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Stability of the wobbling motion in an odd-mass nucleus and the analysis of 135Pr
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We apply alternative representations of Holstein-Primakoff boson expansion to the particle-rotor model as
useful probes to test the stability and the physical contents of the exact solution. The diagonal representations with
the total and single-particle angular momenta along the same axis (longitudinal case) and along two perpendicular
axes (transverse case) are employed according to the system with rigid or hydrodynamical moments of inertia
(MoI). The longitudinal case gives the normal wobbling mode for rigid MoI, but does not give a stable solution
for hydrodynamical MoI. The transverse case applied for hydrodynamical MoI describes a few low spin states
with reduced alignment of the total spin in the parallel direction to the single-particle spin, but these states
differ from the wobbling mode which involves a quantized unit of rotational angular momentum. Employing
the angular-momentum-dependent rigid MoI which is derived from the self-consistent Hartree-Fock-Bogoliubov
equation together with angular momentum and particle-number constraints, we obtain good fitting not only to
the energy-level scheme, but also to the electromagnetic transition rates and the mixing ratio for 135Pr.
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I. INTRODUCTION

Since wobbling motion was proposed by Bohr and Mottel-
son [1] as an indication of the triaxial rotor, there have been
many experimental data to show the existence of the wobbling
mode [2–8]. All the observed experimental data are around
A ∼ 160 and limited to highly excited high spin states in
odd-proton nuclei. The top-on-top model or the particle-rotor
model with rigid (rig) moments of inertia (MoI) was successful
in explaining not only the energy scheme but also the transition
rates B(M1) and B(E2) in A ∼ 160 nuclei [9–12].

Recently, the transverse wobbling mode with hydrodynam-
ical (hyd) MoI has been proposed for the yrast band near the
ground state before the first backbending in 135Pr [13]. It is not
yet verified whether the transverse wobbling mode exists, and
Ref. [14] emphasizes the wobbling mode around the principal
axis with the middle MoI. The wobbling mode for rotation
around the axis with middle MoI never exists in the pure rotor
model, as is proved in classical mechanics [15] and quantum
mechanics [1] irrespective of rigid or hydrodynamical MoI. As
for the particle-rotor model, as long as the rigid MoI is adopted,
there is no chance to find wobbling around the axis with
middle MoI, because the single-particle oscillator strength
ωk [16] and the rigid MoI must both change their magnitudes as
functions of γ in the same direction periodically with the same
span of 2π/3. However, the hydrodynamical MoI changes its
magnitude in every span of π/3 in an opposite direction to ωk ,
and so there may be a possibility to find the wobbling mode
around the axis with middle MoI for the particle-rotor model
with hydrodynamical MoI.

In the present paper, we extend the Holstein-Primakoff
(HP) boson expansion method in the particle-rotor model with
rigid MoI [9–12,17] to the case of hydrodynamical MoI. The
extension of HP bosons to the odd-A case introduces two
kinds of bosons for the total angular momentum �I and the
single-particle angular momentum �j . Thus, we can identify the
nature of each band referring to two kinds of quantum numbers

(nα,nβ ) indicating the wobbling of �I and the precession of
�j , respectively. In this scheme, both �I and �j interact on an
equal footing. We make use of different choices of HP boson
representations as theoretical probes of the physical contents
of the exact results.

In Sec. II, we review the HP boson expansion method in
odd-A nuclei [9], where the stability equation is derived from
the next-to-leading order in 1/(2I ) and 1/(2j ) together with
the leading one. In order to clarify the meaning of quantum
numbers, we discuss the special case when the single-particle
potential vanishes. In Sec. III, the algebraic method is applied
to the hydrodynamical MoI when the single-particle potential
exists. In Sec. III B, we investigate the transverse case by
applying the diagonal HP boson representation for Iy and jx .
We discuss the results of this analysis in detail. In Sec. IV, the
particle-rotor model with angular-momentum-dependent (I -
dependent) rigid MoI, which is derived from the self-consistent
constrained Hartree-Fock-Bogoliubov (HFB) equations [18],
is applied to reproduce the experimental data in 135Pr [13,19].
In Sec. V, the paper is summarized and concluded.

II. HOLSTEIN-PRIMAKOFF BOSON EXPANSION
METHOD

A. Top-on-top model (particle-rotor model)

We adopt the particle-rotor Hamiltonian given by

H = Hrot + Hsp (1)

with

Hrot =
∑

k=x,y,z

Ak(Ik − jk)2, (2a)

Hsp = V

j (j + 1)

[
cos γ

(
3j 2

z − �j 2
)− √

3 sin γ
(
j 2
x − j 2

y

)]
,

(2b)
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where �I is the total angular momentum, �j the single-particle
angular momentum, Ak = 1/(2Jk) for MoI Jk (k = 1,2,3
or x,y,z), and the deformation parameters describing the
ellipsoidal shape of the rotor are β2 and γ .

Here we remark that Hsp is derived from the γ -deformed
Nilsson potential [16]

Hδ = −h̄ω0(δ)β2r
2

[
cos γ Y20 − 1

2
sin γ (Y22 + Y2−2)

]
(3)

by applying the Wigner-Eckart theorem for the single-j case:

〈jm|r2

[
cos γ Y20 − 1

2
sin γ (Y22 + Y2−2)

]
|jm〉

= − 1

8j (j + 1)

√
5

π
〈jm|r2

[
cos γ

(
3j 2

z − �j 2
)

−
√

3 sin γ
(
j 2
x − j 2

y

)]|jm〉. (4)

Comparing Eq. (2b) with Eqs. (3) and (4), V is related to the
γ -deformed Nilsson potential as

V = 1

8

√
5

π
h̄ω0(δ)β2〈 r2 〉jm. (5)

Then, for the h11/2 orbital and β2 = 0.18 which is adopted in
Ref. [13] for the 135Pr nucleus, V is almost equal to 1.5 MeV,
if we choose 〈 r2 〉jm = N + 3/2 as in Ref. [16]. To enhance
the effect of V we choose V = 1.6 MeV in this paper.

We study two models for Jk , the hydrodynamical model in
Lund convention,

J hyd
k = 4

3
J0 sin2

(
γ + 2

3
πk

)
, (6a)

and the rigid-body model in Lund convention,

J rig
k = J0

1 + ( 5
16π

)1/2
β2

[
1 −
(

5

4π

)1/2

β2 cos

(
γ + 2

3
πk

)]
.

(6b)

Note that the maximum rigid MoI is J rig
x with J rig

x � J rig
y �

J rig
z in 0 � γ � π/3. As seen in Eqs. (2b) and (6b), there is

no possibility to find the transverse wobbling because both the
coefficient of j 2

k in Hsp and 1/J rig
k increase or decrease in the

same direction as functions of γ with the same periodicity.
Both are derived from the radius,

rk = R0

[
1 +
(

5

4π

)1/2

β2 cos

(
γ + 2πk

3

)]
. (7)

However, 1/J hyd
k changes in the opposite direction with a

different periodicity as a function of γ , compared to the
coefficient of j 2

k in Hsp. Then, there may occur a possibility to
find the transverse wobbling mode.

The rotor Hamiltonian is invariant with respect to rotation
through an angle π about each of three principal axes,
Rk(π ) = exp(−iπRk) with Rk = Ik − jk (k = 1,2,3). These
symmetry operations compose the D2 symmetry group, which
has four representations labeled by (r1,r2,r3), where rk stands
for an eigenvalue of Rk(π ) and takes the value +1 or −1,
and r1r2r3 = 1 [1]. Bohr symmetry [20] requires that only the

states belonging to the (r1,r2,r3) = (+1, + 1, + 1) represen-
tation are allowed as nuclear states, unless the corresponding
invariance of the Hamiltonian is violated for some reason.
We refer to both D2 symmetry and Bohr symmetry simply
as D2 invariance, hereafter. If the x axis is chosen as the
quantization axis, the physical states must be invariant under
both operations R3(π ) = exp{−iπ (Iz − jz)} and R1(π ) =
exp{−iπ (Ix − jx)}. A complete set of the D2-invariant basis
states is provided by{√

2I + 1

16π2

[DI
MK ′ (θi)φ

j

′ + (−1)I−jDI

M−K ′(θi)φ
j
−
′
]
;

|K ′ − 
′| = even, 
′ > 0

}
, (8)

where φ
j

′ stands for the single-particle state, and DI

MK ′ (θi) for
the Wigner D functions.

From now on we discuss the case of I � j . Because the
magnitude R of the rotor angular momentum �R = �I + (−�j )
is given by R = I − j,I − j + 1, . . . ,I + j − 1, or I + j , an
integer nβ ′ defined by R = I − j + nβ ′ takes the values

nβ ′ = 0,1,2, . . . ,2j. (9)

As Rx runs from R to −R, and Rx = Ix − jx = K ′ − 
′ =
even, an integer nα′ defined by the relation Rx = R − nα′ takes
the values

nα′ = 0,2,4, . . . ,2R, for R = even,
(10)

nα′ = 1,3,5, . . . ,2R − 1, for R = odd.

Physical states are realized for a set of non-negative integers
nα′ and nβ ′ , which are related to the magnitude of rotor
angular momentum R and its x component Rx through the
relations R = I − j + nβ ′ and Rx = I − j + nβ ′ − nα′ by
the D2-invariance rule. When we consider the y axis as
the quantization axis, Ry = I − j + nβ ′ − nα′ by the D2-
invariance rule. We diagonalize Eq. (1) within the D2-invariant
basis Eq. (8) to obtain the exact solution.

B. Diagonal boson representation for both �I and �j in the
same direction

At first, we consider the HP boson expansion method for
the system with rigid MoI, which explains both the energy
levels and the in-band and out-of-band transition rates B(E2)
and B(M1) in Lu isotopes [9–12]. Because the coefficient of
I 2
x and also the coefficient of j 2

x are the smallest among the
other coefficients in Eqs. (2a) and (2b), it is expected that the
total energy becomes the lowest when both angular momentum
vectors �I and �j are aligned along the x direction. Therefore,
we choose the diagonal forms for the components Ix and jx in
the HP boson representation as follows:

I+ = I
†
− = Iy + iIz = −â†√2I − n̂a,

Ix = I − n̂a, with n̂a = â†â;
(11)

j+ = j
†
− = jy + ijz =

√
2j − n̂b b̂,

jx = j − n̂b with n̂b = b̂†b̂.
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Using these representations, we rewrite Hamiltonian (1) in
terms of two kinds of boson operators, â and b̂. Here we note
that Ik satisfies commutation relations with a minus sign, while
jk satisfies normal commutation relations [21]:

[Ii,Ij ] = −iIi×j , [ji,jj ] = iji×j . (12)

For the system with hydrodynamical MoI, where J hyd
y >

J hyd
x > J hyd

z , another boson representation is preferable:

I+ = I
†
− = Iz + iIx = −â†√2I − n̂a,

Iy = I − n̂a, with n̂a = â†â;
(13)

j+ = j
†
− = jz + ijx =

√
2j − n̂b b̂,

jy = j − n̂b, with n̂b = b̂†b̂.

Similarly, for the region where γ ∼ 0 but �= 0, the following
representation is preferable [17]:

I+ = I
†
− = Ix + iIy = −â†√2I − n̂a,

Iz = I − n̂a, with n̂a = â†â;
(14)

j+ = j
†
− = jx + ijy =

√
2j − n̂b b̂,

jz = j − n̂b, with n̂b = b̂†b̂.

In any of Eqs. (11), (13), and (14), we expand the square
roots

√
2I − n̂a and

√
2j − n̂b up to the order of n̂a/(2I ) and

n̂b/(2j ) as small quantities:

√
2I − n̂a

∼=
√

2I

(
1 − n̂a

4I

)
,

(15)√
2j − n̂b

∼=
√

2j

(
1 − n̂b

4j

)
.

Then, the Hamiltonian contains the fourth order terms in boson
operators in addition to the second order ones. For simplicity,
we call this order of approximation next-to-leading order
approximation, in contrast to the leading order approximation.
The latter includes only the lowest order contributions from
the expansion of Eq. (15), and the Hamiltonian includes
contributions up to the terms bilinear in the boson operators.

Applying HP transformation of Eq. (11) to the Hamiltonian
Eq. (1) with the rigid MoI Eq. (6b), we expand

√
2I − n̂a

and
√

2j − n̂b into series in n̂a/(2I ) and n̂b/(2j ), and retain
up to the next-to-leading order. We arrive at an approximate
Hamiltonian written in terms of two kinds of HP bosons

HB
∼= H0 + H2 + H4, (16)

where H0 denotes a constant which collects all the terms
independent of boson operators, H2 the bilinear forms of boson
operators, and H4 the fourth order terms. Their explicit forms
are given by using A

rig
k = 1/(2J rig

k ) as

H0 = Arig
x (I − j )2 + 1

2

(
Arig

y + Arig
z − 2Arig

x

)
− 2V cos(γ − π/3)

(
1 − 3

4j (j + 1)

)
, (17)

H2 = (â b̂ â† b̂†)

⎛
⎜⎝

A G B F
G C F D
B F A G
F D G C

⎞
⎟⎠
⎛
⎜⎜⎝

â†

b̂†
â

b̂

⎞
⎟⎟⎠, (18)

where the coefficients are defined by

A = 1

2

(
I − 1

2

)
Ayzx + jArig

x , B = 1

2

(
I − 1

4

)
Ayz,

C = 1

2

(
j − 1

2

)
ayzx + IArig

x , D = 1

2

(
j − 1

4

)
ayz,

F = 1

2

√
Ij
(
Arig

y + Arig
z

)
, G = 1

2

√
IjAyz,

Ayzx = Arig
y + Arig

z − 2Arig
x , Ayz = Arig

y − Arig
z ,

ayz = Ayz + 2
√

3V

j (j + 1)
sin(γ − π/3),

ayzx = Ayzx + 6V

j (j + 1)
cos(γ − π/3). (19)

To diagonalize H2 in Eq. (18), we solve the eigenvalue
equation taking account of the metric arising from the boson
commutation relation:∣∣∣∣∣∣∣

A − ω G B F
G C − ω F D

−B −F −A − ω −G
−F −D −G −C − ω

∣∣∣∣∣∣∣ = 0. (20)

This equation reduces to

ω4 − bω2 + c = 0, (21)

with

b ≡ A2 − B2 + C2 − D2 + 2(G2 − F 2),

c ≡ (A2 − B2)(C2 − D2) + (G2 − F 2)2

+ 4FG(AD + BC) − 2(AC + BD)(F 2 + G2). (22)

Equation (21) gives two positive solutions

2ω2
(±) = b ±

√
b2 − 4c, (23)

only when

b2 − 4c � 0, b > 0, c > 0. (24)

These inequalities compose the stability conditions for the
wobbling mode and the precession mode [9].

The diagonalization of H2 given in Eq. (18) is attained
by the unitary transformation (or the boson Bogoliubov
transformation) connecting the boson operators (â,b̂,â†,b̂†)
to the quasiboson operators (α,β,α†,β†):⎛

⎜⎜⎝
â

b̂

â†

b̂†

⎞
⎟⎟⎠ =

⎛
⎜⎝

u+ w+ u∗
− w∗

−
v+ t+ v∗

− t∗−
u− w− u∗

+ w∗
+

v− t− v∗
+ t∗+

⎞
⎟⎠
⎛
⎜⎜⎝

α
β

α†

β†

⎞
⎟⎟⎠. (25)
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The normalized column vectors in this transformation matrix
are determined from the set of homogeneous equations⎛
⎜⎝

A G B F
G C F D

−B −F −A −G
−F −D −G −C

⎞
⎟⎠
⎛
⎜⎝

u+ w+ u∗
− w∗

−
v+ t+ v∗

− t∗−
u− w− u∗

+ w∗
+

v− t− v∗
+ t∗+

⎞
⎟⎠

=

⎛
⎜⎝

u+ w+ u∗
− w∗

−
v+ t+ v∗

− t∗−
u− w− u∗

+ w∗
+

v− t− v∗
+ t∗+

⎞
⎟⎠
⎛
⎜⎝

ωα 0 0 0
0 ωβ 0 0
0 0 −ωα 0
0 0 0 −ωβ

⎞
⎟⎠

(26)

together with the orthonormality relations

|u+|2 − |u−|2 + |w+|2 − |w−|2
= |v+|2 − |v−|2 + |t+|2 − |t−|2 = 1,

u+v∗
− − u∗

−v+ + w+t∗− − w∗
−t+

= u∗
+v+ − u−v∗

− + w∗
+t+ − w−t∗− = 0,

|u+|2 − |u−|2 + |v+|2 − |v−|2
= |w+|2 − |w−|2 + |t+|2 − |t−|2 = 1,

u∗
+w∗

− − u∗
−w∗

+ + v∗
+t∗− − v∗

−t∗+
= u+w∗

+ − u−w∗
− + v+t∗+ − v−t∗− = 0. (27)

Here, we can take real solutions for the coefficients of
quasibosons in Eq. (25). In Eq. (26), ωα or ωβ corresponds
to either of ω(±) (ω(+) > ω(−)). In Ref. [9], Eq. (26) is solved
in two steps. At first, the dangerous terms â†â† + H.c. and
b̂†b̂† + H.c. are eliminated without mixing â and b̂. Next, the
remaining terms from â†â, b̂†b̂, and âb̂, â†b̂ and their Hermitian
conjugate terms are diagonalized. In the first step, we get

P+ =
[

1

2

( |A|√
A2 − B2

+ 1

)]1/2

,

P− = − AB

|AB|
[

1

2

( |A|√
A2 − B2

− 1

)]1/2

,

(28)

Q+ =
[

1

2

( |C|√
C2 − D2

+ 1

)]1/2

,

Q− = − CD

|CD|
[

1

2

( |C|√
C2 − D2

− 1

)]1/2

.

Equation (31) in Ref. [9] works for rigid MoI in the range
0◦ < γ � 60◦, and also for hydrodynamical MoI defined by
Eq. (3a) in Ref. [9] in the range 0 < γ � 30◦, because A and
C are positive and B and D are negative in these regions.
However, for the general case Eq. (31) in Ref. [9] should
be replaced by Eq. (28) in the present paper. There are two
misprints in Ref. [9]: Eq. (38) should read

β = w+â + t+b̂ − w−â† − t−b̂†, (29)

and sign(p − q) in Eq. (44c) should read sign(q − p). We
comment that Eq. (44c) of Ref. [9] was obtained in the leading
order approximation with V = 0. Although Ref. [9] solved
Eq. (26) in two steps, it is also solvable directly in one step.

As long as the stability conditions in Eq. (24) are satisfied,
H2 is diagonalized as

H2 � 2ωα(n̂α + 1/2) + 2ωβ(n̂β + 1/2), (30)

where we introduce number operators in the new quasiboson
picture:

n̂α = α†α and n̂β = β†β. (31)

To take account of higher order terms, we apply the boson
transformation to H4 and retain only diagonal terms which are
expressed in terms of n̂α and n̂β . Consequently, we arrive at
an approximate formula for HB as

HB � H0 + ωα + ωβ + C0 + (2ωα + Cα)n̂α

+ (2ωβ + Cβ)n̂β + Cααn̂2
α + Cββn̂2

β + Cαβn̂αn̂β, (32)

where the six C’s are constants which arise from additional
higher order terms describing the anharmonicity effect, and
their explicit forms are listed in Ref. [9].

To clarify the physical meaning of the two quantum
numbers nα and nβ , which are the eigenvalues of n̂α and n̂β ,
we consider the pure rotor case, i.e., V = 0 in Eq. (1). Then,
formula (32) reduces to a simple expression of the rotational
energy:

Erot
∼= Arig

x R(R + 1) − p + q

2
n2

α

+
(

2R
√

pq + √
pq − p + q

2

)(
nα + 1

2

)
, (33)

where

R = I − j + nβ, Rx = R − nα,
(34)

p = Arig
y − Arig

x , q = Arig
z − Arig

x .

In the symmetric limit of A
rig
y = A

rig
z (γ = 60◦), formula (33)

becomes the well-known expression

Erot = Arig
z R(R + 1) − (Arig

z − Arig
x

)
(R − nα)2. (35)

The eigenvalue R can be regarded as an effective magnitude of
the rotor angular momentum, and R − nα as its x component
Rx . It turns out that these nα and nβ are the same integers
nα′ and nβ ′ as defined in Eqs. (9) and (10). This allows us
to interpret the quantum number nα as the wobbling quantum
number of �R [1] because of Rx = R − nα . The other quantum
number nβ is interpreted as the precession of �j . In Eq. (33),
if we stay in the leading order approximation, two wobbling
energies reduce to

ωα ∼ (I − j )
√

pq, ωβ ∼ (I − j )Arig
x . (36)

The wobbling energy ωα becomes the same as Bohr and
Mottelson’s formula [1] with I − j instead of I . This result
is also obtained from the leading order stability equation with
V = 0, where the numbers −1/2 and −1/4 inside the factors
like (I − 1/2) appearing in A, B, C, and D in Eq. (19) are
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FIG. 1. The energy levels given by Eq. (33) for the rigid (rig) MoI
at γ = 30◦ as functions of I . The solid lines correspond to the levels
with I − j = even, while the dashed lines and the lowest solid lines
correspond to the ones with I − j = odd. A numeral beside each line
denotes the value of R. A pair of quantum numbers (nα,nβ ) next to
the bottom is assigned to the yrast for each I . The lowest solid lines
represent (1,0) for the yrast levels of I − j = odd for I � 17/2. The
parameters are J0 = 25 MeV−1 and β2 = 0.18.

dropped. Then,

2ω2
(±) = (I − j )2

[
pq + (Arig

x

)2 ± ∣∣pq − (Arig
x

)2∣∣]. (37)

For the case of rigid MoI, pq − (Arig
x )2 is always negative in the

region 0◦ � γ � 60◦. Thus, we get ω(−) = (I − j )
√

pq = ωα

and ω(+) = (I − j )Arig
x = ωβ , indicating that the lowest mode

is the wobbling motion around the axis with the maximum
MoI.

In Fig. 1, we show four energy levels from the yrast with
J0 = 25 MeV−1, γ = 30◦, and β2 = 0.18 in Eq. (6b). We
choose j = 11/2 in this paper. As seen in Fig. 1, the lowest
energy in the band with I − j = odd shown by the solid
lines is always (nα,nβ) = (1,0) except for I = 13/2, where
(0,1) becomes lowest. Because of D2 invariance, R = 1 is
not allowed; subsequently no (1,0) case exists for I = 13/2.
This is also found in the experimental data of Ref. [13]; i.e.,
no 13/2 level has been observed in the wobbling band. From
the quantum numbers (1,0), all the lowest levels in I − j =
odd bands are wobbling modes around the x axis with the
maximum MoI, except for the 13/2 level where the lowest level
is the precession mode of j around the axis with maximum
MoI. The energy levels are in good agreement with the exact
results. Moreover, all these four levels from the yrast are well
described by (nα,nβ).

For the case of hydrodynamical MoI and V = 0, where
J hyd

y > J hyd
x > J hyd

z in the region 0◦ � γ � 30◦, we apply

Eq. (13) to Eq. (2a) in the same approximation as Eq. (33),
and get

Erot
∼= Ahyd

y R(R + 1) − p′ + q ′

2
n2

α

+
(

2R
√

p′q ′ +
√

p′q ′ − p′ + q ′

2

)(
nα + 1

2

)
, (38)

where

R = I − j + nβ, Ry = R − nα,
(39)

p′ = Ahyd
z − Ahyd

y , q ′ = Ahyd
x − Ahyd

y .

In the leading order approximation, Eq. (38) reduces to
ωα ∼ (I − j )

√
p′q ′, which is nothing but the wobbling mode

around the axis with the maximum MoI J hyd
y , and to ωβ ∼

(I − j )Ahyd
y , the precession of j around the same axis. From

Eq. (23) in the leading order approximation with V = 0,
replacing (J rig

x ,J rig
y ,J rig

z ) by (J hyd
y ,J hyd

z ,J hyd
x ), we get for

hydrodynamical MoI

2ω2
(±) = (I − j )2

[
p′q ′ + (Ahyd

y

)2 ± ∣∣p′q ′ − (Ahyd
y

)2∣∣]. (40)

In the region 0◦ < γ � 30◦, p′q ′ − (Ahyd
y )2 is always positive,

so that ω(−) = ωβ and ω(+) = ωα . Subsequently, the lowest
mode is the precession of �j around the axis with maximum
MoI J hyd

y . In Fig. 2, we show four energy levels from the yrast
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FIG. 2. The energy levels given by Eq. (38) for the hydrody-
namical (hyd) MoI at γ = 30◦ as functions of I . The solid lines
correspond to the levels with I − j = even, while the dashed lines
and the second solid lines correspond to the ones with I − j = odd.
A numeral beside each line denotes the value of R. A pair of quantum
numbers (nα,nβ ) next to the bottom is assigned to the yrast for each
I . The solid lines for the yrare levels with I � 17/2 represent (1,0).
The parameter J0 = 25 MeV−1 is the same as in Fig. 1.
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with the same parameter as in Fig. 1. The energy levels from
Eq. (38) coincide with the exact results because γ = 30◦. In
contrast to Fig. 1, the lowest energy level in the band with
I − j = odd is always labeled (nα,nβ) = (0,1), which is the
precession mode of �j around the axis with the maximum MoI
J hyd

y . There is no difference in (nα,nβ ) between the I = 13/2
level and the other levels with I − j = odd. This contradicts
the non-observation of the I = 13/2 level in Ref. [13]. The
levels corresponding to the wobbling mode around the axis
with the maximum MoI J hyd

y , i.e., the levels with (1,0) (shown
by solid lines), become the second lowest levels, which are
represented by solid lines in Fig. 2. Not only the yrast levels
but also all the other levels are well explained by (nα,nβ).

For small γ (Ax ∼ Ay), the diagonal representation for both
Iz and jz in Eq. (14) is suitable. We have

Erot
∼= AzR(R + 1) + p′′ + q ′′

2
n2

α

−
(

2R
√

p′′q ′′ +
√

p′′q ′′ − p′′ + q ′′

2

)(
nα + 1

2

)
,

(41)

where

R = I − j + nβ, Rz = R − nα,
(42)

p′′ = Az − Ax, q ′′ = Az − Ay.

In the symmetric limit of γ = 0◦, Eq. (41) goes to the well-
known expression

Erot = AxR(R + 1) − (Ax − Az)(R − nα)2, (43)

though A
hyd
z diverges in this limit. The integer R can be

regarded as an effective magnitude of the rotor angular
momentum, and R − nα as its z component Rz. In Fig. 3, we
show the energy levels for the hydrodynamical MoI at γ = 6◦
with the same value of J0 as in Fig. 2. A pair of numerals
below now stands for (R,Rz), and all the yrast levels have
Rz = 0. Here we comment that Eq. (41) is easily obtained
by replacing I and k̃ in Eq. (7) of Ref. [17] by R and nα ,
respectively. Reference [17] is the first paper that applied the
HP boson transformation to the triaxial rotor.

Similarly, in Fig. 4, we show the results for rigid MoI
at γ = 6◦ with the same parameters as in Fig. 1. A pair of
numerals below stands for (R,Rz), and all the yrast levels
with I − j = odd have Rz = 2, except for I = 13/2 where
the Rz = 2 level appears as the yrare levels. Once the D2

invariance is violated, the Rz = 2 level splits into two levels
characterized by (r1,r2,r3) = (+1, + 1, + 1) and (+1, − 1, −
1) symmetry [1]. It may be a possible interpretation of the
signature partner band reported in Ref. [13]. This is not realized
with hydrodynamical MoI in Fig. 3, because Rz = 0 does
not split in both prolate and oblate sides even when the D2

invariance is violated (see Fig. 4-33 in Ref. [1]). The energy
levels calculated from Eq. (41) reproduce the exact results, and
not only the yrast but also all the other levels in Figs. 3 and 4
are well described by (R,Rz).

To clarify the character of (0,1) and (1,0) levels, we show
the alignments of 〈I 2

x 〉1/2 and 〈j 2
x 〉1/2 for the rigid MoI case
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FIG. 3. The energy levels given by Eq. (41) for the hydrodynami-
cal (hyd) MoI at γ = 6◦ as functions of I . The solid lines correspond
to the levels with I − j = even, while the dashed lines correspond to
the levels with I − j = odd. A numeral beside each line denotes the
value of R. A pair of quantum numbers (R,Rz) next to the bottom is
assigned to the yrast for each I . The parameter set is the same as in
Fig. 2.

in Fig. 5, and 〈I 2
y 〉1/2 and 〈j 2

y 〉1/2 for the hydrodynamical MoI
case in Fig. 6, respectively. In both figures, the approximate
solutions shown by open circles well overlap with the exact
results shown by small solid circles. The approximate solutions
are calculated using the wave functions directly obtained
from the leading order approximation in Eq. (26). In Fig. 5,
(nα,nβ) = (0,0) is assigned to the I − j = even and (1,0) to
the I − j = odd case. In Fig. 6, (0,0) is assigned to the I − j =
even, and (0,1) to the I − j = odd case. In both figures,
I = 11/2 and 13/2 are not shown, because b = c = 0 for
I = 11/2 in the leading order approximation. As for I = 13/2,
the value of ω(−) becomes quite small, indicating that the
system is already close to the border of the stability domain.
The agreement with the exact results is quite good in both
figures, showing the usefulness of the HP boson method.

We investigate further details of Figs. 5 and 6. In Fig. 5,
we find 〈I 2

x 〉1/2
I+2 − 〈I 2

x 〉1/2
I ∼ 2 irrespective of whether I − j =

even or odd. This regularity is also realized in the case with
potential (V �= 0), as seen in Fig. 9. The unit 2 difference in
〈I 2

x 〉1/2 for �I = 2 indicates that the x axis plays the role of
the quantization axis. The average values of 〈I 2

x 〉1/2
I+1 − 〈I 2

x 〉1/2
I

is −0.7 for I − j = even, and 2.7 for I − j = odd, whose
deviations from zero and 2 are related to the fluctuation of
〈j 2

x 〉1/2 between the solid and dashed lines. Because of V = 0,
the staggering behavior of jx is allowed, but Ix behaves to
compensate such a fluctuation of jx within a combination of
A

rig
x (Ix − jx)2 in Hrot. We confirm that the average value of
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FIG. 4. The energy levels given by Eq. (41) for the rigid (rig) MoI
at γ = 6◦ as functions of I . The solid lines correspond to the levels
with I − j = even, while the dashed lines correspond to the levels
with I − j = odd. A numeral beside each line denotes the value of
R. A pair of quantum numbers (R,Rz) next to the bottom is assigned
to the yrast for each I . The parameter set is the same as in Fig. 1.

(〈I 2
x 〉1/2 − 〈j 2

x 〉1/2)I+1 − (〈I 2
x 〉1/2 − 〈j 2

x 〉1/2)I is −0.1 for I −
j = even, implying that 〈R2

x〉1/2 (Rx = Ix − jx) shows the
stepwise behavior, which is quite similar to the one for the
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Rig MoI at 6 and V 0

jx2 1 2

Ix2 1 2

FIG. 5. Alignments of 〈I 2
x 〉1/2 and 〈j 2

x 〉1/2 for rigid (rig) MoI as
functions of I . The solid circles connected by solid lines show exact
results for I − j = even and the ones connected by dashed lines
for I − j = odd. The open circles connected by solid and dashed
lines show the corresponding results obtained from the leading order
approximation. The parameter set is the same as in Fig. 1.
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FIG. 6. Alignments of 〈I 2
y 〉1/2 and 〈j 2

y 〉1/2 for hydrodynamical
(hyd) MoI as functions of I . The solid circles connected by solid
lines show exact results for I − j = even and the ones connected by
dashed lines for I − j = odd. The open circles connected by solid
and dashed lines show the corresponding results obtained from the
leading order approximation. The parameter set is the same as in
Fig. 2.

V �= 0 case [see Eqs. (62a) and (62b), and Fig. 15]. The average
value of 1

2 (〈I 2
x 〉1/2

I+2 + 〈I 2
x 〉1/2

I ) − 〈I 2
x 〉1/2

I is almost 1 for I − j =
even, which corresponds to the wobbling mode represented by
the quantum number nα = 1 (see Fig. 4(b) in Ref. [2]).

In Fig. 6, we find 〈I 2
y 〉1/2

I+2 − 〈I 2
y 〉1/2

I ∼ 2 irrespective of
whether I − j = even or odd. The unit 2 difference in
〈I 2

y 〉1/2 for �I = 2 indicates that the y axis plays the role
of the quantization axis. We confirm that the average value
of (〈I 2

y 〉1/2 − 〈j 2
y 〉1/2)I+1 − (〈I 2

y 〉1/2 − 〈j 2
y 〉1/2)I is 0.1 for I −

j = odd, implying that 〈R2
y〉1/2 (Ry = Iy − jy) shows the

stepwise behavior like 〈R2
y〉1/2

I+2 − 〈R2
y〉1/2

I = 2, and 〈R2
y〉1/2

I+1 =
〈R2

y〉1/2
I for I − j = odd, in contrast to the rigid MoI case

[see Eq. (62a)]. This coupling scheme corresponds to the
cranking regime (see Fig. 4(a) in Ref. [2]). The average value
of 1

2 (〈j 2
y 〉1/2

I+2 + 〈j 2
y 〉1/2

I ) − 〈j 2
y 〉1/2

I+1 is assumed almost 1 for
I − j = even, which is interpreted as the j -precession mode
represented by the quantum number nβ = 1 around the y axis
with maximum MoI for the case of hydrodynamical MoI.

III. HP BOSON EXPANSION METHOD APPLIED TO THE
HYDRODYNAMICAL MOI CASE WITH V �= 0

A. Diagonal boson representation for both �I and �j in the same
direction (longitudinal case)

Now we discuss the case of V �= 0. With some hope that
�j , when pinned along the axis of medium MoI (x axis), may
act to keep �I around the x axis through Coriolis force, we
study the stability of the wobbling and the precessional motion
of �I and �j . At first, we apply the same type of stability
conditions as in Eqs. (22) and (24) obtained by replacing Arig’s
by Ahyd’s. Because of the relation J hyd

y > J hyd
x � J hyd

z for

064315-7



KOSAI TANABE AND KAZUKO SUGAWARA-TANABE PHYSICAL REVIEW C 95, 064315 (2017)

5 10 15 20 25 30 35
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Γ degree

V
M
eV

13 2 0,1

15 2 0,0

17 2 1,0

with diagonal Ix and jx rep.

Next to leading order stability

11 2 0,0

in hyd MoI

FIG. 7. Stability domain in the γ -V plane for hydrodynamical
(hyd) MoI with diagonal representation of Ix and jx in the next-to-
leading order approximation. The numerals denote the values of I .
The solid lines are for the levels with I − j = even, while the dashed
lines are for those with I − j = odd. The values of (nα,nβ ) are shown
for each I . The arrows attached to the lines indicate the region where
the stability conditions are satisfied.

5◦ � γ � 30◦, the transverse wobbling may be realized when
�j is aligned along the x axis. Equation (24) does not allow
any stability region over the whole I range when V = 0, but
once V > 0 there appears some stability domain. In Fig. 7,
we show the results with J0 = 25 MeV−1. The pattern of
the diagram does not change for a different choice of J0,
because the physical content depends only on the scaling factor
s = J0V . The levels with I = 11/2, 13/2, and 15/2 are stable
in a finite range of γ , but the stability domain for the level
with I = 17/2 moves to the region of larger V (>2.2 MeV)
and narrow extent of γ about 17◦. For the I = 19/2 level the
stability domain cannot be found within the region V � 6 MeV
and 5◦ � γ � 30◦. Moreover, (nα,nβ ) = (0,0) is assigned to
I = 11/2 and I = 15/2 levels, while (0,1) is assigned to the
I = 13/2 level. Thus, we do not find any stability region which
allows the transverse wobbling for V ∼ 1.5 MeV.

We extend the stability analysis to the case with diagonal
representation for both Iy and jy as given by Eq. (13). The
relevant quantities are obtained from Eq. (19) by replacing
(J rig

x ,J rig
y ,J rig

z ) by (J hyd
y ,J hyd

z ,J hyd
x ), and also γ − π/6 by

γ + π/6. From the results displayed in Fig. 8, we find that
the stability domain is restricted to a quite narrow range in the
γ -V plane only for large I , i.e., 21/2 � I � 33/2. No stable
region is found in the potential range of V � 0.3 MeV.

We compare the exact results for the two models of rigid
and hydrodynamical MoI. We show the calculated alignment
of �I and �j along the x and y axes with rigid MoI in Fig. 9,
and with hydrodynamical MoI in Fig. 10. The parameters
are common for both models, i.e., J0 = 25 MeV−1, V = 1.6
MeV, β2 = 0.18, and γ = 26◦ as adopted in Ref. [13]. Figure 9
shows a typical example of wobbling mode. We confirm that

0 5 10 15 20 25 30 35
0.0
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0.3
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Γ degree
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I 33 2

I 31 2

I 21 2
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Next to leading order stability
in hyd MoI

with diagonal Iy and jy rep.

FIG. 8. Stability domain in the γ -V plane for hydrodynamical
(hyd) MoI with diagonal representation of Iy and jy in the next-to-
leading order approximation. The solid lines are for the levels with
I − j = even, while the dashed lines are for those with I − j = odd.
The arrows attached to the lines indicate the region where the stability
conditions are satisfied.

〈I 2
x 〉1/2

I+2 − 〈I 2
x 〉1/2

I = 2 [2] and 〈I 2
x 〉1/2

I+1 − 〈I 2
x 〉1/2

I = 0 or 2 for
I − j = even or odd, respectively. Therefore, the difference
of 〈I 2

x 〉1/2 between the solid and dashed lines is almost one
unit, while 〈j 2

x 〉1/2 and 〈j 2
y 〉1/2 are almost constant over the

whole region of I . On the other hand, Fig. 10 shows that
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FIG. 9. The alignments of 〈I 2
x 〉1/2, 〈I 2

y 〉1/2, 〈j 2
x 〉1/2, and 〈j 2

y 〉1/2 for
the rigid (rig) MoI as functions of I . The solid circles connected by
solid lines show 〈I 2

x 〉1/2 and 〈I 2
y 〉1/2 for the levels with I − j = even,

while open circles connected by dashed lines show the corresponding
results for I − j = odd. The closed triangles connected by solid lines
show 〈j 2

x 〉1/2 and 〈j 2
y 〉1/2 for the levels with I − j = even, while the

open triangles connected by dashed lines show the corresponding
results for I − j = odd. The parameters are J0 = 25 MeV−1, V =
1.6 MeV, β2 = 0.18, and γ = 26◦.
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FIG. 10. The alignments of 〈I 2
x 〉1/2, 〈I 2

y 〉1/2, 〈j 2
x 〉1/2, and 〈j 2

y 〉1/2

for the hydrodynamical (hyd) MoI as functions of I . The solid circles
connected by solid lines show 〈I 2

x 〉1/2 and 〈I 2
y 〉1/2 for the levels with

I − j = even, while the open circles connected by dashed lines
show the corresponding results for I − j = odd. The closed triangles
connected by solid lines show 〈j 2

x 〉1/2 and 〈j 2
y 〉1/2 for the levels with

I − j = even, while the open triangles connected by dashed lines
show the corresponding results for I − j = odd. The parameter set
is the same as in Fig. 9.

〈I 2
x 〉1/2 is the largest at the beginning of the band and then

〈I 2
y 〉1/2 increases rapidly and becomes the largest. Although

〈j 2
x 〉1/2 and 〈j 2

y 〉1/2 keep constant for the small I , they start to
oscillate between I − j = even and odd lines with increasing
I . The difference in 〈I 2

x 〉1/2 or 〈I 2
y 〉1/2 between the solid and

dashed lines never becomes one unit.

B. Diagonal boson representation for Iy and jx (transverse case)

Keeping in mind the behavior of the alignments shown in
Fig 10, we employ the diagonal representation both for Iy and
jx :

I+ = I
†
− = Iz + iIx = −â′†

√
2I − n̂a′ ,

Iy = I − n̂a′ , with n̂a′ = â′†â′;
(44)

j+ = j
†
− = jy + ijz =

√
2j − n̂b′ b̂′,

jx = j − n̂b′ , with n̂b′ = b̂′†b̂′.

We diagonalize Hrot + Hsp in the next-to-leading order expan-
sion in the boson-number operators n̂a′ and n̂b′ . To eliminate
the linear terms i

√
2IjA

hyd
x (â′ − â′†) and i

√
2jIA

hyd
y (b̂′† +

b̂′), we apply the unitary transformation giving constant shifts
to the boson operators:

â′ = â + p, b̂′ = b̂ + q. (45)

Then, p becomes purely imaginary, so we put p = ir and
obtain

r =
√

I

2

jA
hyd
x

A − B
, q =

√
j

2

IA
hyd
y

C + D
, (46)

where A, B, C, and D are defined by

A = I

2

(
Ahyd

z + Ahyd
x − 2Ahyd

y

)(
1 − 1

2I

)
,

B = I

2

(
Ahyd

z − Ahyd
x

)(
1 − 1

4I

)
,

C = j

2

[
Ahyd

y + Ahyd
z − 2Ahyd

x + 6V

j (j + 1)
cos
(
γ − π

3

)]

×
(

1 − 1

2j

)
,

D = j

2

[
Ahyd

y − Ahyd
z + 2

√
3V

j (j + 1)
sin
(
γ − π

3

)](
1 − 1

4j

)
.

(47)

We arrive at an approximate Hamiltonian written in terms of
two kinds of HP bosons (â,â†,b̂,b̂†), i.e., HB

∼= H0 + H2 +
H3 + H4, where H0 denotes a constant which collects all the
terms independent of boson operators, H2 the bilinear forms of
boson operators, and the residual H3 and H4 third and fourth
order forms, respectively. With Eqs. (46) and (47), H0 becomes

H0 = Ahyd
x j (j + 1) + Ahyd

y I (I + 1) − 2V cos
(
γ − π

3

)

− I
(
jA

hyd
x

)2
A − B

− j
(
IA

hyd
y

)2
C + D

− 1

4

(
Ahyd

x + Ahyd
y − 2Ahyd

z

)
+ 3V

2j (j + 1)
cos
(
γ − π

3

)
. (48)

The H2 term is expressed in the form

H2 = (â b̂ â† b̂†)

⎛
⎜⎝

A iF B −iF
−iF C −iF D
B iF A −iF
iF D iF C

⎞
⎟⎠
⎛
⎜⎜⎝

â†

b̂†
â

b̂

⎞
⎟⎟⎠,

(49)

where F = √
Ij/2A

hyd
z . In this next-to-leading order approxi-

mation, the stability condition is derived from the two positive
solutions of 2ω2

(±) = b ± √
b2 − 4c with

b ≡ A2 − B2 + C2 − D2,
(50)

c ≡ (A2 − B2)(C2 − D2) − 4F 2(A − B)(C + D).

In Fig. 11, we show the domain where the stability conditions
are satisfied. The solid lines are for the levels with I = 11/2
and 31/2 (I − j = even), and the dashed lines for I = 13/2
and 33/2 (I − j = odd). The stability domains for the other
levels are located between these border lines. In the region
13◦ � γ � 30◦, this model gives a stability domain for V =
1.6 MeV.

Now we go back to the leading order approximation, in
which the factors (1 − 1

2I
) in A, (1 − 1

4I
) in B, (1 − 1

2j
) in C,

and (1 − 1
4j

) in D are replaced by 1 in Eq. (47), and the last
two terms in Eq. (48) do not exist. Then, the values of b and c
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FIG. 11. Stability domain in the γ -V plane for hydrodynamical
MoI with diagonal representation of Iy and jx in the next-to-leading
order approximation. The solid lines correspond to the yrast levels of
I = 11/2 and 31/2 (I − j = even), while the dashed lines correspond
to those of I = 13/2 and 33/2 (I − j = odd). The domain borders
for the other levels are between these lines. The arrows attached to
the lines indicate the region where stability conditions are satisfied.

are calculated from these new A, B, C, and D as

b = I 2(Ahyd
x − Ahyd

y

)(
Ahyd

z − Ahyd
y

)[
1 + V1V2

(
j

I

)2
]
,

c = [Ij(Ahyd
x − Ahyd

y

)(
Ahyd

z − Ahyd
y

)]2
×V1

⎡
⎣V2 −

(
A

hyd
z

A
hyd
z − A

hyd
y

)2
⎤
⎦, (51)

where

V1 = 2
√

3V sin γ

j (j + 1)
(
A

hyd
x − A

hyd
y

) − 1,

(52)

V2 = 2
√

3V sin
(
γ + π

3

)
j (j + 1)

(
A

hyd
z − A

hyd
y

) + A
hyd
z − A

hyd
x

A
hyd
z − A

hyd
y

.

Then the squares of the two positive eigenvalues are

2ω2
(±) = I 2(Ahyd

x − Ahyd
y

)(
Ahyd

z − Ahyd
y

)[
1 + V1V2

(
j

I

)2

±
√√√√(1 − V1V2

(
j

I

)2)2

+ V1

(
2jA

hyd
z

I
(
A

hyd
z − A

hyd
y

)
)2
⎤
⎦.

(53)

In the asymptotic region of j/I 
 1, we get ω2
(+) �

I 2(Ahyd
x − A

hyd
y )(Ahyd

z − A
hyd
y ), which is nothing but the ex-

citation energy of the wobbling mode around the y axis
with the maximum MoI J hyd

y , as was proposed by Bohr and
Mottelson [1]. For the other energy ω2

(−), we get

ω2
(−) � j 2(Ahyd

x − Ahyd
y

)(
Ahyd

z − Ahyd
y

)

×V1

⎡
⎣V2 −

(
A

hyd
z

A
hyd
z − A

hyd
y

)2
⎤
⎦. (54)

This expression indicates that the excitation energy ω(−) is
associated with the precession mode of �j because it vanishes
for j = 0. If we continue further the calculation of the
alignments 〈I 2

y 〉1/2 and 〈j 2
y 〉1/2 for larger I � 33/2 in Fig. 10,

they show a similar behavior as in Fig. 6, indicating that ω2
(−)

is the j -precession mode around the axis with the maximum
MoI. The potential effect becomes negligible compared with
the Coriolis term for larger I .

Now we consider the case of I = j in Eq. (53). The expres-
sion under the square root in Eq. (53) is well approximated by

[
1 + V1

(
V2 − 1

2

(
Az

Az − Ay

)2)]2

, (55)

because the remaining part is only 1%. In this case, we get

4ω2
(−) ∼ I 2A2

z

Az − Ay

( √
3V

j (j + 1)
+ Ay − Ax

)
. (56)

This approximate expression still gives the domain border,
but it indicates neither the wobbling mode nor the precession
mode.

To clarify the physical contents of elementary excitations
with ω(±), we solve the eigenvalue equation using the wave
functions defined in Eq. (25) for H2 given in Eq. (49)
together with the orthonormality relations of Eq. (27). In this
framework, ω(+) corresponds to ωα , and ω(−) to ωβ . Using
the eigenvalues ω(±), we express all the components of the
eigenvectors as

u± = (A − B ± ω(+))[(C + D)(2F 2 − BC + BD)

+Bω2
(+)]N+,

v± = ±iF (C + D ± ω(+))[(A − B)2 − ω2
(+)]N+,

w± = (A − B ± ω(−))[(C + D)(2F 2 − BC + BD)

+Bω2
(−)]N−,

t± = ±iF (C + D ± ω(−))[(A − B)2 − ω2
(−)]N−, (57)

where the normalization constants are defined by

N−2
± = 4ω(±)[(A−B)[(C+D)(2F 2−BC+BD) + Bω2

(±)]
2

+F 2(C + D)((A − B)2 − ω2
(±))

2]. (58)

In Fig. 12, we show the evolution of squared amplitudes
|u±|2 (solid circles), |v±|2 (solid triangles), |w±|2 (open
circles), and |t±|2 (open triangles) with increasing I . Because
of the small values of |w−|2 and |t−|2, they are not clearly
discriminated in the figure. These eight amplitudes satisfy
the orthonormality relations of Eq. (27). Note that there
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FIG. 12. Comparison of the squared absolute amplitudes in
Eq. (27) in the next-to-leading order approximation as functions of
I . The solid circles correspond to |u±|2, solid triangles to |v±|2, open
circles to |w±|2, and open triangles to |t±|2. Both |w−|2 and |t−|2 are
quite small and lie along the abscissa. The parameter set is the same
as in Fig. 9.

occurs the crossover between the decreasing amplitude (|v+|2
and |w+|2) and the increasing ones (|u+|2 and |t+|2) around
I = 17/2 ∼ 21/2. By the inverse transformation of Eq. (25),
the quasiboson operators α and β are expressed in terms of the
boson operators â and b̂:

α† = u+â† − u−â + v+b̂† − v−b̂,
(59)

β† = w+â† − w−â + t+b̂† − t−b̂.

Comparing Eq. (59) with the results in Fig. 12, we find that b̂
dominates as the main component of α, and â as that of β, for
low I (� 13/2). However, for high I (� 29/2), b̂ dominates as
the main component of β, and â as that of α. The eigenvector
corresponding to ω(−) is given by (w+, t+, w−, t−), while the
one corresponding to ω(+) is given by (u+, v+, u−, v−). In
other words, for low I the lower mode with ω(−) (nβ = 1)
is related to �I , and the higher mode with ω(+) (nα = 1) is
related to �j . For high I , the lower mode with ω(−) (nβ = 1)
corresponds to �j , and the higher mode with ω(+) (nα = 1) to
�I , which agrees with the prediction based on the expression in
Eq. (54).

The original bosons to describe the particle-rotor model
with hydrodynamical MoI are not â and b̂ but â′ and b̂′,
which are related to â and b̂ through Eq. (45). These shift
transformations were determined to eliminate linear terms in
the boson operators â, â†, b̂, and b̂†. In Fig. 13, we show the
behavior of r2 (solid circle) and q2 (open circles) defined in
Eq. (46) calculated in the next-to-leading order approximation.
According to the decrease of r2 and the increase of q2 with
increasing I , the physical quantities evolve with I . Figure 13
shows that r2 becomes large for low I , while q2 becomes large
for high I . As seen in Fig. 12 in the low spin region of I ∼ j ,
the amplitudes of |v+|2 and |w+|2 are dominant (∼1), while
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FIG. 13. The square of shift parameters r2 and q2 as functions
of I in the next-to-leading order approximation. The solid circles
correspond to r2, and open circles to q2. The parameter set is the
same as in Fig. 9.

the rest is small. However, in the high spin region of I � j ,
|u+|2 and |t+|2 are dominant (∼1), while the rest is small.

To discuss the physical contents in both asymptotic regions,
keeping only these dominant amplitudes |u+|2, |v+|2, |w+|2,
and |t+|2 relevant to the harmonic excitation described by
ω(−)(2n̂β + 1), we express I 2

x , I 2
y , j 2

x , and j 2
y as

I 2
x ∼ r2

(
2I − r2 − 3

4

)
+ I

2

+ n̂β |w+|2
(

I − 1

2
− 7

2
r2 + |w+|2

2

)
, (60a)

I 2
y ∼ (I − r2)2 + r2(|u+|2 + |w+|2)

+ n̂β |w+|2{2(2r2 − I ) + |u+|2}, (60b)

and

j 2
x ∼ (j − q2)2 + q2(|v+|2 + |t+|2)

+ n̂β |t+|2{2(2q2 − j ) + |v+|2}, (61a)

j 2
y ∼ q2

(
2j − q2 − 3

4

)
+ j

2

+ n̂β |t+|2
(

j − 1

2
− 7

2
q2 + |t+|2

2

)
. (61b)

In the region of I ∼ j , due to the large value of r2, the co-
efficient of n̂β in Eq. (60a) becomes negative, while the one in
Eq. (60b) becomes positive. As a consequence, the dashed line
for 〈I 2

x 〉1/2 in Fig. 10 is located lower than the solid line, and the
dashed line for 〈I 2

y 〉1/2 higher than the solid line. In contrast,
in the region of I � j (I � 29/2), due to the small value of
r2, the coefficient of n̂β in Eq. (60a) becomes positive, while
the one in Eq. (60b) becomes negative. As a consequence,
the dashed line for 〈I 2

x 〉1/2 in Fig. 10 is located higher than
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FIG. 14. The alignments of 〈R2
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z 〉1/2 for the

hydrodynamical (hyd) MoI as functions of I . The solid lines are for
the levels with I − j = even, while the dashed lines for those with
I − j = odd. The parameter set is the same as in Fig. 9.

the solid line, and the dashed line for 〈I 2
y 〉1/2 lower than the

solid line. The difference between the solid and dashed lines
becomes smaller due to the decrease of |w+|2. As for 〈I 2

y 〉1/2,
the large value of |u+|2 works to decrease the difference.

Similarly, in the region of I ∼ j , due to the small value of
q2, the coefficient of n̂β in Eq. (61a) becomes negative, while
the one in Eq. (61b) becomes positive. As a consequence, the
dashed line for 〈j 2

x 〉1/2 in Fig. 10 is located lower than the
solid line, and the dashed line for 〈j 2

y 〉1/2 higher than the solid
line, although the difference is small due to the small value of
|t+|2. In contrast, in the region of I � j (I � 29/2), due to the
large value of q2, the coefficient of n̂β in Eq. (61a) becomes
positive, while the one in Eq. (61b) becomes negative. As a
consequence, the dashed line for 〈j 2

x 〉1/2 in Fig. 10 is located
higher than the solid line, and the dashed line for 〈j 2

y 〉1/2 lower
than the solid line.

We expect that the behavior of the core angular momentum
�R = �I − �j gives direct information about the wobbling motion

of the triaxially deformed core. In Fig. 14, we plot the exact
root-mean-square values of 〈R2

x〉1/2, 〈R2
y〉1/2, and 〈R2

z 〉1/2. First
of all, 〈R2

y〉1/2 is the largest through the whole region from
I = 11/2 to 33/2, so that the body rotates around the y axis
with the maximum MoI. Moreover, there is no staggering to
indicate a wobbling mode in 〈R2

y〉1/2, because I − j = even
(solid line) runs below I − j = odd (dashed line) and the
difference is not unity. For comparison, we show the rigid
MoI case in Fig. 15, which demonstrates typical behavior of
the alignment of �R when the wobbling mode occurs around
the x axis with maximum MoI. Note that the increment of
the alignment 〈R2

x〉1/2 is well quantized by one unit, which
is similar to the case of 〈I 2

x 〉1/2 in Fig. 9. As a typical
characteristic of the wobbling mode around the x axis with
the largest MoI, the following identities hold:〈

R2
x

〉1/2
I

� 〈R2
x

〉1/2
I+1 for I − j = even, (62a)
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FIG. 15. The alignments of 〈R2
x〉1/2, 〈R2

y〉1/2, and 〈R2
z 〉1/2 for the

rigid (rig) MoI as functions of I . The solid and open circles correspond
to 〈R2

x〉1/2 and 〈R2
y〉1/2, while solid and open triangles correspond to

〈R2
z 〉1/2. The solid lines are for the levels with I − j = even, while

the dashed lines for those with I − j = odd. The parameter set is the
same as in Fig. 9.

and 〈
R2

x

〉1/2
I+2 − 〈R2

x

〉1/2
I

� 2. (62b)

The behavior of the three angular momenta �I , �j , and
�R ≡ �I − �j are illustrated in Fig. 16(a) for the lowest spin

state with I = j = 11/2, and in Fig. 16(b) for a higher spin
state with I = 31/2. The quantization axis is assigned to the
x axis in Fig. 16(a) and to the y axis in Fig. 16(b). The
domains where the heads of angular-momentum vectors move
are symbolized by closed loops, being depicted in a way
consistent with the exact results of the root-mean-square values
〈I 2

k 〉1/2, 〈j 2
k 〉1/2, and 〈R2

k 〉1/2 (k = x,y,z). The vector heads
of �I and �j are on the spheres with definite radii

√
I (I + 1)

and
√

j (j + 1), respectively. The loop for �I in the figure
represents the intersection between the sphere and an elliptic
cylinder, whose projection onto the zx plane is an ellipse with
semimajor axis 〈I 2

x 〉1/2 and semiminor axis 〈I 2
z 〉1/2 for the

case I = 31/2 as shown in Fig. 16(b). The way to draw the
loop for �j is the same as that for �I in Fig. 16(b). However,
the two loops for �I and �j in Fig. 16(a) are located very
close to each other because of the equality I = j and the
fact that the exact result gives 〈I 2

y 〉1/2 ∼ 〈j 2
y 〉1/2 ∼ 2.2 and

〈I 2
z 〉1/2 ∼ 〈j 2

z 〉1/2 ∼ 1.3. These values are the same as those
displayed in Figs. 10 and 14.

As for the vector �R whose square does not commute with
the Hamiltonian, we depict the corresponding loop as an inter-
section between the sphere with its radius 〈R2

x + R2
y + R2

z 〉1/2

and an elliptic cylinder with the semimajor axis 〈R2
y〉1/2 and the

semiminor axis 〈R2
z 〉1/2 for Fig. 16(a), and with the semimajor

axis 〈R2
x〉1/2 and the semiminor axis 〈R2

z 〉1/2 for Fig. 16(b).
In Fig. 16(a) �I , �j , and �R compose an isosceles triangle with
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FIG. 16. Behavior of three angular momenta �I , �j , and �R(≡ �I −
�j ) for the hydrodynamical MoI. (a) The case of the lowest spin state
of I = j = 11/2, and (b) the one of the high spin state of I = 31/2.
Both drawings are designed in consistence with the exact results of
the root mean squares of angular-momentum components. Further
details are presented in the text.

sides of I (=j ). We observe that the vector �R describing the
rotation of the triaxial body moves very close to the y axis
with the largest MoI already from I = j (= 11/2), and keeps
a similar behavior also for higher spin states. Comparing the
sizes of loops, we recognize that the extent of the precession

of �R about the y axis is narrower than that of �I . Note that �R is
nearly perpendicular to the x axis with medium MoI through
the whole range of I .

IV. REPRODUCTION OF EXPERIMENTAL DATA USING
RIGID MOI

In reproducing the electromagnetic transition rates, we are
faced with a defect when using the hydrodynamical MoI. We
compare B(E2)out/B(E2)in calculated with hydrodynamical
and rigid MoI in Table I, and B(M1)out/B(E2)in in Table II
as functions of γ and I of the initial state. The other
parameters are the same as those used in Fig. 9. As seen in
Table I, the use of the hydrodynamical MoI gives smaller
B(E2)out/B(E2)in values than the use of the rigid MoI.
Because B(E2)out/B(E2)in is proportional to tan2 γ , both
types of MoI give increasing values with increasing γ . The
decrease of the ratio B(E2)out/B(E2)in with increasing I is
more rapid for hydrodynamical MoI than the one for rigid
MoI. In Table II, the ratio B(M1)out/B(E2)in is proportional
to (geff/Q0)2, where we adopt geff = 0.414, which is obtained
from the bare value of g� − gR + (gs − g�)/(2j ) multiplied by
the quenching factor 0.5. The value of Q0 is estimated from
the following formula with the radius given by Eq. (7):

Q0 = Z

5

(
2r2

z − r2
x − r2

y

)
= 3√

5π
ZR2

0β2 cos γ, (63)

which gives Q0 = 3 cos γ b for 135Pr with β2 = 0.18. In
contrast to the case of B(E2)out/B(E2)in, the use of hy-
drodynamical MoI gives larger values of B(M1)out/B(E2)in

than using rigid MoI, and decreases slowly at high spin. The
large value of B(M1)out/B(E2)in at high spin excludes the
possibility of hydrodynamical MoI for the wobbling mode in
Lu isotopes [14] unless the sign of γ is changed [22].

There is no way to take into account the pairing effect
microscopically when using hydrodynamical MoI. However,
the pairing effect on the MoI is well taken into account
by using the rigid MoI [1,18,23]. The integrand after the
closure approximation to the cranking formula is carefully
approximated and the analytical formula was obtained in
Ref. [18], which agrees quite well with the results obtained
in Refs. [1,23]. This approximation method is extended to the
gap equation, which takes into account the Coriolis antipairing
(CAP) effect and the blocking effect. The other approximation
methods of Refs. [1,23] are not applicable to this gap equation.

TABLE I. Comparison of B(E2)out/B(E2)in between hydrodynamical (hyd) and rigid (rig) MoI as functions of γ and I of the initial state.

Initial I γ = 10◦ γ = 18◦ γ = 26◦

Hyd MoI Rig MoI Hyd MoI Rig MoI Hyd MoI Rig MoI

21/2 0.0818 0.289 0.227 0.606 0.416 1.161
25/2 0.0628 0.234 0.158 0.496 0.273 0.954
29/2 0.0498 0.197 0.106 0.420 0.181 0.812
33/2 0.0404 0.170 0.071 0.364 0.124 0.707
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TABLE II. Comparison of B(M1)out/B(E2)in between hydrodynamical (hyd) MoI and rigid (rig) MoI as functions of γ and I of the initial
state.

Initial I γ = 10◦ γ = 18◦ γ = 26◦

Hyd MoI Rig MoI Hyd MoI Rig MoI Hyd MoI Rig MoI

21/2 0.213 0.174 0.294 0.324 0.528 0.543
25/2 0.165 0.120 0.273 0.228 0.681 0.386
29/2 0.134 0.088 0.276 0.168 0.656 0.289
33/2 0.112 0.067 0.257 0.129 0.563 0.223

For highly excited states the angular-momentum depen-
dence through the decreasing pairing gap caused by the
CAP effect is well simulated by a two parameter fitting of
the rigid MoI [10–12]. However, these two parameters are
determined at very high spin and highly excited states, where
the average pairing gap is small. In the 135Pr case, these
levels are before the first backbending caused by the gapless
superconductor [24–29]. In such a case we have to refer to the
detailed behavior of MoI as a function of I , which has been
derived from the HFB analysis [18].

In reference to the I -dependent curve as displayed in Fig. 9
in Ref. [18], which is derived by the perturbation treatment of
the CAP effect on an odd-A nucleus, we assume a simplified
functional form for the I dependence of the rigid MoI:

J0

1 + exp(−(I − b̄)/ā)
. (64)

We choose the two parameters as ā = 7.5 and b̄ =
15.5. The other parameters are β2 = 0.18, V = 1.6 MeV,
J0 = 25 MeV−1, and γ = 18◦, which are the same as in Fig. 9
except for γ .

In Fig. 17, we compare the calculated energy level relative to
the reference E(I ) − 0.02I (I + 1) as functions of the angular
momentum I , together with the experimental ones [13,19].
The theoretical values are normalized at I = 11/2 in band
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FIG. 17. Comparison of E(I ) − 0.02I (I + 1) between theoreti-
cal results and experimental data in Refs. [13,19]. Theoretical values
are shown by solid triangles for band 1 and solid circles for bands 2
and 4, while experimental data for band 1 are shown by open triangles
and bands 2 and 4 by open circles. Band 2 is from I = 13/2 to 25/2,
while band 4 is from I = 17/2 to 33/2.

1. The energies of E(I ) − 0.02I (I + 1) are not sensitive to
γ , but γ = 18◦ seems to be favorable in reproducing the
electromagnetic transitions. In Table III, we compare the
calculated electromagnetic transition rates and mixing ratios
δ with the experimental data [13]. The value of Q0 and geff

are the same as adopted in Tables I and II. The mixing ratio δ
is proportional to Q0/geff . The theory reproduces all the data
quite well over the whole range of I .

In Fig. 18, we show the plot of I versus h̄ω = Eγ /2 for
bands 1, 2, and 4 in comparison with the experimental data.
The value of h̄ω for the I = 13/2 state is defined by the
transition energy Eγ to the I = 11/2 state. The agreement
with the experimental data is quite good. As for the difference
between band 2 (from I = 13/2 to 25/2) and band 4 (from
I = 17/2 to 33/2), it may come from the breaking of Bohr’s
symmetry (D2 invariance), which is discussed toward the end
of Sec. II B.

Then it becomes desirable to reproduce the backbending
curve for band 1 through the whole region before and after
the first backbending. After the backbending the yrast levels
transfer to the new bands where a high-j pair in the neutron
shell or in the proton shell is decoupled, i.e., a gapless
superconductor [27–29]. We choose a largerJ0 (= 35 MeV−1)
for this new decoupled band. The other parameters are kept the
same. In Fig. 19, the backbending curve for band 1 is shown.
The theoretical decoupled new band is shifted to coincide with
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FIG. 18. Comparison between theory and experimental data in
the backbending plot for bands 1, 2, and 4. Theoretical values are
shown by solid triangles for band 1 and by solid circles for bands 2
and 4, and experimental values are shown by open triangles for band
1, and by open circles for bands 2 and 4.
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TABLE III. Comparison of B(E2)out/B(E2)in, B(M1)out/B(E2)in, and the mixing ratio δ between experiment and theory.

I B(E2)out/B(E2)in B(M1)out/B(E2)in δ

Expt. Theory Expt. Theory Expt. Theory

17/2 0.648 0.192 −1.24 ± 0.13 −1.13
21/2 0.843 ± 0.032 0.542 0.164 ± 0.014 0.130 −1.54 ± 0.09 −1.34
25/2 0.500 ± 0.025 0.463 0.035 ± 0.009 0.0987 −2.38 ± 0.37 −1.44
29/2 � 0.261 ± 0.014 0.402 � 0.016 ± 0.004 0.0791 −1.49

the experimental band at I = 35/2. The agreement is quite
good, indicating that the CAP effect is well simulated using
two common parameters. Our calculation gives the alignments
of �I , �j , and �R(= �I − �j ) quite similar to those shown in Figs. 9
and 15 whose rigid MoI do not include any I dependence. Of
course, the identities in Eqs. (62a) and (62b) are also satisfied
in this calculation with I -dependent rigid MoI.

V. CONCLUSION

We have confirmed that two quantum numbers (nα,nβ )
assigned to each energy level characterize the wobbling mode
of the rotor angular momentum �R and the precession mode of
�j . When V = 0, the lowest level for I − j = odd has always
(0,1) for hydrodynamical MoI indicating the precession of
�j . Such a system is well described by choosing a diagonal
HP boson representation for both Iy and jy . On the other
hand, the lowest level for I − j = odd has (1,0) for rigid
MoI, indicating the wobbling mode around the axis with
maximum MoI. In this case a diagonal HP boson representation
is chosen for both Ix and jx . As for the level with I = 13/2,
the lowest level has (0,1) because of the D2 invariance
which prohibits R = 1. When γ ∼ 0, another representation is
favorable where Iz and jz are in the diagonal forms. In this case,
the two quantum numbers are reduced to R = I − j + nβ and
Rz = R − nα . The lowest levels are always Rz = 0 or nα = R
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FIG. 19. Comparison between theory and experimental data in
the backbending plot for band 1. Theoretical values are shown by
solid triangles for I � 31/2 and by solid circles for I � 35/2.
Experimental values are shown by open circles. Solid circles are
normalized at I = 35/2.

for hydrodynamical MoI. On the contrary, the lowest levels for
I − j = even have Rz = 0, but those for I − j = odd have
Rz = 2 or nα = R − 2 except for I = 13/2. This Rz = 2 level
splits into (rx,ry,rz) = (+1, + 1, + 1) and (+1,−1,−1) only
if Bohr’s symmetry is violated and only if the D2 symmetry is
satisfied.

Applying alternative HP boson representations as useful
theoretical tools, we have carefully checked the stability
equation for the case of hydrodynamical MoI with V �= 0.
We solved three cases: First, both Ix and jx are represented
in the diagonal forms, where we cannot find any stability
domain for a fixed γ and V for I > 15/2. Second, both Iy

and jy are in the diagonal forms, where no stability domain is
found for V � 0.3 MeV. Third, Iy and jx are in the diagonal
forms. In this case the stability domain is found within the
region 13◦ � γ � 30◦. The lower harmonic excitation with
ω(−) for I ∼ j corresponds to the incremental alignment of
�I along the y axis with the maximum MoI, while the one for
I � j corresponds to the precession of �j around the y axis.
In contrast, the mode with ω(+) for I � j corresponds to the
wobbling of �I around the y axis with the maximum MoI. This
crossover occurs at I ∼ 21/2.

A shortage of hydrodynamical MoI is to give a smaller
B(E2)out/B(E2)in and larger B(M1)out/B(E2)in compared
with rigid MoI. Furthermore, hydrodynamical MoI has no
room to include the Coriolis antipairing effect, which is essen-
tial in the low-lying rotational levels like in the case of 135Pr.

There is no wobbling mode around the axis with medium
MoI in the particle-rotor model even with the hydrodynamical
MoI, as is well known in the pure rotor. Then, there remains
the problem of how to describe the experimental data of
the band built on the I = 11/2− state in 135Pr. We use a
Woods-Saxon-type expression to simulate the I dependence
of the rigid MoI with two parameters, which is obtained
from the perturbation treatment of the CAP effect [18]. The
particle-rotor model with I -dependent rigid MoI gives a
typical wobbling band and attains a quite good reproduction
of the experimental data not only for the energy of the levels,
but also for the electromagnetic transition rates and the mixing
ratios δ.
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