wave functions for daughter
nucleus 10Be or 8Be with spin-parity jπ

n . Yl0(r̂) is the orbital
angular momentum of the intercluster motion, and it is coupled
with the angular momentum of Be(jπ

n ) to yield the total spin-
parity J�. AHe and ABe are the mass numbers of He and Be,
respectively. The reduced width γljπ

n
is given by the square of

the RWA,

γ 2
ljπ

n
(a) = h̄2

2μa
[ayljπ

n
(a)]2, (10)

and the partial decay width is a product of the reduced width
and the penetration factor Pl(a),

�ljπ
n

= 2Pl(a)γ 2
ljπ

n
(a), Pl(a) = ka

F 2
l (ka) + G2

l (ka)
, (11)

where a denote the channel radius, and Pl is given by the
Coulomb regular and irregular wave functions Fl and Gl . The
wave number k is determined by the decay Q value and the
reduced mass μ as k = √

2μEQ.
To reduce the computational cost, we employ an approx-

imate method given in Ref. [46] to calculate Eq. (9). In
this method the antisymmetrization effect is neglected by
choosing sufficiently large intercluster distance a, and RWA is
approximated by the overlap between the GCM wave function
and the Brink–Bloch wave function �

Jπjl
BB (a) in which He

and Be clusters are placed with the intercluster distance a as
illustrated in Fig. 1,

|ayljπ ′ (a)|2 �
√

γ

2π

∣∣〈�Jπjl
BB (a)

∣∣�Jπ
Mn

∣∣2
,

γ = AHeABe

A
νBB, (12)

Be a He

J
FIG. 1. Schematic figure showing the Brink–Bloch wave function.
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FIG. 2. The density distribution of (a) 8Be, the positive-parity
states of 10Be with valence neutrons in a (b) π orbit and (c) σ orbit,
and (d), (e) negative-parity states of 10Be. The contour lines show
the proton density distributions. The color plots in panels (b) and (c)
show the single-particle orbits occupied by the most weakly bound
neutron. In the negative-parity state, the color plots of panel (d) show
the single-particle orbits occupied by the most weakly bound neutron,
and those of panel (e) show the other valence neutron.

where νBB denotes the width parameter of the Gaussian wave
packet of Brink–Bloch wave function.

In this study, the Brink–Bloch wave function is constructed
as follows: First, the intrinsic wave functions for 10Be and 8Be
denoted by ψBe are generated by the AMD energy variation.
The intrinsic wave function of Be is approximated by a
single AMD Slater determinant with spherical Gaussian wave
packets with the width parameter νBB = 0.16 fm−2. In the case
of 8Be, the wave functions of the 0+

1 and 2+
1 states are calculated

by the bound-state approximation. The density distribution of
obtained intrinsic wave function of 8Be is shown in Fig. 2(a) in
which the distance between two α clusters is approximately 3.4
fm. For the positive-parity states of 10Be, we obtained the two
different intrinsic wave functions shown in Figs. 2(b) and 2(c)
in which two valence neutrons occupy so-called π and σ
orbits, respectively. We regard that the former correspond to the
ground band (the 0+

1 , 2+
1 , and 4+

1 states), while the latter is the
excited band (the 0+

2 , 2+
3 , and 4+

2 states). For the negative-parity
states of 10Be, we obtain an intrinsic wave function shown in
Figs. 2(d) and 2(e) in which one of two valence neutrons
occupies a π orbit and the other occupies a σ orbit. Then, they
are projected to the eigenstate of the angular momentum jπ as
φBe(jπ

n ) = P̂
jπ
mk ψBe, where we approximate that the Be wave

functions are the eigenstates of the angular momentum ĵz in
the intrinsic frame. The eigenvalue k is assumed to be k = 0
in the positive-parity states and k = −1 in the negative-parity
states. The construction of the wave function of 4He and 6He is
explained in the next section. The Brink–Bloch wave function
is constructed by placing these He and Be wave functions with
the intercluster distance a,

�
jm
BB(a) = A

{
φHe

(
− ABe

A
a

)
P̂

j
mkψBe

(
AHe

A
a

)}
, (13)

and projected to the eigenstate of the total spin-parity J� as
P̂ J�

Mm�
jm
BB(a). Then, we construct the wave function, in which

the angular momentum l of the intercluster motion and the
angular momentum j of Be are coupled to the total spin-parity
J�, by summing up over all possible values of m,

�
Jπjl
BB (a) = n

2l + 1

2J + 1

∑
m

CJm
l0jmP̂ Jπ

Mm�
jm
BB(a), (14)

where CJm
l0jm and n denotes the Clebsch–Gordan coefficient

and the normalization factor.
Generally, the partial decay width should be independent

on the choice of the channel radius. However, in the practical
calculation, the channel radius must be properly chosen to
stabilize the results because of the following two problems:
First, the channel radius should not be too large a value,
because we adopt the bound-state approximation in the GCM
calculation and hence the wave function is not correct at
large intercluster distance. Second, the channel radius a
should not be too small, because the antisymmetrization
effect cannot be neglected and the approximation is not valid.
Therefore, we adopted two different values for the channel
radius. The first choice is a = 5.2 fm which is common
to the value used in the R-matrix analysis of the π -bond
linear-chain candidates observed in Ref. [36] and close to
that in Ref. [39]. Unfortunately, this choice of channel radius
was found inappropriate for the analysis of the σ -bond linear
chain. Because the σ -bond linear chain is dominated by the
10Be(0+

2 ,2+
3 ) + α channels and 10Be(0+

2 ,2+
3 ) have larger radii

than the ground state, the larger channel radius should be used
to avoid the antisymmetrization effect. Hence, we used a = 6.0
fm for the analysis of the σ -bond linear chain.

C. 6He reduced width amplitude

Here, we explain how the wave functions of 4He and
6He clusters are constructed. The wave function of 4He is
approximated by a (0s1/2)4 wave function of a harmonic
oscillator (H.O.) which is represented by the Gaussian wave
packet with the width of νBB = 0.16 fm−2,

φ0s(r) = (2ν/π )3/4e−νr2 ⊗ χ. (15)

The ground state of 6He is approximated by a (0s1/2)4(0p3/2)2

configuration as

φJ=0
He = A{(0s1/2)4[0p3/2 ⊗ 0p3/2]J=0}, (16)

where 0p3/2 is also the eigenfunction of the H.O. In the
practical calculation, we do not use H.O. wave functions
directly, but the 0p3/2 wave function is represented by
the sum of the infinitesimally shifted Gaussian wave pack-
ets φ0s(r; ε) = (2ν/π )3/4exp−ν(r − ε2) ⊗ χ . This greatly re-
duces the computational cost because it is possible to use
ordinary computational code for AMD to calculate Eq. (12).
The relationship between the shifted Gaussian wave packets
and the H.O. wave function is given as follows:to first order in
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the shift ε,

φ0s(r; ε) − φ0s(r; 0) =
(

2ν

π

)3/4

{e−ν(r−ε)2 − e−νr2}

× ⊗(aχ↑ + bχ↓)

�
(

2ν

π

)3/4

2νr · εe−νr2 ⊗ (aχ↑ + bχ↓)

= −
(

2ν

π

)3/4

2νre−νr2

[
aY1−1(ε)φp3/2 3/2

+ bY11(ε)φp3/2 −3/2

+
√

1

3
{bY1−1(ε)−

√
2aY10(ε)}φp3/2 1/2

+
√

1

3
{aY11(ε)−

√
2bY10(ε)}φp3/2 −1/2

+
√

1

3
{
√

2bY1−1(ε)+aY10(ε)}φp1/2 1/2

−
√

1

3
{
√

2aY11(ε)+bY10(ε)}

× φp1/2 −1/2

]
,

(17)

where Y1m(r) is the regular solid spherical harmonics,

Y1m(r) =
√

4π

3
rY1m(r̂), (18)

where φp3/2 m
and φp1/2 m

denote the 0p3/2 and 0p1/2 wave
functions with the magnetic quantum number m. From
Eq. (17), we see that 0p3/2 wave functions can be described by
the sum of the φ0s(r; ε) with proper choice of a, b, and ε. Thus,
Eq. (16) is represented by the sum of the Slater determinant of
the shifted Gaussian packets. In the practical calculation the
magnitude of ε is chosen as |ε| = 0.02.

III. RESULTS AND DISCUSSION

In Sec. III A, we summarize the properties of the π -bond
and σ -bond linear chains studied in our previous work [22]. In
Secs. III B and III C, by referring the latest experimental data
and the theoretical analysis of the decay modes, we discuss
the assignment of the linear-chain bands.

A. Calculated linear-chain bands

Figure 3 summarizes the calculated rotational bands with
the linear-chain configurations presented in Ref. [22] and
experimental data [36,37,39,40]. The π -bond linear-chain
band shown by blue squares is built on the 0+ state at 14.6 MeV
which lies just above the α + 10Be(0+

1 ) threshold but below the
α + 10Be(0+

2 ) and 6He + 8Be(0+) thresholds. The other band,
the σ -bond linear chain, is built on the 0+ state at 22.2 MeV
which is above all of those thresholds.

Theoretically, the assignment of these two bands is rather
unique. The reasons for the assignment and the properties
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FIG. 3. The positive-parity energy levels up to J π = 8+. Filled
circles show the resonances with the definite spin-parity assignments
observed in the α + 10Be resonant scattering [36,37,39]. Blue line
shows the resonance at 22.5 MeV without spin-parity assignment
observed in the breakup reaction [41]. Filled boxes show the
calculated linear-chain bands, while lines show the other states. Only
even angular momenta are shown.

of the linear-chain bands are as follows: First, these bands
are dominated by the intrinsic states having the linear-chain
configurations shown in Fig. 4. The π -bond linear chain
has large overlap with the intrinsic wave function shown in
Fig. 4(a), which amounts to 87% for the 0+ state at 14.6 MeV.
The proton density distribution shown by solid lines clearly
indicates the formation of the linearly aligned three-alpha
clusters surrounded by the two valence neutrons shown by
the color plot. As already discussed in Refs. [19,22], in
terms of the molecular orbit picture, this valence neutron
orbit is interpreted as the π orbit which is composed of
the perpendicular alignment of the p wave around the alpha
cluster, as illustrated in Fig. 5(a). The σ -bond linear chain is
dominated by the intrinsic wave function shown in Fig. 4(b),
whose overlap with the 0+ state at 22.2 MeV amounts to 99%.
Again, we recognize the formation of the 3α linear chain,
but the valence neutron orbit is different. It is interpreted as
the σ orbit shown in Fig. 5(b) which is composed of the
parallel alignment of the p orbits. Since all other states in
this energy region denoted by lines in Fig. 3 have much less
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FIG. 4. The density distribution of the linear-chain configurations
of 14C, with valence neutrons in a (a) π orbit and (b) σ orbit. The
contour lines show the proton density distributions. The color plots
show the single-particle orbits occupied by the most weakly bound
neutron.
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10Be(σ-bond)

{

{
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FIG. 5. Schematic figure showing the π and σ orbits around the
linear chain. The combination of the p orbits perpendicular to the
symmetry axis generates π orbits, while the combination of parallel
orbits generates σ orbit.

overlap with the configurations, the linear-chain bands can be
clearly assigned.

Second, the B(E2) transition strengths between the member
states of these bands are rather strong compared with other in-
band and interband transitions as listed in Table III in Ref. [22],
which is consistent with the dominance of the strongly
deformed intrinsic shapes with linear-chain configuration.
Because the σ -bond linear chain is more strongly deformed
than the π -bond linear chain, its in-band transition strengths
are stronger than those of the π -bond linear chain. Deference
of the deformation is also reflected to the moment of inertia;
h̄/2� = 179 and 98 keV for π -bond and σ -bond linear-chain
bands, respectively.

Finally, among the excited states located around z α +
10Be(0+

1 ), α + 10Be(0+
2 ), and 6He + 8Be(0+) thresholds, the

linear-chain bands have largest α and 6He reduced widths.
Therefore, the alpha decaying resonances in the vicinity of
these thresholds are, if observed, regarded as the candidates of
the linear-chain bands.

B. Resonances observed in α + 10Be scattering and assignment
of π -bond linear-chain band

Now, we discuss the assignment of the linear-chain bands
based on the latest experimental data. Freer et al. [36],
Fritsch et al. [37], and more recently Yamaguchi et al. [39]
independently reported the resonances observed in α + 10Be
scattering, which are shown by circles in Fig. 3 and summa-
rized in Table I. Freer et al. reported the 4+ and 6+ resonances
at 18.22 and 20.80 MeV, respectively, while Fritsch et al.
reported the 2+ and 4+ resonances at 15.0 and 19.0 MeV. A
candidate of the 2+ resonance at 17.95 MeV was also reported
by Freer et al. but is not shown in Fig. 3 because the spin-parity
assignment is not so firm. Yamaguchi et al. reported the 0+,
2+, and 4+ resonances at 15.07, 16.22, and 18.87 MeV. The
4+ energy is very close to that observed by Fritsch et al. and
the 0+ state may correspond to the 15.0 MeV state of Fritsch
et al., which was assigned as 2+. We also note that the same
resonances were also observed in the breakup [47] and transfer
reactions [40,41], although the spin-parity assignment was not
given.

Although they suggest different spin-parity assignments,
we consider that they observed essentially the same resonances
which are assigned to the π -bond linear-chain band from the
following reasons. First, it is clear that these resonance energies
very nicely agree with those of the calculated π -bond linear
chain, regardless of the spin-parity assignments. Furthermore,
the observed data show the large moment of inertia of the
band; h̄/2� = 116 [36] and 190 keV [39]. In any cases, the
very large moment of inertia are consistent with the large
deformation of the linear-chain band which reaches to 3 : 1
ratio of the deformation axes. In particular, the moment of
inertia reported by Yamaguchi et al. (h̄/2� = 190 keV) is
very close to the present result. However, it is reminded that
there is an experimental uncertainty in the assignment of the
15.0 MeV state (Jπ = 0+ or 2+). Since the experimental spin-
parity assignment of the broad resonances is not easy, it should
be carefully discussed because it strongly affects the discussion
of the moment of inertia.

Second, as listed in Table I, the observed resonances
have large alpha decay widths to the α + 10Be(0+

1 ) channel
comparable with those of the calculated π -bond linear chain.
Unfortunately, experimental data are not quantitatively con-
sistent with each other. In particular, the alpha-decay widths
reported by Yamaguhi et al. [39] are getting smaller with the
increase of J much faster than the calculated ones, while those
reported in Refs. [36,37] are getting larger. Nevertheless, one

TABLE I. Excitation energies (MeV) and α-decay widths (keV) up to J π = 8+ of the linear-chain states and the experiments. �α shows
the decay to the ground state (0+

1 ) of 10Be. Numbers in parentheses are tentative.

π -bond linear chain σ -bond linear chain Expt. [36] Expt. [37] Expt. [39]

J π Ex �α(5.2 fm) �α(6.0 fm) Ex �α(6.0 fm) Ex �α Ex �α Ex �α

0+ 14.64 250 179 22.16 0.2 15.07 760
2+ 15.73 214 188 22.93 0.4 (17.95) (760) 15.0 290 16.22 190
4+ 17.98 149 147 24.30 0.3 18.22 200 19.0 340 18.87 45
6+ 21.80 123 151 26.45 0.2 20.80 300
8+ 27.25 77 120 29.39 0.2
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TABLE II. Excitation energies (MeV) and α-decay widths (keV)
to the 2+

1 state of 10Be.

π -bond linear chain σ -bond linear chain

J π Ex �α(5.2fm) �α(6.0fm) Ex �α(6.0fm)

0+ 14.64 22.16 0.6
2+ 15.73 22.93 0.2
4+ 17.98 118 111 24.30 1.8
6+ 21.80 256 271 26.45 0.4
8+ 27.25 397 421 29.39 0.8

would conclude that most of them are a few hundred keV,
which is the same order of magnitude as the calculated π -bond
linear chain. This is an evidence of the linear-chain formation,
because theories predict no other states than the π -bond
linear-chain states which have large alpha decay widths in this
energy region. It must be noted that the σ -bond linear-chain
band has rather small decay widths to the α + 10Be(0+

1 )
channel, which distinguishes the σ -bond linear chain from
the π -bond linear chain. The reason for this decay suppression
is explained in the next section.

Finally, theories predicted the decay of the π -bond linear
chain to the α + 10Be(2+

1 ) channel despite of the smaller decay
Q value (Table II). This is because of the strong admixture
of the α + 10Be(0+

1 ) and α + 10Be(2+
1 ) configurations in the

π -bond linear chain, which originates in the strong coupling
nature of the linearly aligned alpha clusters. Experimentally,
the width of the α + 10Be(2+

1 ) decay has not been measured,
but Fritsch et al. reported the decay of the 4+ resonance
to the α + 10Be(2+

1 ) channel. Thus, the excitation energies,
moment of inertia, and the decay widths are consistent between
theory and the α + 10Be scattering experiment and, thus, the
formation of π -bond linear chain in 14C looks rather plausible.
However, it must be emphasized that further experimental
studies are in need to resolve the inconsistency between the
data and to firmly establish the linear-chain formation. In
particular, the following points are essential and indispensable:
(1) the assignment of the 15.0 MeV state, Jπ = 0+ or 2+; (2)
quantitative agreement of the resonance widths between the
experimental data and also with the theoretical results; (3)
the confirmation of the decays to the inelastic channels and
quantitative evaluation of the partial decay widths.

C. Higher-lying resonances observed in breakup reaction and
the assignment of σ -bond linear-chain band

In addition to the candidates of the π -bond linear chain,
several alpha-decaying resonances are reported above the
α + 10Be(0+

2 ) and 6He + 8Be (0+
1 ) thresholds [31,35,40,41].

In particular, quite recently, Li et al. [41] reported the decay
property of a resonance located at 22.5 MeV, which provides
new insight into the structure of the resonance. Since the
spin-parity of the 22.5 MeV resonance was not assigned, it
is shown by blue line in Fig. 3. We see that its energy is close
to the calculated 0+, 2+, 4+, and 6+ states of the σ -bond linear
chain, although we cannot exclude the assignment to the 6+ or
8+ states of the π -bond linear chain.

To identify the structure of these resonances, we focus
on the decay patterns of the π - and σ -bond linear chains.
The reduced widths to various decay channels summarized in
Fig. 6 suggests unique decay patterns of the linear chains. From
Figs. 6(a) to 6(d), we see that all of the π -bond linear-chain
states decay to the ground band of 10Be (0+

1 and 2+
1 ), but

not to the excited band (0+
2 and 2+

3 ). On the other hand,
the σ -bond linear chain has quite the opposite pattern; it
decays to the excited band, but not to the ground band. This
clearly distinguishes two linear chains, and the reason of the
difference is qualitatively understood from the intrinsic density
distributions of the 10Be and linear chains shown in Figs. 2
and 4. Both the ground band of 10Be and the π -bond linear
chain has π -bonding neutrons and, hence, the π -bond linear
chain can be described by the linear alignment of the 10Be (0+

1
and 2+

1 ) and alpha cluster as illustrated in Fig. 5(a). Since this
configuration is orthogonal to the α + 10Be (0+

1 and 2+
1 ) the

decay suppression to the α + 10Be (0+
1 and 2+

1 ) channels can
be naturally understood. In the same way, the σ -bond linear
chain can be described by the linear alignment of the 10Be (0+

2
and 2+

3 )+α as shown in Fig. 5(b) which explains the decay
pattern of the σ -bond linear chain.

Experimentally, it has been reported that several resonances
above 20 MeV primary decay to the excited states of 10Be
around 6 MeV [31,35,40,41] (see Table I of Ref. [41] for the
summary of the experimental data). In particular, Li et al.
[41] reported the relative branching ratio of some resonances
and showed that the 22.5 MeV resonance has approximately
three times larger branching ratio to the 6 MeV state of
10Be than those to the 10Be(0+

1 ) and 10Be(2+
1 ). Unfortunately,

the experiment does not have sufficient energy resolution to
identify the 10Be 6 MeV state out of the 0+

2 (6.179 MeV), 2+
2

(5.958 MeV), 1−
1 (5.959 MeV), and 2−

1 (6.263 MeV) states.
But, if we assume that the 6 MeV state is the 10Be(0+

2 ), we
consider that the decay pattern of the 22.5 MeV resonance is
similar to the calculated σ -bond linear chain. To illustrate it,
we calculated the decay of the linear chains to the 10Be(0+

1 ),
10Be(2+

1 ), and excited states around 6 MeV. The decay to the
10Be(2+

2 ) was not calculated because the triaxial deformation
of 10Be(2+

2 ) [27] demands much computational cost. But, we
expect that the decay to the 10Be(2+

2 ) should be negligible
because its neutron configuration mismatches with the π - and
σ -bond linear chains. Table III summarizes the calculated
decay widths of the linear-chain states around 22.5 MeV.
We see that the calculated σ -bond linear-chain states have
much larger decay width to 10Be(0+

2 ) than to the 10Be(0+
1 )

and 10Be(2+
1 ) in order of magnitude. On the contrary, the

π -bond linear-chain states primarily decay to 10Be(0+
1 ) and

10Be(2+
1 ), which contradicts observation. Thus the 22.5 MeV

state is a good candidate of the σ -bond linear chain. Of
course, it must be emphasized that further experimental and
theoretical studies are required to establish the σ -bond linear
chain. For example, the measurement of the absolute value
of the partial decay widths is essential. Theoretically, the
admixture of the π - and σ -bond configurations in 10Be(0+

1 )
and 10Be(0+

2 ) should be properly considered, as it quan-
titatively affects the decay branching ratio of the linear
chains.
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FIG. 6. Calculated α- and 6He-decay reduced widths up to J π = 8+. Panels (a) and (b) show the decay to the ground band of 10Be (π -bonded
10Be). Panels (c) and (d) show the decay to the excited band of 10Be (σ -bonded 10Be). Panels (e) and (f) show the decay to the negative-parity
states of 10Be. Panels (g) and (h) show the decay to the ground band of 8Be. The l denotes the relative motion between Be(2+) and α particle.
The channel radius a is 6.0 fm.

Finally, we discuss the decays to 6He + 8Be and 5He + 9Be
channels. Figures 6(g) and 6(h) show that both of the π -
and σ -bond linear chains have large reduced widths in the
6He + 8Be channel, which is another interesting feature of
the linear chains. This is again schematically understood
from Fig. 5. Because the valence neutron in π and σ orbits
are covalent, the linear chains can also be described by the
linear alignment of 6He + 8Be as illustrated in Figs. 5(c)
and 5(d). Therefore, the σ -bond linear-chain and high-spin
states (J� � 6+) of the π -bond linear chain which are located
above the 6He + 8Be threshold should also decay to the

three-body final state through the sequential two body decays,
14C∗ → 6He + 8Be → 6He + α + α. As listed in Table III,
the decay widths of the σ -bond linear chain to the 6He + 8Be
channel are in the same order as those to the α + 10Be(0+

2 )
channel, and hence, the decay to 6He + α + α is more evidence
of the linear-chain formation. We also comment on the
decay to the 5He + 9Be channel (4He + n + 9Be) whose decay
threshold is located very close to that of the 6He + 8Be channel.
Theoretically, the decay-width calculation for the odd-mass
daughter nuclei demands much computational time and, thus,
it was not performed in the present study. Nevertheless, we
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TABLE III. Partial decay widths (keV) in six different channels for (a) the σ -bond linear-chain states and (b) J π = 6+,8+ states of the
π -bond linear chain. The channel radius a is 6.0 fm.

(a) σ -bond linear chain

J π Ex �(10Be(0+
1 ; π 2)) �(10Be(2+

1 ; π 2)) �(10Be(0+
2 ; σ 2)) �(10Be(1−

1 ; πσ )) �(10Be(2−
1 ; πσ )) �(6He + 8Be)

0+ 22.16 0.2 0.6 136 0.2 − 38
2+ 22.93 0.4 0.2 99 0.1 0.1 29
4+ 24.30 0.3 1.8 63 4.0 2.7 23
6+ 26.45 0.2 0.4 42 0.2 0.6 17
8+ 29.39 0.2 0.8 17 2.9 5.6 13

(b) π -bond linear chain
6+ 21.80 151 271 0.0 0.0 0.0 0.0
8+ 27.25 120 421 0.0 0.2 0.0 1

would expect that the decay of the σ -bond linear chain to the
9Be ground state should be suppressed because of the π -bond
nature of the 9Be ground state. On the contrary, the decay
to the first-excited state of 9Be should be relatively enhanced
because it has σ bonding [24]. This decay pattern will also
serve as more evidence of the σ -bond linear chain.

In conclusion, the π -bond linear-chain states decay to
10Be(π2) + α and higher spin than the 6+ states can decay
to 6He + α + α. In the case of the σ -bond linear chain, they
decay to 10Be(σ 2) + α and 6He + α + α because all member
states are above both threshold energies. This decay pattern
constitutes important evidence to show the formation of two
linear chains in 14C.

IV. SUMMARY

In this paper, we focus on the linear-chain states of 14C
based on AMD calculations to establish the existence of the
linear-chain configuration.

The linear-chain configurations generate two rotational
bands. In the strongly deformed prolate region, two different
linear-chain configurations with valence neutrons in a π
orbit and σ orbit were obtained. The π -bond linear chain
generates a rotational band around the α threshold energy.
The energies and α decay widths of the π -bond linear chain
are in reasonable agreement with the resonances observed by
the α + 10Be. Thus, the π -bond linear-chain formation in 14C
looks plausible.

On the other hand, the σ -bond linear-chain generates a
rotational band around the 6He threshold energy which is
7.5 MeV higher than the α threshold energy. Newly observed
resonance states are close to energies of both the low-spin
states of the σ -bond linear chain and the 6+ state of the π -bond
linear chain. To distinguish the π - and σ -bond linear chain,
we focus on their decay patterns. Reduced widths show that
the π -bond linear-chain states decay into the ground band
of 10Be, while the σ -bond linear-chain states decay into the
excited band of 10Be. This difference is due to the molecular
orbit of 10Be.

From 6He reduced width, in addition, it is found that the
σ -bond linear-chain states decay into not only the excited band
of 10Be but also 6He + α + α. Furthermore, the calculation
predicts that the linear chain will also decay to the 8,10Be(2+)
as well as to the ground state of 8,10Be. This characteristic
decay patterns are, if observed, a strong signature of the π -
and σ -bond linear-chain formations.
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