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Improvement to the gross theory of β decay by inclusion of change in parity
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An improvement to the single-particle structure is made to the gross theory, which is a global β-decay model.
The gross theory is based on the sum rule of the intensity of the β-decay transition and a strength function. This
model provides reasonable results for β-decay rates and delayed neutrons for the entire nuclear mass region.
An attempt is made to improve the gross theory of nuclear β decay by considering the change in parity at the
single-particle level of ground-state nuclei. In this treatment, the nuclear matrix elements are suppressed when
the parity of the single neutron and proton levels is different for the allowed transition. The assignment of parity is
performed using the Woods-Saxon–type single-particle potential. The discrepancies from experimental half-lives,
which appeared in the vicinity of the magic numbers of neutrons and protons, are systematically improved in the
nuclear mass region.
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I. INTRODUCTION

β decay occurs due to the weak interaction, and a nucleus
in a neutron-rich nuclear mass region releases an electron, a
γ ray, and an antineutrino. The β− decay process occurs in
neutron-rich nuclei and plays an important role in nuclear
astrophysics, such as in the r-process nucleosynthesis in
stars or when manipulating a nuclear reactor with delayed
neutrons, which are emitted in an accompanying process.
In order to theoretically estimate the β-decay rate and the
delayed neutron probability, it is necessary to calculate the
nuclear matrix elements of the β decay. The gross theory is
a macroscopic model that describes various types of β decay.
The gross theory is based on the sum rule of the β-decay
strength function and treats the transitions to all the final
nuclear levels in a statistical manner. It has been successful
in describing β decay for the entire range of nuclear masses
[1–7]. The results obtained by the gross theory provide a guide
for experiments on β decay, especially for newly measured
nuclear data, such as very-neutron-rich nuclei, and for purely
theoretical nuclei that are extremely different from known
nuclei. Due to its statistical treatment, the gross theory only
describes macroscopic features, and the gross theory ignores
microscopic properties such as spin and the parity of nuclei.

In the preset paper, we introduce a microscopic correction
to the gross theory and discuss its effect on the half-lives of
β decay. In particular, we focus on the parity change when
interchanging a ground-state neutron and proton in a single-
particle state. We estimate a single-particle state with a global
single-particle potential and suppress the allowed transition
of the β decay. The essential difference in this model is its
treatment of the β-decay strength function, which corresponds
to the squared transition matrix element. In Sec. II, we present
a short introduction to the theory of β decay. In Secs. III
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and IV, we review the gross theory and discuss the proposed
improvements to the gross theory, respectively. The obtained
results and a discussion are presented in Sec. V. Finally, a
summary is presented in Sec. VI.

II. BETA DECAY

The decay constant of the β decay is divisible by the
β-decay operators, �, and it is obtained as the sum of the
partial decay constants, λ�. If we take into account the allowed
transitions and the first forbidden transition, the total β-decay
rate can expressed as

λβ = λallowed + λfirst-forbidden

= λF + λGT + λ
(0)
1 + λ

(1)
1 + λ

(2)
1 , (1)

where the terms on the right-hand side are the decay rate of
the Fermi transition, the Gamow-Teller transition, and the first-
forbidden transitions of rank L = 0, 1, and 2, respectively. The
type of β decay is determined by the change in the spin-parity
between the parent and daughter nuclei.

Under the usual approximation, the decay rate can be
written in terms of the nuclear matrix elements, |M�(E)|,
which can be calculated in the framework of nuclear physics,
and the integrated Fermi function, f (E), which represents the
distortion of the wave functions, due to the Coulomb force, as
follows:

λF = m5
ec

4

2π3h̄7 |gV|2
∫ 0

−Qβ

|MF(E)|2f (−E)dE,

λGT = m5
ec

4

2π3h̄7 |gA|23
∫ 0

−Qβ

|MGT(E)|2f (−E)dE,

λ
(2)
1 = m5

ec
4

2π3h̄7

(mec

h̄

)2
|gA|2

∫ 0

−Qβ

∑
ij

|Mij (E)|2f (−E)dE,
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(0)
1 = m5

ec
4

2π3h̄7

(mec
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)2
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∫ 0

−Qβ

|Mσ ·r (E)|2f1A(−E)dE.

(2)

Here, the coefficients are composed of the coupling constant
of the weak interaction and the following physical constants:
the mass of the electron, me; the speed of light, c; and the
reduced Planck constant, h̄. There are two types of coupling
constants for the weak interaction: the vector gV and the axial
vector gA. The integral is performed from −Qβ to 0, and Qβ

is the total (maximum) decay energy from the ground state of
parent-to-daughter nuclei (the β-decay Q value).

The nuclear matrix elements and the integrated Fermi
function are necessary in order to calculate the β-decay rate.
For the integrated Fermi function, the numerical values can
be rather easily and precisely obtained. The calculation of the
nuclear matrix elements, however, is rather difficult because
of the complexity of the nuclear many-body problem with a
complicated nuclear force. Two types of approaches that are
applicable to nuclei in the entire mass region have been inves-
tigated: microscopic approaches, which include quasiparticle
random phase approximation (QRPA) and probably the shell
model, and macroscopic approaches, which include the gross
theory (GT), which is the focus of the present study and is
summarized in Sec. III.

III. GROSS THEORY

The gross theory of β decay assumes that the sum of the
intensity remains constant during the transition from the initial
state to the final state. Note that β decay also obeys such a sum
(and an energy-weighted sum) rule.

In the gross theory, a one-particle strength function, D�,
is introduced, and the squared nuclear matrix element can be
written as

|M(E)�|2 =
∫ εmax

εmin

D�(E,ε)W (E,ε)
dn1

dε
dε, (3)

where ε is the one-particle energy of the decaying nucleons,
and E is the (observable) transition energy measured from
the parent state. The function W (E,ε) is a weighting function
that reflects the Pauli exclusion principle, and dn1/dε is the
one-particle energy distribution of the decaying nucleons. The
one-particle strength function, D(E,ε), is a smooth function,
and satisfies the same sum and energy-weighted sum rules
as |M(E)|2. For the Fermi transition, the strength function is
chosen such that it forms a sharp peak at the energy of the
isobaric analog state (IAS), and has a long-tailed distribution
over all E. For the Gamow-Teller transition, the strength
function is chosen such that it has a peak at a few MeV above
the energy of the IAS, and is a broad-tailed distribution. In a

FIG. 1. One-particle level densities: (1) surface to the lowest
level, |M�s→l|2; (2) surface to continuum, |M�s→c|2; (3) continuum
to continuum, |M�c→c|2; and (4) continuum to the lowest level,
|M�c→l|2.

current study, a combination of hyperbolic-secant functions is
adopted as the functional form of D(E,ε) [6].

Nuclear levels are treated as single discrete levels at the
Fermi surface and elsewhere as a continuum of levels, accord-
ing to the Fermi gas model [2], as shown in Fig. 1. The major
components of probable transitions can be listed as follows: (1)
discrete-to-discrete levels, (2) discrete-to-continuum levels,
(3) continuum-to-continuum levels, (4) continuum-to-discrete
level, and (5) incoherent transitions. The total squared nuclear
matrix element is therefore composed of the following terms:

|M�(E)|2 = |M�s→l(E)|2 + |M�s→c(E)|2 + |M�c→c(E)|2
+ |M�c→l(E)|2 + incoherent. (4)

Here, s is the discrete level of the neutron (the surface level),
l is the discrete level of the proton (the lowest level), and c is
the continuum of levels for the β− case (see Fig. 1).

In the first component, |M�s→l(E)|2, the distribution of
the matrix element concentrates into the ground state of
the daughter nucleus, E = −Qβ , therefore the cross terms
of M�s→l(E) with other components of the matrix element
like M�s→l(E) · M�s→c(E) are small or negligible (i.e., no
incoherence). In the actual calculation carried out in this
study, |M�s→l(E)|2 is treated as a δ function, δ−Qβ

(E) [2].
In the second component, |M�s→c(E)|2, the distribution of the
squared matrix element is described by D(E,ε) [and W (E,ε)],
and in the third component, |M�c→c(E)|2, the distribution of
the squared matrix element is the integral of the product of
the Fermi-gas level densities and D(E,ε) [and also W (E,ε)].
In the third component, the absolute value of the squared
matrix element near the ground state of the daughter nucleus
at E = −Q is small due to the small value of dn1/dε at these
energies. Therefore, the cross terms of the matrix elements
with M�c→c(E) in the lower E region are expected to be small.
However, in the higher energy region, these cross terms seem to
be large. Concerning the decay rate, a large number of decay
transitions are located near the ground state of the daughter
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FIG. 2. Schematic diagram of single-particle levels for 131
49 In82 and 132

49 In83. (n: neutron, p: proton.) The text in pink indicates the ground-state
level. The indicated levels were estimated from data presented in Ref. [9].

nucleus due to f (E) being generally large near this region on
a logarithmic scale. In the fourth component, |M�c→l(E)|2, we
could give a similar discussion to the third component.

Based on the above discussion, although the contribution
of the incoherent components to the total squared nuclear
matrix element might be expected not to be small, we assume
that incoherent components can be omitted. Thus, in the
following, we discuss transitions only in terms of the first four
components. The interference terms may affect the results of
the gross theory in more precise analysis, and we will study
the influence of the interference terms to the gross theory in
the near future.

Equation (4) holds for even-even nuclei. For other cases,
such as odd-A and odd-odd nuclei, the treatment of the
discrete levels is more complicated and some correspondent
components are added. However, Eq. (4) remains as a main
component. For details, see Ref. [2]. In another study,
a BCS-type pairing configuration was phenomenologically
introduced [5].

In the gross theory, the first-forbidden transition and the
allowed transition were taken from an earlier study [3]. The
resulting form is shown as Eq. (1). The first version of the
gross theory (GT1) is given in Ref. [4], and the second version
of the gross theory (GT2) is given in Ref. [7].

The β-decay half-lives calculated using the gross theory
generally exhibit a smoother trend on the isotopic systematics
for the entire region of the nuclei, as compared to “mi-
croscopic” models. In some cases, the half-lives calculated
by the gross theory are consistent with experimental trends,
and an example of this is shown for neutron-rich nuclei in
Ref. [8].

IV. IMPROVEMENTS TO THE GROSS THEORY

The decay constant for β decay is expressed as in Eq. (1).
Note that each transition depends on the particular nuclear
structure, such as the spin, parity, and deformation. In the

framework of the original gross theory, the transitions are not
restricted by the nuclear microscopic properties. The intensi-
ties of all transition types are calculated for the corresponding
E, and, for all nuclei, they are integrated from −Qβ to 0.

Consider a single-particle level for the neutron and proton in
the ground state at a Fermi surface. Figure 2 shows examples of
this situation for 131

49 In82 and 132
49 In83. In the case of 131

49 In82, the
single-neutron level of the ground state is 2d3/2 with positive
parity, while the single-proton level of the ground state is 1g9/2

with positive parity. Note that these levels have the same parity.
In the case of 132

49 In83, however, the single-neutron level of the
ground state changes to 2f7/2 with negative parity, and this
change affects the transition. In an actual nucleus undergoing
β decay, the decay rate is the sum of all of the corresponding
transitions at all possible levels between neutrons and protons.
However, the ground-to-ground state transition is generally
dominant, because the integrated Fermi function, f (E), at the
ground state of the daughter nucleus is generally large on a
logarithmic scale.

In general, an allowed transition should be forbidden if
the parities of the parent and daughter nuclei are different
and if the change in spin is greater than one. Considering the
above situation, we add a factor to the gross theory to hinder
particular transitions, especially allowed transitions. Although
such a selection rule must be obeyed in order to modify the
model, in the original gross theory, the decay rates are treated
as a simple sum independent of the single-particle states. In the
case of 131

49 In82, the actual transition between the ground-state
neutron and proton levels is the second forbidden transition;
however, the gross theory gives the half-life of this nucleus in
terms of the sum of the allowed and the first transition rates.
Furthermore, in the current framework of the gross theory, the
levels are on a continuum, so the realistic spin-parity of nuclei
cannot be considered. We will thus make some assumptions
and refine the theory as described below.

The squared matrix element is expressed as shown in
Eq. (4). The discrete levels (l and s) correspond to the
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FIG. 3. Mismatching of parity between ground-state neutron
levels and proton levels (red). Only nuclei on the β− side are plotted.
Filled squares (black): stable or long-lived nuclides. Open squares
(green): nuclides experimentally identified [11]. Dots (gray): nuclides
predicted to exist by the KTUY mass model [10].

ground-state levels. The continuum (c) includes levels with
various types of spin-parity. Therefore, we propose a model

to estimate the spin-parity of both single-neutron and single-
proton ground-state levels, where the matrix elements related
to these discrete levels contain a hindrance. When the parity
of the ground-state neutron and proton are mismatched in
the allowed transition, in the model calculations, the matrix-
element parts, s → l, l → c, and c → l, are eliminated, and
the continuum-to-continuum part, c → c, remains, as shown
in Fig. 1. In our phenomenological approach, we focus only
on parity mismatching, and the change in spin is not further
considered in this study.

Note that this treatment is applied to all nuclei, i.e.,
even-even, odd-A, and odd-odd nuclei. In the case of odd-
A, the estimated spin-parity may coincide with what is
found experimentally, if the total experimental spin-parity is
governed by the single-particle state.

In order to estimate the spin-parity, we adopt a modified
Woods-Saxon potential for spherical nuclei over the entire
nuclear chart [9]. This only applies to small nuclear shapes.
We estimate the nuclear deformation from a global calculation
of ground-state nuclear masses and then apply the KTUY mass
formula [10] to the estimation. The threshold deformation
parameter is determined so that experimental trends are
reproduced, and we adopt the parameter α2 = 0.05.
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Figure 3 shows the locations of mismatched parity for a
wide region of nuclear masses. The region with mismatching is
located near points that result in the magic numbers of neutrons
and protons (for example, N ∼ 126 with 60 � Z � 80, and
N ∼ 82 with 40 � Z � 60). The region in which N > 82 with
Z ≈ 50 corresponds to a parity-mismatching combination of
2f7/2(−) for the neutron level and 1g9/2(+) for the proton
level, as shown in Fig. 2. Other cases are given in the same
manner.

V. RESULTS

Figure 4 shows the β−-decay half-lives for rubidium (Z =
37) to tin (Z = 50) isotopes in the neutron-rich mass region.
In the region above N = 82, the half-lives obtained from the
original gross theory [7] with the KTUY mass model [10] (thin
line) systematically slope downward and underestimate the
experimentally measured values. These isotopes are located
in the mismatched region shown in Fig. 3. At N = 82, the
β-decay Q value changes sharply, and the half-lives calculated
using the original gross theory follow the trend of Q-value
systematics and exhibit a steep down slope as N increases. The
improved gross theory (thick lines) increases the half-lives in
this region, and consequently the slope is more gradual. This
follows the trend observed in experimental data. The main
component determining the half-life comes from the remaining
continuum-to-continuum part of Eq. (4). The first-forbidden
component provides a minor contribution to the half-life of
these nuclei. The results of the FRDM + QRPA calculation
[12] are also plotted, and these results diverge from the
experimental data and sometimes exhibit a kink.

Figure 5 shows the ratio between the theoretical and
experimental half-lives on a logarithmic scale. In the initial
gross theory (upper panel), underestimated regions are located
near the magic numbers: Z ≈ 50 with N ≈ 82, N > 50 around
Z ≈ 38, Z ≈ 20 with N ≈ 28, and so on. In the improved
gross theory (lower panel), these periodic underestimations
weaken or disappear, and in their place, there are more
overestimated regions, such as Z ≈ 28 with 40 < N < 50.

Table I shows examples of experimental and calculated
β-decay half-lives for selected nuclei. In the case of Z = 18
with N = 28–32 and Z = 36 with N = 54–56, the improved
half-lives (‘present study’ in the table) become longer and
are generally comparable to the experimental results. In the
case of Z = 49 with N = 82–84, the improvement appears
to be insufficient. However, the trend is somewhat better than
for previous studies, as shown in Fig. 4. The case of Z = 28
isotopes in the vicinity of 78Ni in the original gross theory
provides excellent results, whereas the improved calculation
provides worse results.

Note again that, in the case of (49, 82), 131
49 In82, the calcula-

tion is still performed using the sum of the allowed transition
and the first-forbidden transition given by Eq. (1), although the
transition is actually a second-forbidden transition considered
from the ground-state configuration in spin-parity.

In the present study, we treat only a suppression of the
allowed transition on the parity change, and the angular-
momentum mismatch is not considered. Therefore the selec-
tion rule for the type of β decay has not been actually applied
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FIG. 5. Ratio of calculated to experimental β− decay half-lives
shown on a logarithmic scale. (Top) The original gross theory.
(Bottom) Improved gross theory.

to each nucleus in this framework, i.e., the second-forbidden
transition occurs with no parity change, while the calculation

TABLE I. Experimental and calculated β-decay half-lives for
selected nuclei. ‘Spin-orbit and parity’ (second and third column)
is the single-proton and -neutron spin-parity at the Fermi surface in
the modified Woods-Saxon potential in Ref. [9].

(Z, N ) Spin-orbit and parity Half-lives (s)

proton neutron previous present study exp. [14]

(18, 28) 1d3/2(+) 1f7/2(−) 1.04 14.7 8.4
(18, 29) 1d3/2(+) 2p3/2(−) 0.18 0.35 1.23
(18, 30) 1d3/2(+) 2p3/2(−) 0.086 0.48 0.47
(18, 31) 1d3/2(+) 2p3/2(−) 0.050 0.11 0.17
(28, 47) 1f7/2(−) 1g9/2(+) 0.35 0.67 0.344
(28, 48) 1f7/2(−) 1g9/2(+) 0.20 0.85 0.238
(28, 49) 1f7/2(−) 1g9/2(+) 0.14 0.30 0.128
(28, 50) 1f7/2(−) 1g9/2(+) 0.087 0.32 0.110
(36, 54) 3p3/2(−) 2d5/2(+) 4.2 28.1 32.22
(36, 55) 3p3/2(−) 2d5/2(+) 1.5 2.4 8.57
(36, 56) 3p3/2(−) 2d5/2(+) 0.80 3.9 1.84
(49, 82) 1g9/2(+) 2d3/2(+) 0.23 (same) 0.28
(49, 83) 1g9/2(+) 2f7/2(−) 0.037 0.093 0.207
(49, 84) 1g9/2(+) 2f7/2(−) 0.028 0.090 0.165
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here gives no hinderance for it. Further analysis of this
improvement is needed.

The gross theory is a global model and considers only the
bulk properties of nuclear β-decay transition. The approach
proposed herein would improve this model.

In these calculations, we simply suppress the allowed
transitions, and, therefore, the sum of intensities of the allowed
transitions over the entire energy range may be lower than
expected due to the sum rule for corresponding nuclei. This is
another area for further study.

VI. SUMMARY

In conclusion, we improved the gross theory of β decay by
considering parity changes in the allowed transitions. In this
treatment, the nuclear matrix elements are suppressed when

the parity of the single neutron and proton are different in the
allowed transition. The parity is assigned using the Woods-
Saxon–type single-particle potential and the KTUY nuclear
mass model. Compared to the experimental data, the original
gross theory underestimates the half-lives in the vicinity of the
magic numbers of neutrons and protons. This was a result of
the proposed improvement.
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