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We undertake a covariance error analysis of the pion-nucleon-nucleon coupling constants from the Granada-
2013 np and pp database, comprising a total of 6720 scattering data below laboratory energy of 350 MeV.
Assuming a unique pion-nucleon coupling constant in the one-pion exchange potential above a boundary
radius rc = 3 fm we obtain f 2 = 0.0763(1). The effects of charge symmetry breaking on the 3P0, 3P1, and
3P2 partial waves are analyzed and we find f 2

p = 0.0761(4), f 2
0 = 0.0790(9), and f 2

c = 0.0772(6) with a strong
anticorrelation between f 2

c and f 2
0 . We successfully test normality for the residuals of the fit. Potential tails in

terms of different boundary radii as well as chiral two-pion-exchange contributions as sources of systematic
uncertainty are also investigated.

DOI: 10.1103/PhysRevC.95.064001

I. INTRODUCTION

The meson exchange picture is a genuine quantum field
theoretical feature which implies, in particular, that the strong
force between protons and neutrons at long distances is
dominated by the exchange of the lightest hadrons compatible
with the conservation laws, namely neutral and charged pions.
The strong force acting between nucleons at sufficiently
large distances or impact parameters � 3 fm is solely due to
one-pion exchange (OPE) and was suggested by Yukawa 80
years ago [1]. The verification of this mechanism provides
not only a check of quantum field theory at the hadronic
level but also quantitative insight onto the determination of
the forces which hold atomic nuclei [2]. While the mass of
the pion may be determined directly from analysis of their
tracks or electroweak decays, the determination of the coupling
constant to nucleons needs further theoretical elaboration. The
pion-nucleon-nucleon coupling constant is rigorously defined
as the πNN vertex function when all three particles are
on the mass shell and in principle any process involving
the elementary vertices p → π0p, n → π0n, p → π+n, and
n → π−p (or their charge conjugated) is suitable for the
determination of the corresponding couplings provided all
other relevant effects are accounted for with an acceptable
level of precision. In this work, we extract these coupling
constants from NN scattering data and look for signals of
charge symmetry breaking.

The combinations entering in NN scattering are (we use
the conventions of Ref. [3] and when possible, for simplicity,
omit the π label)

f 2
p = fπ0ppfπ0pp, (1)

f 2
0 = −fπ0nnfπ0pp, (2)

2f 2
c = fπ−pnfπ+np. (3)
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Usually the charge symmetry breaking is restricted to
mass differences by setting fp = −fn = fc = f0 = f . The
relevant relationship between the pseudoscalar pion cou-
pling constant, gπNN , and the pseudovector one, fπNN , is
given by

g2
πaNN ′

4π
=

(
MN + MN ′

mπ±

)2

f 2
πaNN ′ , (4)

where N,N ′ = n,p and πa = π0,π± (the factor mπ± is con-
ventional). Thus, we may define g2

0, g2
c , and g2

p. We take Mp =
938.27231 MeV as the proton mass, Mn = 939.56563 MeV
as the neutron mass, and mπ± = 139.5675 MeV as the mass
of the charged pion.

There is a long history of determinations of pion-nucleon
coupling constants using different approaches. A variety of
methods and reactions have been used since the seminal
Yukawa paper. A more complete account of the subsequent
numerous determinations can be traced from comprehensive
overviews [4–6]. Here, we will mainly review determinations
based on NN scattering.

In 1940, by looking at deuteron properties [7,8] soon
after Yukawa proposed his theory and before the pion was
experimentally discovered, Bethe found the common value
f 2 = 0.077–0.080. On a more theoretical ground, based on
dispersion relations and the partial conservation of the axial
current (PCAC), Goldberger and Treiman deduced a relation
between the πNN form factor, GπNN (t), the nucleon axial
coupling constant, gA = 1.26, and the pion weak decay
constant, Fπ = 93.4(3) MeV. The relation GπNN (0)Fπ =
MNgA [9], shown by Nambu to follow from chiral symmetry
[10], is strictly valid at the pion off-shell point, q2 = 0,
and numerically it yields f 2

πNN = g2
Am2

π+/(16πF 2
π ) = 0.072.

Almost simultaneously, Chew proposed [11] to determine it
from the occurrence of the pion pole in the renormalized Born
approximation, by using an extrapolation method which was
implemented soon thereafter for np [12] and pp [13] data.
The first direct and quantitative evidence for OPE was found
in 1960 by Signell [14] by fitting the neutral pion mass to the
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differential cross section in p-p scattering data. The method
of partial wave analysis (PWA) was soon afterward used by
Macgregor et al. [15].

During many years, πN scattering determination through
fixed-t dispersion relations was advocated as a precision tool,
yielding initially f 2

c = 0.0790(10) [16] and later providing
f 2

c = 0.0735(15) [17] (see also Ref. [18] and references
therein). The latest and most accurate πN scattering deter-
minations are (i) the one based on the Goldberger-Miyazawa-
Oehme (GMO) sum rule [19], g2

c /(4π ) = 14.11(20) (f 2
c =

0.0783(11)); (ii) the one using fixed-t dispersion relations,
g2

c /(4π ) = 13.76(8) [20]; (iii) the most recent one [21,22],
based on πN scattering lengths, π−d scattering, and the GMO
sum rule, yielding g2

c /(4π ) = 13.69(12)(15) = 13.69(19).
Another source of information has been the N̄N system,
as shown by the Nijmegen group [23], providing f 2

c =
0.0751(17).

The modern era of high-quality NN interactions initiated
by the Nijmegen group [24] enabled decrease of χ2/ν from 2
to 1, thanks to the implementation of charge dependence (CD),
vacuum polarization, relativistic corrections, and magnetic
moments interactions, and a suitable selection criterion for
compatible data. Their analysis comprised a total of 4313
NN scattering data. This promoted the determination of the
pion-nucleon coupling constant from np and pp scattering
to a competitively accurate approach. The main advantage
of an NN analysis as compared to the πN analysis, which
has so far been restricted to charged pions, is that one can
determine both neutral and charged-pion coupling constants
simultaneously, to search for isospin-breaking effects. The
three compatible values, f 2

p = 0.0751(6), f 2
0 = 0.0752(8),

and f 2
c = 0.0741(5), were determined from NN scattering

data [25]. The originally recommended charge-independent
value f 2 = 0.0749(4) [25] was revised [26] and confirmed in
the 1997 review on the status of the pion-nucleon-nucleon cou-
pling constant [4]; this is the most accurate NN determination
to date. There, it was suggested that a charge-independence
breaking could be checked with more data and better statistics.
The most recent determinations of the Nijmegen group have
been given after the inclusion of charge-independent chiral
two-pion exchange (χTPE) potential [27], which depends
on three additional chiral constants, c1, c3, c4, which also
appear in πN scattering. A combined fit of f 2

p and c1,3,4

to pp scattering data provides the value f 2
p = 0.0756(4)

[28], and a simultaneous fit to pp + np data of a common
f 2 and c1,3,4 [29] provides linear correlations between f 2

and c1,2,3.
Most of the analyses determining the pion nucleon coupling

constants involve heavy statistical analysis for a large body of
experimental data, mostly χ2 fits, which are subjected to a
number of a posteriori tests [30]. The verification of these
tests buttress a sensible analysis of uncertainties of theoretical
models [31]. To the time of their analysis, the Nijmegen group
[26,32] checked the statistical quality of pp fit residuals using
the moments test, which for increasing orders overweights the
tails.

In this paper, we study the possible differences among
the pion-nucleon coupling constants by analyzing np and

pp scattering data using the NN Granada-2013, 3σ -self
consistent database, designed and analyzed recently [33–37].
There, we have selected 6713 out of 8000 published np and
pp experimental data for LAB energies below 350 MeV and
measured in the period 1950–2013, which satisfactorily verify
the tail-sensitive test [38], based on the quantile-quantile plot
for the combined np + pp residuals (see also Ref. [39] for an
application of these ideas to ππ scattering). As a side remark,
we note that the Uppsala controversial measurement [40,41],
which gives the value f 2 = 0.081 and appears in Weinberg’s
textbook [42], was disputed by the Nijmegen group [43] and
contested [44]. An overview of the situation is provided in
Ref. [45]. This measurement has been rejected by our 3σ
self-consistent database [34]. A later remeasurement at IUCF
by the partly the same group [46,47], which is compatible
with the original Nijmegen PWA, is not rejected by the
self-consistent 3σ criterion.

The paper is organized as follows. In Sec. II, we describe
the OPE potential, introduce our notation, and discuss the
conditions under which we naturally expect to unveil charge
dependence in the pion-nucleon coupling constants. In Sec. III,
we review the main aspects of our partial wave analysis and
the Granada-2013 database. Our motivation for incorporating
charge dependence in the P waves, besides the customary
charge dependence on S waves implemented in all modern
high quality fits, is presented in Sec. IV along with a discussion
of our numerical results based on a covariance analysis. An
effort to quantify systematic errors by analyzing the long-range
component of the CD-OPE is made in Sec. V. Finally, in
Sec. VI conclusions are presented. In Appendix A we show the
extended operator basis accommodating S-wave and P -wave
charge dependence.

II. CHARGE-DEPENDENT ONE-PION EXCHANGE

The charge-dependent, one-pion exchange (CD-OPE) po-
tential incorporates charge symmetry breaking by considering
the mass difference of the neutral and charged pions as well as
assuming different coupling constants. We use the convention
for πNN Lagrangians defined in the review of Ref. [3].
The quantum mechanical potential which reproduces in Born
approximation the corresponding Feynman diagrams for on-
shell static nucleons is given in the pp, nn, and np channels as

VOPE,pp(r) = f 2
pVmπ0 ,OPE(r), (5)

VOPE,nn(r) = f 2
n Vmπ0 ,OPE(r), (6)

VOPE,np(r) = −fnfpVmπ0 ,OPE(r) − (−)T 2f 2
c Vmπ± ,OPE(r),

(7)

respectively. Here, Vm,OPE is given by

Vm,OPE(r) =
(

m

mπ±

)2 1

3
m[Ym(r)σ 1 · σ 2 + Tm(r)S1,2]. (8)
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Here Ym and Tm are the usual Yukawa functions,

Y (r) = e−mr

mr
(9)

T (r) = e−mr

mr

[
1 + 3

mr
+ 3

(mr)2

]
, (10)

σ1 and σ2 are the single nucleon Pauli matrices, and S12 =
3σ1 · r̂σ2 · r̂ − σ1 · σ2 is the tensor operator. Unfortunately, the
CD-OPE potential by itself cannot be directly compared to
experimental data, and the only way we know how to determine
these pion-nucleon couplings is by carrying out a PWA.

From a purely classical viewpoint, in order to measure
the nuclear force directly it would just be enough to hold
and pull two nucleons apart at distances larger than their
elementary size, which is or the order of 2 fm [33]. For such
an ideal experiment, the behavior of the system at shorter
distances would be largely irrelevant, because nucleons would
behave as pointlike particles. This situation would naturally
occur if nucleons were truly infinitely heavy. In that case the
potential would correspond to the static energy of a system
with baryon number B = 2 and total charge Q = 2,1,0, for
pp, pn, nn, respectively.1 Of course, the quantum mechanical
nature of the nucleons prevents such a situation experimentally
and we are left with scattering experiments. Good operating
conditions are achieved when the maximum relative center
of mass (c.m.) momentum, pmax, is small enough to avoid
complications due to inelastic channels and large enough to
contain as many data as possible. This generates a resolution
ambiguity of the order of the minimal relative de Broglie
wavelength, λmin = �r ∼ 1/pmax. Since the NN → πNN
channel opens up at pmax ∼ √

mπMN ∼ 360 MeV, we have
�r ∼ 0.6 fm. Unfortunately, in the quantum mechanical NN
scattering problem the scales are somewhat intertwined,
and thus some information on the unknown short-distance
components of the potential have to be considered in order
to evaluate the scattering amplitude, the cross section, or the
polarization asymmetry. The low-energy behavior of the NN
interaction is expected to depend strongly on its long-distance
properties. Although some coarse-grained information of the
unknown contribution is needed, it can be deduced from the
experiment with an overall sufficient accuracy as to determine
the differences between the pion-nucleon couplings. This
viewpoint allows us to determine a priori the number of
independent parameters NPar needed for a successful fit.2

These ideas where introduced by Aviles [51], and they underlie

1This is the case in lattice calculations, where static sources are
placed at a fixed distance [48,49]. In the quenched approximation,
for a pion mass of mπ = 380 MeV, the value g2/(4π ) = 12.1 ± 2.7,
which is encouraging [50] but still a crude estimate.

2In Ref. [33] it was found that, for rc = 3 fm, the number of needed
parameters is NPar ∼ 60. The argument is based on the idea that, if we
adopt the CD-OPE potential above rc, we can estimate the number
of independent potential values V (rn) below rc in any partial wave
channel, with rn = n�r . Since the maximum angular momentum
in the partial wave expansion is lmax ∼ pmaxrc and there are four
independent waves for each l, we would have NPar ∼ 4lmax(rc/�r).

the recent NN analysis carried out by the present authors,
where a large database, comprising about 8000 published
experimental data measured in the period 1950–2013, was
considered [33,34].

A. The number of data

There is no symmetry reason why the strong force between
protons and between neutrons should be exactly identical; if a
difference exists one should be able to see it with a sufficiently
large amount of experimental data. These differences are in fact
small and hard to pin down because a priori the electromag-
netic corrections should scale with the fine structure constant
δg/g ∼ α ∼ 1/137, and the strong (QCD) corrections should
scale with the u − d quark mass difference (relative to the
s-quark mass), which means δg/g ∼ (mu − md )/
QCD ∼
(Mp − Mn)/
QCD ∼ 1/100, for 
QCD ∼ 250 MeV. This sim-
ple estimates suggest that in order to witness isospin violations
in the couplings we should determine them with a target
accuracy better than 1–2%, which is not too far from the
most recent values. On a purely statistical basis, the relative
uncertainty due to N independent measurements is �g/g ∼
1/

√
N . If we have some extra parameters (λ1, . . . ,λNPar ),the

condition �g ∼ δg ∼ 0.01–0.02 would require N = NDat −
NPar ∼ 7000–10 000 independent degrees of freedom. Since
NDat � NPar this is comparable to the total amount of
existing elastic np and pp scattering data. While these are
rough estimates, we stress the independence character of the
measurements in order to make these estimates credible; it is
not just a question of having more data. From the point of
view of χ2 fits this requires passing satisfactorily normality
tests guaranteeing the self-consistency of the fit. In particular,
adding many incompatible data would invalidate this analysis.

B. Naturalness of fitting parameters

While our approach is based on a standard least-squares
optimization, which minimizes the distance between the theory
and the experiment for many pp and np scattering data, it is
important to mention that we do not consider that all fits are
eligible and in fact some of them will be rejected. In what
follows, we specify these criteria a priori.

As a matter of principle, we reject fits which display bound
states in channels other than the deuteron (occurring in the
3S1-3D1 channel only) which will be considered spurious.
The appearance of such states in the fitting process is not so
unlikely, particularly in the case of peripheral waves. This
is usually detected by use of Levinson’s theorem, δl(0) −
δl(∞) = nπ , which requires checking phases at energies much
larger than the fitting range. An equivalent way to find spurious
bound states is by checking the volume integrals (and high
moments) for which a large degree of universality has been
found [52]. Attractive couplings in the potential permitting a
bound state that were too large would consequently generate
unnaturally large volume integrals of the potentials.

Excluding the points rn below the centrifugal barrier, the number
becomes NPar ∼ 2(pmaxrc)2.
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In the case of the pion-nucleon coupling constant, we expect
some theoretical constraints to be fulfilled. The renowned
Goldberger-Treiman relation was deduced as a consequence
of exact PCAC, and yields the value (in the isospin limit)

GπNN (0) = MNgA/Fπ . (11)

The physical coupling constant corresponds to gπNN ≡
GπNN (m2

π ) > GπNN (0). It is expected to be larger than value
appearing in GT relation. This suggests

gπNN > MNgA/Fπ (12)

and hence, for the PDG values F PDG
π+ = 92.21(14)MeV and

gA = 1.2723(23),

f 2
πNN > f 2

πNN,GT ≡ 1

16π

(
gAmπ+

Fπ

)2

= 0.07324(4). (13)

The uncertainty is about 5%. More generally, a GT discrepancy
is defined (see, e.g., Ref. [53] for a review) as

�GT = 1 − MNgA

gπNNFπ

. (14)

The value of this number has been changing but typical values
nowadays are at the few percent level, �GT ∼ 0.01–0.03. In
the limit of zero quark masses, chiral symmetry becomes exact,
and hence �GT = O(m2

π/F 2
π ).

The fact that (mu − md )/(mu + md ) ∼ 1/3 suggests that,
if we obtain a GT discrepancy different from zero, about three
more times precision would be needed to pin down isospin
breaking. According to our 1/

√
NDat estimate above, this can

be accomplished by increasing the number of independent
data by a factor of 10. At the level of isospin breaking, some
estimates have also been made [54,55].

In the case of χTPE exchange, which will also be consid-
ered below, the chiral constants c1,3,4 are saturated by meson
exchange [56]. Actually, c1 is saturated by scalar exchange.
The saturation value is cS

1 = −gScm/m2
S . Taking MN = gSFπ

and cm = Fπ/2, mS = mV = Fπ

√
24π/Nc [57] and MN =

Ncmρ/2, we get cS
1 ∼ −Nc/(4

√
2mρ) ∼ −0.7 GeV−1. In

the case of the constants c3 and c4, they are saturated by
� resonance; taking � = M� − MN , the saturation values
are c�

2 = −c�
3 = 2c�

4 = g2
A/(2�) ∼ 2.97 GeV−1. Of course,

these are not very accurate values, but indicate the order of
magnitude one should expect.

III. THE GRANADA-2013 ANALYSIS

In a series of works, we have upgraded the NN database to
include a total of 6720 np and pp published experimental data
by using a coarse grained representation of the interaction, and
applying stringent statistical tests on the residuals of the χ2

fits after implementing a 3σ self-consistent selection process
[35]. The resulting Granada-2013 is at present the largest NN
database, which can be described by a CD-OPE contribution.
There are about 60% more data than the 4313 data used in the
latest Nijmegen upgrade [4]. This suggests that we can improve
on the errors for the pion-nucleon couplings, as discussed in
the previous section.

We have discussed in detail the many issues in carrying out
the data selection, the fit, and the corresponding joint np + pp

partial wave analysis. We review here the main aspects as a
guideline and refer to those works for further details.

We separate the potential into two well-defined regions
depending on a chosen cutoff radius, rc, fixed in such a way
that for r > rc the CD-OPE is the only strong contribution.
In addition, for r > rc we also include electromagnetic
(Coulomb, vacuum polarization, magnetic moments) [34] and
relativistic corrections, which we simply add to the strong
potential:

V (r) = VOPE(r) + VEM(r), r > rc. (15)

Below the cutoff radius, r < rc, we regard the NN force as
unknown, and we use δ shells located at equidistant points
separated by �r = 0.6 fm, corresponding to the shortest de
Broglie wavelength at pion production threshold. The fitting
parameters are the real coefficients (λi)JS

ll′ for each partial
wave:

V JS
l,l′ (r) = 1

2μ

N∑
i=1

(λi)
JS
ll′ δ(r − ri), r � rc, (16)

where μ is the NN reduced mass. Alternatively, the potential
can be expanded in an operator basis extending the AV18
potentials in coordinate space; see Appendix A. The transfor-
mation between partial wave and operator basis was given in
Ref. [34].

It turns out that rc = 3 fm provides statistically satisfactory
fits to the selected 3σ self-consistent Granada-2013 database.
While it would be interesting to separate explicitly the known
from the unknown pieces of the interaction below the cutoff
radius rc, this is actually a complication in the fitting procedure
and will not change the values of the most likely pion-nucleon
coupling constants. Another advantage of taking rc = 3 fm is
that in our analysis there is no need of form factors of any kind,
and thus we are relieved from disentangling finite-size effects,
quark exchange, and the intrinsic resolution �r inherent to
any finite-energy PWA.3

The possible Ay problem for np scattering, raised by the
data of Ref. [59], suggested a sizable isospin breaking of
coupling constants. The problem was reanalyzed theoretically
in Ref. [60] and motivated the reanalysis of the data [61] and
the disentanglement between systematic and statistical errors.
Actually, in Ref. [60] it was found that these data might be
explained in an isolated fashion when isospin was broken.
Thus, we allow this isospin breaking to foresee the possibility
of recovering the data.

IV. STATISTICAL ANALYSIS

In our previous analysis, we took a fixed common value
for the pion-nucleon coupling constant suggested by the
Nijmegen group. When we relax this assumption and also fit
the pion-nucleon coupling constant as another parameter in the
potential, we obtain f 2 = 0.0763(1), which is 3σ compatible
with the Nijmegen recommendation [25], f 2 = 0.0749(4), and
more accurate.

3An explanation of the apparent charge dependence of the pion-
nucleon coupling was attributed to the strong form factor [58].
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A. Charge symmetry breaking on S and P waves

An old problem in NN scattering fitting is if it is possible
to predict the neutron-neutron potential fron np and pp data.
A necessary condition would be that the unknown piece of
the short-distance interaction for np and pp coincide in the
isovector channels. Once we vary the coupling constants f 2

p ,
f 2

0 , and f 2
c from their common value f 2, we have first searched

for a fit without CD in the λ′s (i.e., assuming that they are
equal for np and pp). We get χ2/ν = 1.2 for CD-OPE above
rc = 3 fm. On the other hand, χ2/ν = 9 for CD-OPE + χTPE
above rc = 1.8 fm. Therefore, and in harmony with all high-
quality previous attempts, we cannot deduce nn scattering
below rc = 3 fm.

Following the common practice of other analyses
[24,62,63], we have previously allowed different pp and np
parameters only on the 1S0 partial wave [33,34,64,65] and
found that this symmetry breaking is indeed necessary to
obtain an accurate description of the pp and np scattering
data. The large collection of about 8000 available data also
makes it possible to test charge symmetry breaking on the
parametrization of higher partial waves, e.g., 3P0, 3P1, and 3P2.

To carry out such a test, we have considered different np
and pp parameters on those partial waves and performed a full
PWA and selection process as described in Refs. [34,65], by
fitting the δ-shell potential parameters to the complete database
and then applying the 3σ rejection criterion iteratively until a
self-consistent database is obtained. The consistent database
obtained in this case has 3006 pp data and 3735 np data,
including normalizations, and the value for the χ2 per number
of data is χ2/Ndata = 1.02. When compared with our previous
consistent database [34], this symmetry breaking can only
describe 21 additional data out of more than 1000 rejected data.
Figure 1 compares the low-angular-momentum phase shifts of
the PWA in Ref. [34] (blue bands) with this new analysis (red
bands). The pp phase shifts show no significant difference,
while the np ones are statistically different and the differences
are even greater for higher-angular-momentum partial waves.
Tabulated values for the lower phase shifts for selected LAB
energies are provided in Appendix B.

Usually the charge symmetry breaking is restricted to mass
differences by setting fp = −fn = fc = f . The value f 2 =
0.075 recommended by the Nijmegen group [25] has been
used in most of the potentials since the seminal 1993 partial
wave analysis [24]. Here we test this charge independence
with the large body of data available today, by using fp, f0,
and fc as extra fitting parameters along with the previous
46 δ-shell parameters. We show our results in Table I,
depending on different strategies regarding isospin breaking:
S waves, S and P waves, and in the coupling constants. The
working group summary of 1999 provides a recent compilation
of coupling constants in a chronological display [5]. The
most recent determination [21,22], based on πN scattering
lengths and π−d scattering, and in the GMO sum rule,
yields g2

c /(4π ) = 13.69(12)(15) = 13.69(20). From our full
covariance matrix analysis, we get g2

p/(4π ) = 13.774(75),
g2

0/(4π ) = 14.30(16), and g2
c /(4π ) = 13.984(82). The last

value is 2σ compatible with these determinations, but slightly
more accurate.

The fitting δ-shell parameters obtained in our different
strategies, regarding charge independence breaking in just S
waves and charge independence breaking in S and P waves,
can be seen in Tables II and III respectively. We use the
resulting parameters along with their covariance matrix to
calculate f 2

p , f 2
0 , and f 2

c , and propagate the corresponding
statistical uncertainties and test charge dependence. Figure 2
shows the 1σ correlation ellipses along with the scatter
diagram resulting from drawing 1000 random variations
following the multivariate normal distribution dictated by the
covariance matrix. The fit without charge dependence on the
P waves is indicated by the blue dots and yellow line while
the fit with charge dependence on the P waves corresponds
to the red diamonds and green line. Charge independence,
f 2

p = f 2
0 = f 2

c , is marked by the diagonal black line. Several
aspects should be noted from Fig. 2. First, while the values
on Table I seem to suggest that the determinations with
and without charge charge-dependent P waves for f 2

0 and
f 2

c are 1 and 2σ compatible respectively, in fact the strong
anticorrelation between the two coupling constants makes the
determinations completely incompatible. The determination
with charge dependence on the S waves only is compatible
with the f 2

p = f 2
0 = f 2

c = 0.0763(1) fit at the 2σ level; this
is in accordance with the slight decrease in χ2 in spite of the
fact that two extra parameters are fitted. Finally, the fit with
charge-dependent P waves is incompatible with f 2

p = f 2
0 =

f 2
c , once again due to the strong anticorrelation between f 2

0
and f 2

c .

B. Normality tests

The standard assumption underlying a conventional χ2 fit
is that the sum of ν-independent squared Gaussian variables
belonging to the normal distribution N (0,1) follows a χ2

distribution with ν degrees of freedom [30]. One can actually
check a posteriori if the outcoming residuals do indeed fulfill
the initial assumption with a given confidence level. The
self-consistency of the fit is an important test, since it validates
the current statistical analysis and provides some confidence
on the increase in accuracy that we observed as compared to
previous works. For a number of data much larger than the
number of fitting parameters, NDat � NPar, the conventional
χ2 test requires

Nσ =
∣∣χ2

min

/
ν − 1

∣∣
√

2/ν
(17)

with ν = NDat − NPar for a Nσ standard deviation confidence
level. The tail-sensitive normality test is more demanding
and the three fits presented on this section are summarized
in Fig. 3 as rotated quantile-quantile plots. The tail-sensitive
test compares the empirical quantiles of the residuals with
the expected ones from an equally sized sample from the
standard normal distribution. The red bands represent the 95%
confidence intervals of the normality test. For more details of
the tail-sensitive test, see Ref. [36].

C. Separate contributions to the fit

In line with previous studies, it is interesting to decompose
the contributions to the total χ2 both in terms of the fitted
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FIG. 1. Phase shifts obtained from a partial-waves analysis to pp and np data and statistical uncertainties. Blue band from Ref. [34] and
red band from a fit with charge symmetry breaking on the 3P0, 3P1, and 3P2 partial waves.

TABLE I. The pion-nucleon coupling constants f 2
p , f 2

0 , and f 2
c determined from different fits to the Granada-2013 database and their

characteristics. We indicate the partial waves where charge dependence is allowed.

f 2
p f 2

0 f 2
c CD waves χ 2

pp χ 2
np χ 2 NDat NPar χ 2/ν

0.075 1S0 2997.29 3957.57 6954.86 6720 46 1.042
0.0763(1) 1S0 2995.20 3952.85 6947.05 6720 47 1.041
0.0764(4) 0.0779(8) 0.0758(4) 1S0 2994.41 3950.42 6944.83 6720 49 1.041
0.0761(4) 0.0790(9) 0.0772(5) 1S0, P 2979.37 3876.13 6855.50 6741 55 1.025
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TABLE II. Fitting δ-shell parameters (λn)JS
l,l′ (in fm−1) with their

errors for all states in the JS channel for a fit with isospin symmetry
breaking on the 1S0 partial wave parameters only and the pion-nucleon
coupling constants f 2

0 , f 2
p , and f 2

c as fitting parameters We take
N = 5 equidistant points with �r = 0.6 fm. An empty cell indicates
that the corresponding fitting (λn)JS

l,l′ = 0. The lowest part of the table
shows the resulting OPE coupling constants with errors

Wave λ1 λ2 λ3 λ4 λ5

1S0np 1.16(6) − 0.77(2) − 0.15(1) − 0.024(1)
1S0pp 1.31(2) − 0.716(5) − 0.192(2) − 0.0205(4)
3P0 0.94(2) − 0.319(7) − 0.062(3) − 0.023(1)
1P1 1.20(2) 0.075(2)
3P1 1.354(5) 0.0570(5)
3S1 1.79(7) − 0.47(1) − 0.072(2)
ε1 − 1.65(2) − 0.33(2) − 0.233(7) − 0.018(3)
3D1 0.40(1) 0.070(9) 0.021(3)
1D2 − 0.20(1) − 0.206(3) − 0.0187(3)
3D2 − 1.01(3) − 0.17(2) − 0.237(6) − 0.016(2)
3P2 − 0.482(1) − 0.0289(7) − 0.0037(4)
ε2 0.32(2) 0.190(4) 0.050(2) 0.0127(6)
3F2 3.50(6) − 0.229(5) − 0.0140(5)
1F3 0.12(2) 0.089(8)
3D3 0.54(2)

f 2
p f 2

0 f 2
c

0.0764(4) 0.0779(8) 0.0758(4)

observables as well as in different energy bins. The separation
is carried out explicitly in Tables IV and V for pp and
np scattering observables respectively. As we can see, the
size of the contributions χ2/N are at similar levels for most
observables. Note that observables with a considerable larger
or smaller χ2/N are also observables with a small number of
data, and therefore larger statistical fluctuations are expected.

Likewise, we can also break up the contributions in order to
see the significance of different energy intervals; see Table VI.
We find that, in agreement with the Nijmegen analysis (see
Refs. [66,67] for comparisons with previous potentials), there
is a relatively large degree of uniformity in describing data at
different energy bins.

V. ANALYSIS OF SYSTEMATIC ERRORS

In this section, we seek to identify some sources of
systematic errors. Besides the success of our fits on purely
statistical grounds, it is helpful at this point to analyze why
we have chosen our potential representation and the possible
systematic uncertainties related to it.

A. Anatomy of the potential

The present approach uses a coarse-grained interaction in
the unknown region, below a cutoff radius rc = 3 fm. The
choice of rc = 3 fm, however, is not arbitrary nor blind and in
fact it has been guided by a detailed analysis of existing NN
forces. We have checked that high-quality potentials used in
the past are local at large distances and do implement CD-OPE
as the main contribution above 3 fm of strong origin. We note

TABLE III. Same as Table II for a fit with isopsin symmetry
breaking on the 1S0, 3P0, 3P1, and 3P2 partial waves parameters.
Asterisks (∗) indicate that the np parameter is fixed to be the same as
the pp parameter.

Wave λ1 λ2 λ3 λ4 λ5

1S0np 1.07(4) − 0.708(7) − 0.192(2)* − 0.0205(3)*
1S0pp 1.31(2) − 0.717(5) − 0.192(2) − 0.0205(3)
3P0np 0.95(3) − 0.31(1) − 0.079(4) − 0.019(1)
3P0pp 0.94(2) − 0.319(7) − 0.063(3) − 0.022(1)
1P1 1.27(2) 0.068(2)
3P1np 1.21(2) 0.051(1)
3P1pp 1.364(5) 0.0570(6)
3S1 1.54(7) − 0.39(1) − 0.071(2)
ε1 − 1.69(2) − 0.36(2) − 0.233(8) − 0.016(3)
3D1 0.44(2) 0.07(1) 0.014(3)
1D2 − 0.19(1) − 0.207(3) − 0.0186(3)
3D2 − 0.97(5) − 0.21(2) − 0.234(8) − 0.016(2)
3P2np − 0.445(4) − 0.043(2) − 0.0024(7)
3P2pp − 0.483(1) − 0.0282(7) − 0.0040(4)
ε2 0.30(2) 0.191(4) 0.051(2) 0.0123(6)
3F2 3.41(7) − 0.222(5) − 0.0142(6)
1F3 0.23(2) 0.061(6)
3D3 0.76(3)

f 2
p f 2

0 f 2
c

0.0761(4) 0.0790(9) 0.0772(5)

that a plain extrapolation of the CD-OPE potential down to
the origin presents a short-distance 1/r3 singularity and a
certain regularization is needed, which becomes innocuous
at r > rc = 3 fm. We have also analyzed quark models
from a cluster viewpoint, where there appears to be a form
factor naturally regulating electromagnetic Coulomb, OPE,
and TPE interactions only below rc = 1.8–2 fm [33,70], so
that we can assume that nucleons interact, exchanging one
or two pions as pointlike particles for distances larger than
rc > 1.8 fm. Actually, this assumption can be validated since
lowering down to rc = 1.2 fm results in large χ2/ν values (see,
e.g., Refs. [71,72] for a discussion within chiral perturbation
theory).

One good motivation to analyze the NN interaction is
the possible application to nuclear structure calculations.
However, the nuclear many-body problem is difficult enough
to make specific techniques not suitable for all representations
of the interaction; the form of the potential matters. Thus,
quite often, potential fitting data are designed to be suitable
for a specific technique. This choice introduces a bias which
acts as a source of systematic errors. In our previous work [73],
we have addressed the systematic uncertainties arising from
using several tails and short-distance forms of the potential.
The purpose there was to devise a smooth and nonsingular
potential in the inner region, friendly for nuclear structure
applications, since it turns out that the δ shells produce a
long high-momentum tail which hinders the nuclear structure
calculations. This includes some bias because, similarly to
other local potentials, smoothness is not a requirement of
any physical significance. Thus, these systematic uncertainties
stem from a prejudice on insisting in a particular form of the
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FIG. 2. Correlation ellipses and scatter diagrams for the coupling constants f 2
c , f 2

p , and f 2
0 appearing in the OPE potential from a PWA

with (yellow line and blue dots) and without (green line and red diamonds) charge independence on the P waves and a 3σ consistent database.
The black diagonal line indicates f 2

c = f 2
p = f 2

0 .

potential based on its possible application in theoretical nuclear
physics and are relevant within that context.

B. Sampling scale

The motivation for the coarse-grained short-distance po-
tential has been given many times. The sampling scale �r ∼
1/pmax might be varied from its Nyquist optimal sampling
value. For a finite-range potential that means sampling with
more points since rc = n�r . We generally find that increasing
the number of δ shells results in overfitting; i.e., it does
not improve the quality of the fit but it does increase the
correlations among the fitting λi’s parameters, exhibiting
a parameter redundancy. Correlation plots for this optimal
sampling situation have been presented in Ref. [35] for the
short-distance parameters and in Ref. [36] for the correspond-
ing counterterms. As it has been discussed in a recent work
[74], the Nyquist sampling works up to LAB energies as high
as 3 GeV.

C. Boundary radius

In the previous section, we have assumed a fixed cutoff
radius rc = 3 fm, above which a CD-OPE potential is assumed.
Here, we analyze the robustness of our determination by
modifying the cutoff radius, looking for the cases rc =
1.8,2.4,3.0, and 3.6 fm. Although the reasons for choosing

rc = 3 fm have been explained in Subsec. V A, the variation
of the cutoff radius allows us to explore the dependence of
the statistical analysis on the particular form of the potential.
While this type of cutoff variation in coordinate space is not
entirely equivalent to a cutoff variation in momentum space,
it can provide insight into cutoff dependence in the latter. Our
results are summarized in Table VII. For each value of rc, three
PWA are performed. In the first one, the coupling constant f
is fixed and not fitted. In the second PWA, a common coupling
constant f is fitted as a parameter. In the third one, the three
constants fp,f0, and fc are fitted as distinct parameters.

Several interesting features are worth mentioning. When
the short-distance cutoff is shifted toward smaller values, the
χ2/ν increases several times more than the standard statistical
tolerance 1 ± √

2/ν. Larger χ2/ν values generate smaller
uncertainties. This was expected, and it is just a consequence
of the larger penalty to change parameters in a worse fit.

As we see, the best global χ2 (and nearly equal) values
are obtained for rc = 3 fm and rc = 3.6 fm. However, we
observe that, in going from rc = 3.0 to rc = 3.6, the value
of χ2

pp increases by 40 (with 13 more parameters), whereas
the χ2

np result decreases by 50. Increasing the cutoff means
replacing the CD-OPE dependence between 3 and 3.6 by
unknown interactions so that many more partial waves will
be charge dependent, increasing the number of parameters.
At this point, the number of CD parameters becomes rather
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FIG. 3. Rotated quantile-quantile plots for the fits introduced in this work. All points should be inside the confidence band to state
that residuals of the fit follow a normal distribution N (0,1), in which case the fit is self-consistent a posteriori. Left panel, assuming a
charge-independent pion-nucleon constant used as a fitting parameter and charge symmetry breaking only on the 1S0 partial wave parameters.
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TABLE IV. Contributions to the total χ 2 for different pp

observables. We use the notation of Refs. [68,69].

Observable Code Npp χ 2
pp χ 2

pp/Npp

dσ/d DSG 935 903.5 0.97
Ayy AYY 312 339.0 1.09
D D 104 135.1 1.30
P P 807 832.4 1.03
Azz AZZ 51 47.4 0.93
R R 110 112.8 1.03
A A 79 70.5 0.89
Axx AXX 271 250.7 0.92
Ckp CKP 2 3.1 1.57
R′ RP 29 11.9 0.41
Ms′0sn MSSN 18 13.1 0.73
Ns′0kn MSKN 18 8.5 0.47
Azx AZX 264 250.6 0.95
A′ AP 6 0.8 0.14

large. Furthermore, for rc = 3.6, the values obtained for
the pn coupling constants are excluded as unnatural by the
Goldberger-Treiman relation shown in Eq. (13).

D. Adding chiral potential tails

The Nijmegen group estimated systematic errors by in-
cluding different potential tails, particularly with heavy boson
exchange (HBE). More recently, the inclusion of charge-
independent chiral two-pion exchange (χTPE) potential [27],
depending on three chiral constants, c1, c3, c4, which also
appear in πN scattering, allowed them to perform a combined
fit of f 2

p and c1,3,4 to pp scattering data, obtaining the value
f 2

p = 0.0756(4) [28], and a simultaneous fit to pp + np data
of a common f 2 and c1,3,4 [29].

TABLE V. Contributions to the total χ 2 for different np observ-
ables. We use the notation of Refs. [68,69].

Observable Code Nnp χ 2
np χ 2

np/Nnp

dσ/d DSG 1712 1803.4 1.05
Dt DT 88 83.7 0.95
Ayy AYY 119 96.0 0.81
D D 29 37.1 1.28
P P 977 941.7 0.96
Azz AZZ 89 108.1 1.21
R R 5 4.5 0.91
Rt RT 76 72.2 0.95
R′

t RPT 4 1.4 0.35
At AT 75 77.0 1.03
D0s′′0k D0SK 29 44.0 1.52
N0s′′kn NSKN 29 25.5 0.88
N0s′′sn NSSN 30 20.3 0.68
N0nkk NNKK 18 13.5 0.75
A A 6 2.9 0.49
σ SGT 411 500.2 1.22
�σT SGTT 20 26.3 1.31
�σL SGTL 16 18.4 1.15

In Table VIII, we show several fits of the pion-nucleon
coupling constant f 2 after including the χTPE with different
cut radius rc on the analysis. In our previous work [64,71,75],
we determined the value of the chiral constants c1, c3, and
c4 from NN data while maintaining f fixed. A benefit
of implementing χTPE is that we can generally lower the
boundary radius rc down to the elementary radius, re =
1.8 fm, with a smaller number of parameters. The outgoing
values of the chiral constants should be compared with the
recent reanalysis in πN scattering using a great deal of
theoretical constraints [76]. As with the case of including
only CD-OPE on the potential tail, the Goldberger-Treiman
relation excludes the fits with rc = 3.6 fm. The unnaturally
large values for the chiral constants also call into question
the analysis with rc = 3.0 fm and rc = 2.4. Finally, lowering
the boundary all the way to rc = 1.2 fm no longer gives a
satisfactory description of the data, as indicated by the large
value of χ2/ν, which is several standard deviations away from
the most likely value.

E. Sensitivity to particular data

The selected database provides 3σ consistent values for the
χ2 distribution. An important issue concerns the dependence
of our results on the chosen data. We do not expect all data
to contribute equally to the determination of the coupling
constants. In the past, selected data or dedicated experiments
have been used to extract the coupling constant. Our analysis
rests on a global fit, but it is still interesting to identify the most
significant data in the fit of the coupling constant f 2.

From a statistical point of view, this can be done by looking
at the simplest case, the variations �χ2 due only to variations
on f , and by identifying the largest contributions.

The Hessian involving any two fitting parameters pi and pj

is in general given by

1

2

∂2χ2

∂pi∂pj

≈
NDat∑
n=1

1

σ 2
n

∂On

∂pi

∂On

∂pj

, (18)

where the standard approximation of neglecting second deriva-
tives has been made. Here On is the nth observable in the fit
and σn is the experimental error. We can look at this sum for
one fitting parameter such as the coupling f after ordering
the contributions to the Hessian according to their size, i.e.,
n → π (n),

1

σπ(n)

∣∣∣∣∂Oπ(n)

∂f

∣∣∣∣ >
1

σπ(n−1)

∣∣∣∣∂Oπ(n−1)

∂f

∣∣∣∣, (19)

and define the error due the first N largest contributions

�χ2
N =

N∑
i=1

[
1

σπ(n)

∂Oπ(i)

∂f

]2

(�f )2
N ≡ 1 (20)

so that the relative error is εN (f ) = �fN/f . We plot in Fig. 4
the result for εN (f 2) = 2εN (f ) and as we see about 10–20 data
build the main contribution to the precision in f 2. These data
correspond to the deuteron binding energy, the np scattering
length, low-energy np total cross sections, and low-energy pp
differential cross sections.
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TABLE VI. The χ 2 results of the main combined pp and np partial-wave analysis for the 10 single-energy bins in the range 0 < TLAB <

350 MeV.

Bin (MeV) Npp χ 2
pp χ 2

pp/Npp Nnp χ 2
np χ 2

np/Nnp N χ 2 χ 2/N

0.0–0.5 103 107.2 1.04 46 88.2 1.92 149 195.4 1.31

0.5–2 82 58.8 0.72 50 92.8 1.86 132 151.5 1.15

2–8 92 80.1 0.87 122 151.0 1.24 214 231.0 1.08

8–17 124 100.3 0.81 229 183.9 0.80 353 284.1 0.80

17–35 111 85.5 0.77 346 324.2 0.94 457 409.7 0.90

35–75 261 231.2 0.89 513 559.7 1.09 774 790.9 1.02

75–125 152 154.8 1.02 399 445.2 1.12 551 600.0 1.09

125–183 301 300.5 1.00 372 381.7 1.03 673 682.2 1.01

183–290 882 905.0 1.03 858 841.4 0.98 1740 1746.4 1.00

290–350 898 956.1 1.06 798 808.1 1.01 1696 1764.1 1.04

TABLE VII. The pion-nucleon coupling constants f 2
p , f 2

0 , and f 2
c determined from different fits to the Granada-2013 database and their

characteristics for the CD-OPE potential depending on the cutoff radius rc. Charge dependence is only allowed on the 1S0 partial wave.

rc(fm) f 2
p f 2

0 f 2
c χ 2

pp χ 2
np χ 2 NDat NPar χ 2/ν Nσ

3.6 0.075 3065.13 3919.57 6984.71 6720 59 1.049 2.8

3.6 0.0697(3) 3038.53 3913.10 6951.63 6720 60 1.044 2.5

3.6 0.0689(8) 0.085(1) 0.0703(8) 3035.14 3897.41 6932.55 6720 62 1.041 2.4

3.0 0.075 2997.29 3957.57 6954.86 6720 46 1.042 2.4

3.0 0.0763(1) 2995.20 3952.85 6947.05 6720 47 1.041 2.4

3.0 0.0764(4) 0.0779(8) 0.0758(4) 2994.41 3950.42 6944.83 6720 49 1.041 2.4

2.4 0.75 3120.97 4028.61 7149.58 6718 39 1.070 4.1

2.4 0.07568(3) 3116.56 4031.38 7147.94 6718 40 1.070 4.1

2.4 0.0768(3) 0.0723(5) 0.0750(3) 3115.41 4017.76 7133.17 6718 42 1.068 4.0

1.8 0.75 4739.51 4230.16 8969.68 6709 31 1.343 19.8

1.8 0.076568(5) 4725.30 4212.96 8938.26 6708 32 1.339 19.6

1.8 0.0763(2) 0.0786(3) 0.0765(2) 4724.73 4198.16 8922.89 6708 34 1.337 19.5

TABLE VIII. The pion-nucleon coupling constant f 2 = f 2
p = f 2

0 = f 2
c and the chiral constants c1, c3, and c4 determined from different

fits to the Granada-2013 database and of the CD-OPE plus χT PE depending on the cutoff radius rc. Charge dependence is only allowed on
the 1S0 partial wave.

rc(fm) f 2 c1 (GeV−1) c3 (GeV−1) c4 (GeV−1) χ 2
pp χ 2

np χ 2 NDat NPar χ 2/ν Nσ

3.6 0.075 1010.0(306) −990.9(264) 9.6(140) 2975.09 3879.15 6854.24 6719 63 1.030 1.7
3.6 0.0710(6) 978.3(390) −961.1(353) −4.0(148) 2965.28 3869.62 6834.90 6719 64 1.027 1.6

3.0 0.075 −44.4(70) 39.5(51) −4.4(26) 2979.46 3980.27 6959.73 6721 49 1.043 2.5

3.0 0.0763(3) −35.2(79) 31.3(60) −6.4(27) 2983.95 3968.28 6952.23 6721 50 1.042 2.4

2.4 0.075 −10.6(18) 5.2(10) −2.1(8) 3064.38 4049.88 7114.26 6718 41 1.065 3.8

2.4 0.0748(2) −11.9(20) 6.0(12) −2.3(9) 3065.80 4048.30 7114.11 6718 42 1.066 3.8

1.8 0.075 −1.9(6) −3.7(2) 4.4(2) 3101.24 4059.32 7160.56 6717 33 1.071 4.1

1.8 0.0763(2) −1.6(6) −3.7(3) 4.3(2) 3077.00 4050.22 7127.22 6717 34 1.066 3.8

1.2 0.075 −11.17(9) 0.76(2) 2.822(2) 3428.38 4659.52 8087.90 6715 25 1.209 12.1

1.2 0.07500(3) −11.17(9) 0.76(3) 2.821(6) 3428.28 4659.02 8087.31 6715 26 1.209 12.1
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FIG. 4. Relative error in f 2 as a function of the number of data
ordered according to a decreasing Hessian value.

F. Systematics as a function of the number of data

As already mentioned, the Granada-2013 database is 3σ
self-consistent according to our coarse-grained PWA. That
implies that we can treat measurements as independent. On
the other hand, we expect the precision will increase with the
number of data. Of course, our selection of data is susceptible
to change by gathering more data in the future. The Cramer-
Rao inequality provides a lower bound on the error on the
fitting parameters which can be determined from least-squares
fitting [30]. Thus, errors will in general be larger than the
NDat → ∞ case. Given the large amount of data considered in
the present analysis, it is of utmost relevance to analyze this
point in more detail.

Among the many ways of analyzing the systematic uncer-
tainties, a particularly interesting one regards a chronological
display of our self-consistent database as a function of the
year where data where published and hence on the number
of scattering data. This can be seen for pp and pp + np
analysis separately in Tables IX and X, respectively, in 5-year
intervals. As expected, accuracy improves when the total
number of data NDat included in the analysis is increased.
Most remarkable is the fact that, instead of the purely statistical
estimate �f 2/f 2 ∼ 1/

√
NDat, a fit to the actual trend reveals

TABLE IX. The pion-proton-proton coupling constant f 2
p deter-

mined from different fits to the Granada-2013 database including only
pp data up to a given year.

Year f 2
p �f 2

p χ 2
pp Npp χ 2

pp/Npp

1960 0.07867 0.00421 459.50 535 0.86
1965 0.07568 0.00210 669.05 748 0.89
1970 0.07273 0.00094 978.78 1137 0.86
1975 0.07317 0.00089 1149.63 1247 0.92
1980 0.07339 0.00069 1486.35 1585 0.94
1985 0.07443 0.00052 1559.43 1648 0.95
1990 0.07528 0.00050 1774.58 1831 0.97
1995 0.07542 0.00049 1809.02 1872 0.97
2000 0.07596 0.00043 2985.70 3003 0.99

TABLE X. The pion-nucleon-nucleon coupling constant f 2

determined from different fits to the Granada-2013 database including
only data up to a given year.

Year f 2 �f 2 χ 2
pp Npp χ 2

np Nnp χ 2/N

1960 0.07860 0.00378 460.07 535 186.92 233 0.84
1965 0.07740 0.00192 671.34 748 791.65 836 0.92
1970 0.07427 0.00088 982.23 1137 922.94 981 0.90
1975 0.07504 0.00082 1156.39 1247 1145.81 1221 0.93
1980 0.07421 0.00061 1492.55 1585 2299.10 2311 0.97
1985 0.07499 0.00046 1580.77 1648 2612.23 2584 0.99
1990 0.07580 0.00043 1786.61 1831 2875.34 2806 1.01
1995 0.07607 0.00039 1821.38 1872 3022.34 2950 1.00
2000 0.07654 0.00034 2996.49 3003 3708.46 3528 1.03
2005 0.07631 0.00034 2995.27 3003 3827.69 3634 1.03
2013 0.07633 0.00014 2995.20 3003 3951.86 3717 1.03

more, �f 2/f 2 = 29.3/NDat, which is in fact better; see Fig. 5.
This may be due to the fact that newer data tends to be more
precise than older data. In fact, while the database contains
more np data than pp data, the pp data have smaller statistical
errors and the corresponding fitting parameters tend to be better
determined.

G. Summary

The conclusion of all these investigations is that acceptable
and natural fits produce smaller error bars than the purely
statistical analysis presented in the previous section. This
is probably due to the optimal sampling of the interaction
complying with Nyquist theorem.

VI. CONCLUSIONS

Since the strong proton-proton and neutron-neutron po-
tentials correspond to the exchange of a neutral pion, the

1000 1000050002000 30001500 7000

0.5

1.0

2.0

5.0

NDat time ordered

Ε
f2

FIG. 5. Relative error in f 2 as a function of the number of data
ordered according to their date of publication. Every point represents
the number of np + pp scattering data extracted from the Granada-
2013 NN database and starting in 1960 forward in 5-year steps. We
also show the statistical estimate ε(f 2) = 1/

√
NPar (black, dashed)

and the fitting ε(f 2) = 30/NPar (red, solid).
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FIG. 6. Proton-proton and neutron-neutron interaction above 3 fm due to exchange of a neutral pion for different spin polarization states.
The bands correspond to the statistical uncertainties from a fit to 6713 np + pp scattering data below TLAB = 350 MeV with χ 2/ν = 1.025.

difference in the couplings manifests in the difference of the
potentials above the estimated exclusive domain of the CD-
OPE interaction. We can illustrate the main result pictorially
in Fig. 6 by choosing the transversely and longitudinally

polarized protons and neutrons. So we see that in any of the
cases considered the strength of the nn potential is stronger
than the pp potential, for instance, |Vn↑,n↑| > |Vp↑,p↑| for r >
rc = 3 fm. Note that we cannot determine the neutron-neutron

TABLE XI. pp isovector phase shifts.

ELAB
1S0

1D2
1G4

3P0
3P1

3F3
3P2 ε2

3F2
3F4 ε4

3H4

1 32.674 0.001 0.000 0.135 − 0.081 − 0.000 0.014 − 0.001 0.000 0.000 − 0.000 0.000
± 0.003

5 54.836 0.043 0.000 1.599 − 0.901 − 0.004 0.213 − 0.052 0.002 0.000 − 0.000 0.000
± 0.008 ± 0.005 ± 0.003 ± 0.001

10 55.238 0.166 0.003 3.772 − 2.054 − 0.032 0.648 − 0.204 0.013 0.001 − 0.004 0.000
± 0.011 ± 0.001 ± 0.011 ± 0.006 ± 0.002 ± 0.001

25 48.759 0.699 0.040 8.666 − 4.888 − 0.234 2.490 − 0.820 0.107 0.019 − 0.050 0.004
± 0.014 ± 0.002 ± 0.027 ± 0.010 ± 0.001 ± 0.006 ± 0.003 ± 0.001

50 39.133 1.711 0.154 11.577 − 8.224 − 0.696 5.856 − 1.719 0.346 0.104 − 0.200 0.027
± 0.018 ± 0.004 ± 0.001 ± 0.046 ± 0.013 ± 0.004 ± 0.011 ± 0.005 ± 0.002 ± 0.001 ± 0.001

100 25.340 3.774 0.422 9.535 − 13.260 − 1.502 10.986 − 2.650 0.842 0.466 − 0.561 0.112
± 0.036 ± 0.009 ± 0.002 ± 0.072 ± 0.021 ± 0.010 ± 0.024 ± 0.009 ± 0.009 ± 0.005 ± 0.002 ± 0.001

150 15.116 5.618 0.703 4.839 − 17.637 − 2.077 14.021 − 2.921 1.203 1.019 − 0.883 0.225
± 0.050 ± 0.015 ± 0.006 ± 0.079 ± 0.027 ± 0.020 ± 0.023 ± 0.013 ± 0.017 ± 0.010 ± 0.003 ± 0.002

200 6.892 7.206 1.000 − 0.214 − 21.554 − 2.471 15.803 − 2.907 1.334 1.638 − 1.133 0.351
± 0.060 ± 0.022 ± 0.012 ± 0.071 ± 0.039 ± 0.037 ± 0.027 ± 0.017 ± 0.023 ± 0.017 ± 0.005 ± 0.006

250 0.178 8.552 1.295 − 5.098 − 24.984 − 2.623 16.739 − 2.698 1.224 2.205 − 1.311 0.479
± 0.075 ± 0.025 ± 0.017 ± 0.068 ± 0.055 ± 0.054 ± 0.034 ± 0.023 ± 0.029 ± 0.024 ± 0.006 ± 0.013

300 − 5.222 9.571 1.571 − 9.601 − 27.919 − 2.418 16.981 − 2.293 0.918 2.659 − 1.439 0.591
± 0.102 ± 0.032 ± 0.019 ± 0.095 ± 0.070 ± 0.066 ± 0.034 ± 0.032 ± 0.041 ± 0.029 ± 0.008 ± 0.020

350 − 9.447 10.140 1.832 − 13.545 − 30.348 − 1.820 16.635 − 1.707 0.454 3.012 − 1.552 0.670
± 0.138 ± 0.055 ± 0.027 ± 0.152 ± 0.082 ± 0.080 ± 0.031 ± 0.042 ± 0.058 ± 0.047 ± 0.010 ± 0.027
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TABLE XII. np isovector phase shifts.

ELAB
1S0

1D2
1G4

3P0
3P1

3F3
3P2 ε2

3F2
3F4 ε4

3H4

1 62.047 0.001 0.000 0.183 − 0.105 − 0.000 0.025 − 0.001 0.000 0.000 − 0.000 0.000
± 0.024 ± 0.003 ± 0.002

5 63.559 0.041 0.000 1.683 − 0.911 − 0.004 0.284 − 0.049 0.002 0.000 − 0.000 0.000
± 0.046 ± 0.001 ± 0.029 ± 0.016 ± 0.004 ± 0.001

10 59.851 0.155 0.002 3.823 − 1.996 − 0.026 0.796 − 0.185 0.011 0.001 − 0.003 0.000
± 0.053 ± 0.003 ± 0.058 ± 0.031 ± 0.001 ± 0.009 ± 0.004

25 50.712 0.673 0.032 8.699 − 4.666 − 0.195 2.846 − 0.765 0.091 0.017 − 0.040 0.003
± 0.062 ± 0.012 ± 0.001 ± 0.096 ± 0.053 ± 0.005 ± 0.027 ± 0.014 ± 0.002 ± 0.001 ± 0.001

50 40.225 1.695 0.134 11.682 − 7.822 − 0.594 6.364 − 1.660 0.309 0.105 − 0.170 0.021
± 0.083 ± 0.019 ± 0.003 ± 0.109 ± 0.059 ± 0.015 ± 0.045 ± 0.020 ± 0.006 ± 0.004 ± 0.004 ± 0.001

100 26.129 3.760 0.391 9.484 − 12.592 − 1.299 11.070 − 2.658 0.780 0.514 − 0.507 0.095
± 0.138 ± 0.018 ± 0.009 ± 0.163 ± 0.080 ± 0.036 ± 0.061 ± 0.009 ± 0.013 ± 0.021 ± 0.011 ± 0.002

150 15.917 5.568 0.671 4.399 − 16.716 − 1.915 13.334 − 3.000 1.117 1.130 − 0.828 0.204
± 0.191 ± 0.017 ± 0.013 ± 0.216 ± 0.120 ± 0.062 ± 0.082 ± 0.020 ± 0.020 ± 0.039 ± 0.015 ± 0.005

200 7.810 7.118 0.961 − 1.038 − 20.374 − 2.536 14.510 − 3.028 1.217 1.773 − 1.091 0.334
± 0.243 ± 0.023 ± 0.017 ± 0.261 ± 0.170 ± 0.085 ± 0.109 ± 0.027 ± 0.024 ± 0.054 ± 0.014 ± 0.011

250 1.289 8.435 1.238 − 6.196 − 23.543 − 2.989 15.158 − 2.834 1.072 2.318 − 1.290 0.464
± 0.302 ± 0.025 ± 0.020 ± 0.304 ± 0.224 ± 0.101 ± 0.125 ± 0.030 ± 0.030 ± 0.070 ± 0.010 ± 0.018

300 − 3.856 9.421 1.488 − 10.830 − 26.215 − 2.958 15.386 − 2.426 0.733 2.732 − 1.441 0.561
± 0.367 ± 0.033 ± 0.021 ± 0.356 ± 0.274 ± 0.135 ± 0.122 ± 0.036 ± 0.042 ± 0.090 ± 0.008 ± 0.027

350 − 7.791 9.947 1.720 − 14.770 − 28.375 − 2.224 15.185 − 1.828 0.244 3.053 − 1.574 0.593
± 0.439 ± 0.057 ± 0.028 ± 0.427 ± 0.318 ± 0.250 ± 0.107 ± 0.045 ± 0.059 ± 0.126 ± 0.011 ± 0.036

interaction below rc, and in particular the corresponding
neutron-neutron scattering length cannot be determined from
the present calculation.

We summarize our points. Using the 3σ self-consistent
Granada-2013 database for np and pp scattering comprising

LAB energies below 350 MeV, we have investigated isospin
breaking in the pion-nucleon coupling constants by separating
the nuclear potential in two distinct contributions: Above
3 fm, we use charge-dependent one-pion exchange potential
for the strong part along with electromagnetic and relativistic

TABLE XIII. np isoscalar phase shifts.

ELAB
1P1

1F3
3D2

3G4
3S1 ε1

3D1
3D3 ε3

3G3

1 − 0.191 − 0.000 0.006 0.000 147.685 0.105 − 0.005 0.000 0.000 − 0.000
± 0.017 ± 0.001

5 − 1.528 − 0.010 0.226 0.001 118.043 0.654 − 0.186 0.002 0.013 − 0.000
± 0.003 ± 0.024 ± 0.005

10 − 3.119 − 0.066 0.876 0.012 102.425 1.112 − 0.690 0.005 0.083 − 0.003
± 0.009 ± 0.001 ± 0.034 ± 0.011 ± 0.002

25 − 6.413 − 0.435 3.839 0.177 80.364 1.696 − 2.843 0.039 0.572 − 0.055
± 0.029 ± 0.010 ± 0.059 ± 0.026 ± 0.009 ± 0.001

50 − 9.656 − 1.173 9.265 0.755 62.489 2.032 − 6.496 0.292 1.658 − 0.274
± 0.062 ± 0.002 ± 0.037 ± 0.001 ± 0.078 ± 0.047 ± 0.026 ± 0.005 ± 0.004 ± 0.001

100 − 14.214 − 2.304 17.776 2.321 43.135 2.515 − 12.295 1.321 3.532 − 1.007
± 0.097 ± 0.015 ± 0.076 ± 0.014 ± 0.086 ± 0.082 ± 0.054 ± 0.020 ± 0.018 ± 0.011

150 − 18.203 − 3.097 22.620 3.986 30.862 2.927 − 16.683 2.338 4.833 − 1.873
± 0.114 ± 0.036 ± 0.096 ± 0.045 ± 0.098 ± 0.110 ± 0.081 ± 0.042 ± 0.031 ± 0.036

200 − 21.765 − 3.831 24.866 5.583 21.462 3.272 − 20.284 2.931 5.790 − 2.718
± 0.142 ± 0.053 ± 0.123 ± 0.080 ± 0.123 ± 0.131 ± 0.114 ± 0.067 ± 0.040 ± 0.064

250 − 24.856 − 4.634 25.699 7.011 13.557 3.677 − 23.290 3.067 6.565 − 3.516
± 0.181 ± 0.061 ± 0.149 ± 0.102 ± 0.148 ± 0.142 ± 0.130 ± 0.095 ± 0.055 ± 0.083

300 − 27.487 − 5.498 25.991 8.197 6.566 4.262 − 25.639 2.870 7.195 − 4.314
± 0.221 ± 0.077 ± 0.194 ± 0.117 ± 0.171 ± 0.175 ± 0.143 ± 0.129 ± 0.069 ± 0.101

350 − 29.666 − 6.335 26.295 9.101 0.223 5.068 − 27.156 2.492 7.647 − 5.173
± 0.257 ± 0.129 ± 0.312 ± 0.142 ± 0.193 ± 0.265 ± 0.210 ± 0.166 ± 0.082 ± 0.146
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corrections. Below 3 fm, we regard the interaction as unknown
and we coarse grain it down to the shortest de Broglie
wavelength corresponding to the pion production threshold,
which is about 0.6 fm. With a total number of 55 parameters,
including the three pion-nucleon coupling constants, we
describe a total number of 6741 np and pp data including
normalization factors provided by the experimentalist which
a total χ2 of 6855.5, which means χ2/ν = 1.025. We see
clear evidence that the coupling of neutral pions to neutrons
is larger than to protons. As a consequence, neutrons interact
more strongly than protons.
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APPENDIX A: OPERATOR BASIS

To incorporate charge dependence on P waves, two more
operators need to be added to the basis we used previously,
getting a total of 23 operators On. The potential is written as
a sum of functions multiplied by each operator

V (r) =
∑

n=1,23

Vn(r)On. (A1)

The first fourteen operators are charge independent
and correspond to the ones used in the Argonne v14

potential

On=1,14 =1,τ 1 ·τ 2, σ 1 ·σ 2,(σ 1 ·σ 2)(τ 1 ·τ 2), S12,S12(τ 1 ·τ 2),

L·S,L·S(τ 1 · τ 2),L2,L2(τ 1 · τ 2), L2(σ 1 · σ 2),

L2(σ 1 · σ 2)(τ 1 · τ 2), (L·S)2,(L·S)2(τ 1 · τ 2). (A2)

These fourteen components are denoted by c, τ , σ , στ , t ,
tτ , ls, lsτ , l2, l2τ , l2σ , l2στ , ls2, and ls2τ . The remaining
charge-dependent operators are

On=15,21 = T12, (σ 1 · σ 2)T12 ,S12T12, (τz1 + τz2) ,

(σ 1 · σ 2)(τz1 + τz2),L2T12,L
2(σ 1 · σ 2)T12,

L·ST12,(L·S)2T12, (A3)

and are labeled as T , σT , tT , τz, στz, l2T , l2σT , lsT ,
and ls2T . The first five were introduced by Wiringa et al.
in Ref. [62]; the following two were included in Ref. [34] to
restrict the charge dependence to the 1S0 by following certain
linear dependence relations between VT , VσT , Vl2T , and Vl2σT .
The last two terms are required for the charge dependence on
the 3P0, 3P1, and 3P2 partial waves.

As in our previous analysis, we set VtT = Vτz = Vστz = 0
to exclude charge dependence on the tensor terms and charge
asymmetries. To restrict the charge dependence to the S and
P waves parameters, the remaining potential functions must
follow

48Vl2T = −5VT + 3VσT + 12VlsT − 48Vls2T , (A4)

48Vσl2T = VT − 7VσT + 4VlsT − 16Vls2T . (A5)

APPENDIX B: PHASE SHIFTS

In Tables XI, XII, and XIII we provide the pp and np
phase shifts for the lower partial waves and selected LAB
energies with their corresponding error bars for the fit with
charge dependence in S and P waves. In the case that errors
are smaller than 10−3, we leave the cell empty.
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