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We have implemented a new variation-after-projection (VAP) calculation based on a time-odd Hartree-Fock
(HF) mean field. The exact Hessian matrix of the projected energy has been successively evaluated for the first
time, which makes the VAP calculation much more stable. With the time-odd mean field, the present VAP can
be applied to the yrast states not only in the even-even nuclei, but also in the odd-A and odd-odd ones. The VAP
energies throughout all spins for some calculated sd-shell nuclei are very close to the corresponding shell model
ones. Our calculations clearly show that the spin projection is very important in achieving a good approximation
to the full shell model.
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I. INTRODUCTION

Theoretically, wave functions for nuclear many-body quan-
tum systems should be obtained by solving Schrödinger’s
equation. This is done in the full shell model (SM) calculations.
However, full SM calculations up to now have been restricted
to rather small model spaces due to the the combinatorial
computational cost. To tackle the problem of the eigensystems
in even larger model spaces, approximated methods, such as
stochastic quantum Monte Carlo approaches [1,2] and shell
model truncation [3] have been developed.

Beside those approximated methods, one can also use the
variational techniques on the basis of one or more symmetry
projected Hartree-Fock-Bogoliubov (HFB) vacuum states.
Such techniques have been done in the VAMPIR method
[4] and in our previous variation after projection (VAP) [5].
Among the VAMPIR approaches, the best results with one
single HFB vacuum state are from the most general one,
called as GCV (general complex VAMPIR), where the HFB
transformation is completely unrestricted. However, GCV
requires fivefold integration for the projections of the neutron
number, proton number, and the spin, which is much too time
consuming. On the other hand, in Ref. [5], we have shown that
the spin projection is much more important than the isospin
projection and the mass number projection. So, a simpler VAP
can be the one that the HF mean field is taken and only
the spin projection is performed. This requires only threefold
integration, yet such VAP energies for the ground states in
sd-shell nuclei are already within 1.5 MeV above the shell
model ones [5] (also see Fig. 4 below).

However in Ref. [5], we imposed the time-reversal symme-
try for the HF and HFB vacuum states. This restricts our VAP
calculations only to the even spin yrast states in even-even
nuclei. To describe the yrast states in odd-A and odd-odd
nuclei as well as the even-even ones in a uniformed way, the

*tuya_sy@126.com
†zcgao@ciae.ac.cn

time reversal symmetry breaking should be considered in the
VAP calculations.

Moreover, in our practical calculations, we realized that
the real HF transformation may not be enough even if we
consider the time reversal symmetry breaking. For instance,
with real HF mean field, we cannot obtain a stable 1+ state
in an even-even nucleus from VAP. This problem naturally
disappears when we consider the complex HF transformation.

To minimize the projected energy, one may need to evaluate
the gradient of the energy, as has been done in the VAMPIR
method. However, in our calculations, we realized that with
the time-odd mean field, it is much more difficult to obtain
a converged VAP energy. We expect this problem might be
solved by calculating the Hessian matrix (i.e., the second-
order partial derivatives) of the projected energy. Fortunately,
our newly developed technique [6] opens the possibility of
evaluating such complicated Hessian matrix. Indeed, with the
Hessian matrix, our VAP calculation converges more stably.

The paper is organized as follows. Section II provides a
general introduction into the VAP. Section III is devoted to the
VAP calculations for some sd-shell nuclei. A brief summary
and outlook is presented in Sec. IV.

II. THE VAP METHOD

One can start from a randomly chosen HFB vacuum state
|�0〉. |�0〉 is assumed to be normalized. The corresponding
quasiparticle operators for |�0〉 are denoted by β

†
0,μ and β0,μ.

Using the Thouless theorem [7], one can change |�0〉 to a new
HFB vacuum state |�〉 (with single quasiparticle operators
denoted by β†

μ and βμ). Namely,

|�〉 = N e
1
2

∑
μν dμνβ

†
0,μβ

†
0,ν |�0〉 = N e

1
2

∑
μν dμνA

†
μν |�0〉, (1)

where we define the particle pair operator,

A†
μν = β

†
0,μβ

†
0,ν , (2)

Aμν = (β†
0,μβ

†
0,ν)† = β0,νβ0,μ, (3)
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for convenience.N is the normalization factor so that 〈�|�〉 =
1. d is a skew symmetric matrix, whose matrix elements are
taken as the variational parameters determining |�〉. Here, we
assume dμν to be a complex number, i.e.,

dμν = xμν + iyμν, (4)

where xμν and yμν are real numbers.
Projecting |�〉 onto good particle numbers and good spin J ,

one gets the projected states P NP ZP J
MK |�〉. Here, P N, P Z ,

and P J
MK are projection operators for the neutron number, the

proton number, and the spin, respectively. The trial nuclear
wave function can be written as the superposition of the
projected states,

|�J,M〉 =
∑
K

fKP NP ZP J
MK |�〉 =

∑
K

fKP S
MK |�〉, (5)

where we define P NP ZP J
K ′K ≡ P S

K ′K for convenience. The
corresponding projected energy then can be expressed as

EJ = 〈�J,M |Ĥ |�J,M〉
〈�J,M |�J,M〉 =

∑
K ′K f ∗

K ′fKHK ′K∑
K ′K f ∗

K ′fKNK ′K
, (6)

where

HK ′K = 〈�|ĤP S
K ′K |�〉, (7)

NK ′K = 〈�|P S
K ′K |�〉. (8)

Actually, EJ and the corresponding fK coefficients are
obtained by solving the Hill-Wheeler (HW) equation

∑
K

(HK ′K − EJ NK ′K )fK = 0. (9)

The fK coefficients also satisfy the normalization condition

〈�J,M |�J,M〉 =
∑
K ′K

f ∗
K ′fKNK ′K = 1. (10)

Clearly, EJ and fK coefficients are functions of the d matrix.
This treatment is different from the VAMPIR, where fK are
taken as independent parameters.

One may expect to find a proper d matrix so that EJ

becomes a minimum. This can be done through the variation-
after-projection (VAP) strategy, where the gradient of EJ has
to be evaluated.

First, we do the partial derivatives with respect to xμν on
both sides of Eqs. (9) and (10), and get a set of linear equations,

∂EJ

∂xμν

∑
K

NK ′KfK −
∑
K

∂fK

∂xμν

(HK ′K − EJ NK ′K )

=
∑
K

(
∂HK ′K

∂xμν

− EJ

∂NK ′K

∂xμν

)
fK, (11)

∑
K

(
f ∗

K ′
∂fK

∂xμν

+ ∂f ∗
K ′

∂xμν

fK

)
NK ′K

= −
∑
K

f ∗
K ′fK

(
∂NK ′K

∂xμν

)
, (12)

where ∂HK′K
∂xμν

and ∂NK′K
∂xμν

can be expressed as (see more details
in the Appendices)

∂HK ′K

∂xμν

= 〈�|ĤP S
K ′KA†

μν |�〉 + 〈�|AμνĤP S
K ′K |�〉

− 2HK ′KRe〈�|A†
μν |�〉, (13)

∂NK ′K

∂xμν

= 〈�|P S
K ′KA†

μν |�〉 + 〈�|AμνP
S
K ′K |�〉

− 2NK ′KRe〈�|A†
μν |�〉. (14)

The matrix elements in the right-hand sides of Eqs. (13) and
(14) can be numerically calculated using our newly developed
techniques [6]. Solving Eqs. (11) and (12), one can obtain ∂EJ

∂xμν

and ∂fK

∂xμν
.

For the partial derivatives ∂EJ

∂yμν
and ∂fK

∂yμν
, there exist the

same linear equations as Eqs. (11) and (12) but xμν should be
replaced by yμν . In this case, ∂HK′K

∂yμν
and ∂NK′K

∂yμν
can be written

as
∂HK ′K

∂yμν

= i(〈�|ĤP S
K ′KA†

μν |�〉 − 〈�|AμνĤP S
K ′K |�〉)

− 2iHK ′K Im〈�|A†
μν |�〉, (15)

∂NK ′K

∂yμν

= i
(〈�|P S

K ′KA†
μν |�〉 − 〈�|AμνP

S
K ′K |�〉)

− 2iNK ′K Im〈�|A†
μν |�〉. (16)

On the other side, one can directly derive the gradient of
the energy EJ from Eq. (6):

∂EJ

∂xμν

=
∑

K ′K
[
f ∗

K ′fK

(
∂HK′K
∂xμν

− EJ
∂NK′K
∂xμν

)]
〈�J,M |�J,M〉

+
∑

K ′K
[( ∂f ∗

K′
∂xμν

fK + f ∗
K ′

∂fK

∂xμν

)
(HK ′K − EJ NK ′K )

]
〈�J,M |�J,M〉 .

(17)

The second term in the right-hand side of above equation
vanishes due to the HW equation, so we have

∂EJ

∂xμν

=
∑

K ′K
[
f ∗

K ′fK

(
∂HK′K
∂xμν

− EJ
∂NK′K
∂xμν

)]
〈�J,M |�J,M〉 . (18)

The above equation also holds if xμν is replaced by yμν . Our
numerical calculations have confirmed that the gradients of EJ

from Eq. (18) and from Eqs. (11) and (12) are indeed identical.
The quantities of ∂fK

∂xμν
and ∂fK

∂yμν
obtained from Eqs. (11) and (12)

look useless, and one might prefer to use Eq. (18). However,
∂fK

∂xμν
and ∂fK

∂yμν
are required if one wants to calculate the second-

order partial derivatives of EJ , i.e., the Hessian matrix.
In the numerical optimization, Hessian matrix plays impor-

tant roles. First it can be used to test if a critical point with zero
gradient is a local minimum, local maximum, or a saddle point.
In the present work, we try to search for the energy minimum,
so the Hessian matrix at the minimum should be positive or
semipositive definite. It is known that an isolated minimum
should have positive definite Hessian matrix. However, this is

064307-2



IMPLEMENTATION OF THE VARIATION-AFTER- . . . PHYSICAL REVIEW C 95, 064307 (2017)

not our case because the VAP energy minimum is not isolated.
One can imagine that if a state |�〉 is at the energy minimum,
then the rotated state |�′〉 = R̂(�)|�〉 corresponds to the same
energy. Clearly, |�〉 and |�′〉 have different d matrices. Thus
our Hessian matrix should be semipositive definite.

In quasi-Newton’s method, the minimum is always assumed
to be isolated. Correspondingly, the approximated Hessian
matrix is imposed to be positive definite at the minimum. We
have applied the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm to our previous calculations [5], and it does work
in the case where the mean field has time reversal symmetry.
However in the present case, the time reversal symmetry is
broken, the BFGS method converges very slowly or sometimes
even does not converge at all. Under this situation, we are
forced to come back to the Newton’s method in which the
Hessian matrix needs to be exactly calculated.

The evaluation of the Hessian matrix is more complicated.
The second partial derivative of EJ with respect to xμν and
xμ′ν ′ can be further deduced based on Eq. (18):

∂2EJ

∂xμν∂xμ′ν ′
=

∑
K ′K

f ∗
K ′fK

(
∂2HK ′K

∂xμν∂xμ′ν ′
− EJ

∂2NK ′K

∂xμν∂xμ′ν ′

)

−
∑
K ′K

f ∗
K ′fK

(
∂EJ

∂xμν

∂NK ′K

∂xμ′ν ′
+ ∂EJ

∂xμ′ν ′

∂NK ′K

∂xμν

)

−
∑
K ′K

(
∂f ∗

K ′

∂xμν

∂fK

∂xμ′ν ′
+ ∂f ∗

K ′

∂xμ′ν ′

∂fK

∂xμν

)

× (HK ′K − EJ NK ′K ). (19)

Notice that we have applied Eq. (11) in obtaining Eq. (19).
The matrix elements ∂2HK′K

∂xμν∂xμ′ν′ and ∂2NK′K
∂xμν∂xμ′ν′ in Eq. (19) can

be numerically evaluated using the explicit expressions in the
Appendices. One also needs to evaluate ∂2EJ

∂xμν∂yμ′ν′ and ∂2EJ

∂yμν∂yμ′ν′
which forms are the same as Eq. (19) but xμν (or xμ′ν ′) should
be replaced by yμν (or yμ′ν ′).

Once we have EJ , the gradient and the Hessian of EJ , the
minimization of EJ becomes a optimization problem which
can be solved using the trust region algorithm [8].

III. THE NUMERICAL CALCULATIONS

In the present work, we reduce |�0〉 and |�〉 to be Hartree-
Fock (HF) Slater determinants (SD). So the particle number
projection can be omitted. This saves much computational time
because we only perform the spin projection.

Let us first establish the initial |�0〉 SD, which is the starting
point in our VAP. The spherical single particle basis in a M-
dimensional model space is denoted by |i〉 ≡ |Nljm〉. The
corresponding creation and annihilation operators are denoted
by c

†
i and ci , respectively.

Following the notations of the textbook by Ring and Schuck
[7], the HFB transformation is written as(

c

c†

)
=

(
U0 V ∗

0
V0 U ∗

0

)(
β0

β
†
0

)
=

(
U V ∗
V U ∗

)(
β

β†

)
. (20)

Here, we do not mix the neutron states with the proton states
in the HFB transformation. The simplest HFB transformation

is U = I and V = 0. I is the unit matrix. The corresponding
vacuum is the true vacuum |0〉 with ci |0〉 = 0. Based on such
trivial HFB transformation, one can exchange the first n(� M)
columns of U and V . The resulting vacuum for the new U,V

becomes |�00〉 ≡ ∏n
i=1 c

†
i |0〉, i.e., the SD with the first n orbits

occupied. The corresponding creation operator becomes

β
†
00,μ =

{
c†μ, for μ > n

cμ, for μ � n
. (21)

Now, |�0〉 can be obtained from |�00〉 through the Thouless
formula,

|�0〉 = N0e
1
2

∑
μν d0,μνβ

†
00,μβ

†
00,ν |�00〉. (22)

To keep the particle number a good quantum number, the
nonzero parameters are those whose β

†
00,μβ

†
00,ν pairs do not

change the particle number. In other words, according to
Eq. (21), the indexes μ and ν in d0,μν should satisfy that μ > n
and ν � n, or μ � n and ν > n. This constraint is also valid
for the d matrix in Eq. (1). Considering the skew symmetry of
the d matrix, one can easily count the number of independent
dμν matrix elements, denoted by DVAP. More explicitly,

DVAP = N (MN − N ) + Z(MZ − Z), (23)

where N and Z are valent neutrons and protons, respectively.
MN and MZ are the dimensions of the model spaces for
neutron and proton. Notice that for a given nucleus, DVAP

is independent of the spin. For instance, in the sd shell model
space, DVAP = 64 for all spins in 24Mg. Since dμν is complex,
the number of the independent VAP parameters is actually
2DVAP. So, the |�0〉 can be randomly established by randomly
chosen the nonzero d0,μν parameters in Eq. (22).

We start the VAP calculation with |�〉 = |�0〉 by setting d
in Eq. (1) to zero. The iteration terminates when the gradient
of the EJ becomes less than 0.1 keV. This is a very strict
condition so that the converged energy almost reaches the
exact minimum. Moreover, to confirm the lowest minimum,
we perform the VAP calculations using different initial |�0〉
states. All the final converged energies are collected, and one
may find that the lowest minimum appears repeatedly. We take
the lowest converged energy (denoted by EVAP) as our final
VAP result.

Because the time reversal symmetry is broken in the
HF mean field, the present VAP can be extended to the
calculations for the odd-spin states in even-even nuclei and all
the yrast states in odd-A and odd-odd nuclei. In the practical
VAP calculations, we adopted the USDB Hamiltonian [9].
As testing examples, the yrast states in 24Mg, 25Mg, 26Mg,
and 26Al have been calculated. These nuclei represent the
even-even, odd-A, and odd-odd ones, respectively. All the
calculations are performed using the same code. The VAP
energies as well as the shell model ones are shown in Fig. 1. We
should remind that in calculating the high-spin states, there is a
new difficulty that the norm of the high-K projected states are
usually very tiny. This may lead to large calculation errors in
the evaluations of the involved VAP matrix elements. To avoid
this problem, we actually omitted those projected components
with K � 5.
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FIG. 1. Calculated VAP energies EVAP and the shell model
energies ESM, with the USDB interaction along the yrast line for
(a) 24Mg, (b) 25Mg, (c) 26Al, and (d) 26Mg.

One can clearly see in Fig. 1 that the VAP results are very
close to the shell model ones which are obtained from the
NUSHELLX code [10]. However, we used only a single slater
determinant and only did the spin projection. The present
results clearly show that the spin projection is very important
in achieving a good approximation to the full shell model.

To show the energy difference between VAP and SM more
clearly, we plot in Fig. 2 the corresponding EVAP − ESM

energies. Up to the median spin region (J � 6), EVAP − ESM

ranges from 200 keV to 600 keV. With spin increasing higher,
EVAP − ESM decreases, and even becomes zero at the highest

FIG. 2. The energy differences between the shell model energies
ESM, and the present VAP energies EVAP.

FIG. 3. The J -scheme shell model dimension as a function of the
spin, J , for the calculated nuclei in sd model space.

two spins. This behavior of EVAP − ESM may be related to the
shell model configuration space. The shell model dimensions
as functions of the spin J are shown in Fig. 3. It is seen that the
J -scheme shell model dimension also decreases since J > 4.
Such similar trends indicate that the VAP wave function is more
close to shell model wave function if the configuration space
is small. However for J � 4, the situation looks different. The
shell model dimension decreases with spin decreasing. But
EVAP − ESM roughly remains unchanged. One may consider
that the ground state is a superfluidity state, and a single slater
determinant should not fully account for the pairing effect.
This might be a reason why EVAP − ESM does not decrease
with shell model configuration space shrinking.

However, in our previous VAP calculations [5], we indeed
took the HFB vacuum state and performed the spin (J ), the
isospin (T ), and the mass number (A) projections. The VAP
with JT A projection should have properly accounted for the
pairing effect. But in that VAP-JT A calculations, we imposed
the time reversal symmetry, real d matrix, and the symmetry of
eiπĴz (rotation around z axis by π angle). Thus this VAP-JT A
can only be applied to the even spins in even-even nuclei.
Under the above constraints, the number of the VAP-JT A
parameters is 42 for all calculated sd even-even nuclei. The
energy differences EJTA − ESM at J = 0 are compared with
the present EVAP − ESM in Fig. 4. It is interesting that most of
the present VAP energies are even lower than the VAP-JT A
energies despite VAP-JT A takes the HFB mean field and
recovers all the quantum numbers. However, the present HF
mean field breaks the symmetries of the time reversal and eiπĴz ,
and allows the d matrix to be complex. This leads the number
of the parameters, 2DVAP, much larger than that of VAP-JT A.
Thus the present VAP wave function might have even larger
overlap with the shell model wave function. However, if we
impose the same constraints as the VAP-JT A to the present HF
mean field, this may considerably reduce the number of VAP
parameters. Consequently, the corresponding VAP energies
EPHF, which have been calculated in Ref. [5] and also shown
in Fig. 4 here, are higher than both EJTA and EVAP, but yet
within 1.5 MeV relative to the shell model ones.
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FIG. 4. The relative energies of EVAP (present), EJTA [5], and
EPHF [5] to the SM energies ESM for the ground states of even-even
sd nuclei.

To check if the Hessian is semipositive definite or not at the
minimum, we calculated the eigenvalues, λi , of the Hessian
and show them in Fig. 5. For the initial HF vacuum |�0〉,
the eigenvalues are both positive and negative. This means
the Hessian matrix is indefinite. When the VAP iteration
converges, it is clearly shown in Fig. 5 that λi � 0 for all
i. Moreover, one can see that almost half of the eigenvalues
are very close to zero. This confirms the Hessian matrix is
semipositive definite at the energy minimum.

The present VAP wave function is actually a projected Slater
determinant, the form of which is shown in Eq. (5), where the
particle number projection operators, P N and P Z , should be
removed and |�〉 can be replaced by a Slater determinant. It
looks that this simple form of nuclear wave function can be
easily applied to heavier nuclei in the practical calculations.

FIG. 5. Eigenvalues of the Hessian matrix of the projected energy
for the ground state of 24Mg. The black filled rectangles show the ones
at an initial HF vacuum |�0〉. The red filled dots show the ones at
the converged HF vacuum. The total number of the independent VAP
parameters is 2DVAP = 128.

FIG. 6. Calculated B(E2 : I → I − 2) values from VAP (red
filled circles) and SM (black filled squares) with the wave func-
tions corresponding to Fig. 1. The effective charges are taken
as en = 0.5e,ep = 1.5e, and the oscillator value h̄ω = 45A−1/3 −
25A−2/3 MeV.

Using the VAP wave functions, one can easily calculate
other observables. As a preliminary test, we calculated the
B(E2 : I → I − 2) values with the wave functions corre-
sponding to the energies in Fig. 1. As shown in Fig. 6, the
B(E2) values from VAP are generally close the ones from SM
[10]. This shows that the present VAP wave functions are also
good approximations to the exact shell model ones.

IV. SUMMARY AND OUTLOOK

Based on the time-odd HF slater determinant, we have
successfully implemented the VAP calculations using our
newly developed techniques. This VAP now can be reliably
applied to the yrast states in all kinds of nuclei. In the present
VAP, we have successfully calculated the Hessian matrix as
well as the gradient of the projected energy which makes the
VAP calculation converges more stably. Although only the
spin projection is involved, the present VAP still has achieved
a very good approximation to the shell model and even better
than our previous VAP-JT A results [5]. This further confirms
the conclusion made in our previous work [5] that the spin
projection plays a key role.

One may expect that the present VAP can be further
developed by including more projected SDs in the VAP wave
function. This will not only improve the present results, but
also make it possible to extend the VAP calculations to the
nonyrast states, as have done in the excited VAMPIR. But in
the latter, the HFB vacua are practically time-even and axially
symmetric so that the computational time can be considerable
reduced. In our case, we plan to take nonaxial time-odd HF
SDs as adopted in the present calculations. Such work is under
working, and we hope the new VAP results for nonyrast states
will come out in the near future.
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On the other hand, one may expect to release the constraints
of the VAP-JT A and take the most general HFB mean field to
do the VAP-JT A calculation, which is similar to the the GCV
calculation [4]. This should have even better results, but it is
also very much time consuming due to the seven-dimensional
integration for the JT A projection. Therefore, this may be
very hard to apply such VAP calculation to the heaver nuclear
region. Thus we do not plan to go further along this line for
the moment.
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APPENDIX A: GRADIENT OF THE PROJECTED MATRIX
ELEMENTS

We define

|�〉 = e
1
2

∑
μν dμνA

†
μν |�0〉, (A1)

then the normalized HFB vacuum, |�〉, can be written as

|�〉 = |�〉√〈�|�〉 . (A2)

So, the projected matrix element in Eq. (7) becomes

HK ′K = 〈�|ĤP S
K ′K |�〉

〈�|�〉 . (A3)

Using the identities

∂|�〉
∂xμν

= ∂dμν

∂xμν

∂|�〉
∂dμν

= A†
μν |�〉, (A4)

∂〈�|
∂xμν

= ∂d∗
μν

∂xμν

∂〈�|
∂d∗

μν

= 〈�|Aμν, (A5)

one can deduce that

∂HK ′K

∂xμν

= 1

〈�|�〉
∂〈�|ĤP S

K ′K |�〉
∂xμν

− HK ′K

〈�|�〉
∂〈�|�〉
∂xμν

= 〈�|ĤP S
K ′KA†

μν |�〉 + 〈�|AμνĤP S
K ′K |�〉

〈�|�〉

−HK ′K
〈�|Aμν |�〉 + 〈�|A†

μν |�〉
〈�|�〉

= 〈�|ĤP S
K ′KA†

μν |�〉 + 〈�|AμνĤP S
K ′K |�〉

−HK ′K [〈�|Aμν |�〉 + 〈�|A†
μν |�〉]. (A6)

∂NK′K
∂xμν

can also be obtained by setting Ĥ = 1 in Eq. (A6).
Similarly, using

∂|�〉
∂yμν

= ∂dμν

∂yμν

∂|�〉
∂dμν

= iA†
μν |�〉, (A7)

∂〈�|
∂yμν

= ∂d∗
μν

∂yμν

∂〈�|
∂d∗

μν

= −i〈�|Aμν, (A8)

one can also get Eqs. (15) and (16).

APPENDIX B: HESSIAN OF THE PROJECTED MATRIX
ELEMENTS

Based on the expressions of ∂HK′K
∂xμν

, one can further deduce
the Hessian of HK ′K . Here, we only present the final expres-
sions of the Hessian matrix elements:

∂2HK ′K

∂xμν∂xμ′ν ′

= 〈�|ĤP S
K ′KA†

μνA
†
μ′ν ′ |�〉 + 〈�|AμνĤP S

K ′KA
†
μ′ν ′ |�〉

+ 〈�|Aμ′ν ′ĤP S
K ′KA†

μν |�〉 + 〈�|AμνAμ′ν ′ĤP S
K ′K |�〉

− 2
∂HK ′K

∂xμν

Re〈�|A†
μ′ν ′ |�〉 − 2

∂HK ′K

∂xμ′ν ′
Re〈�|A†

μν |�〉

− 2HK ′KRe[〈�|A†
μνA

†
μ′ν ′ |�〉 + 〈�|AμνA

†
μ′ν ′ |�〉],

(B1)

∂2HK ′K

∂xμν∂yμ′ν ′

= i〈�|ĤP S
K ′KA†

μνA
†
μ′ν ′ |�〉 + i〈�|AμνĤP S

K ′KA
†
μ′ν ′ |�〉

− i〈�|Aμ′ν ′ĤP S
K ′KA†

μν |�〉 − i〈�|AμνAμ′ν ′ĤP S
K ′K |�〉

+ 2
∂HK ′K

∂xμν

Im〈�|A†
μ′ν ′ |�〉 − 2

∂HK ′K

∂yμ′ν ′
Re〈�|A†

μν |�〉

+ 2HK ′K Im[〈�|A†
μνA

†
μ′ν ′ |�〉 + 〈�|AμνA

†
μ′ν ′ |�〉],

(B2)

∂2HK ′K

∂yμν∂yμ′ν ′

= −〈�|ĤP S
K ′KA†

μνA
†
μ′ν ′ |�〉 + 〈�|AμνĤP S

K ′KA
†
μ′ν ′ |�〉

+ 〈�|Aμ′ν ′ĤP S
K ′KA†

μν |�〉 − 〈�|AμνAμ′ν ′ĤP S
K ′K |�〉

+ 2
∂HK ′K

∂yμν

Im〈�|A†
μ′ν ′ |�〉 + 2

∂HK ′K

∂yμ′ν ′
Im〈�|A†

μν |�〉

+ 2HK ′KRe[〈�|A†
μνA

†
μ′ν ′ |�〉 − 〈�|AμνA

†
μ′ν ′ |�〉].

(B3)

The Hessian of NK ′K can be directly obtained from Eqs. (B1)–
(B3) by setting Ĥ = 1.
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