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Multiplicity derivative: A new signature of a first-order phase transition in intermediate-energy
heavy-ion collisions
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Measurement of M , the total multiplicity, for central collision between comparable mass heavy ions can
provide a signature for first-order phase transition. The derivative of M with respect to E∗/A, where E∗ is the
excitation energy in the center of mass and A is the total mass of the dissociating system, is expected to go
through maximum as a function of E∗. Theoretical modeling shows that this is the energy where the specific
heat Cv maximizes, which typically happens at the first-order phase transition. The measurement of total M is
probably feasible in more than one laboratory.
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Introduction. In this Rapid Communication, we suggest
experiments which can provide evidence (or absence of evi-
dence) for first-order phase transition in intermediate-energy
heavy-ion collisions. Phase transitions occur in large systems
and signatures of phase transition can be masked by finite sizes.
In nuclear physics, the Coulomb interaction prevents formation
of very large systems in the laboratory. In addition to limiting
the size of nuclei, Coulomb effects further corrupt signatures of
phase transition. If finite size and Coulomb effects totally mask
the signature of phase transition, then no definite conclusions
can be reached from the data. We suggest that the situation is
not that ambiguous.

In a seminal paper, Gulminelli and Chomaz pointed out
that just the effect of finite size will cause bimodality to
appear in the mass distribution of composites for a first-order
transition [1]. In heavy-ion collisions (HIC), many composites
are produced. Let us denote by Pm(k) the probability that
in the mass distribution, the composite with mass k appears as
the maximum mass. One can plot Pm(k) as a function of k. In
the case of first-order phase transition, finite size produces two
maxima at two different values of k. The energy at which the
two maxima achieve the same value defines the energy of the
bimodal point. In thermodynamic models, instead of energy,
the primary variable is the temperature. We could talk about
the temperature of the bimodal point. The range of energy
or temperature where two maxima are seen can be called the
bimodal region. It is a small region. Bimodality has appeared in
many calculations. It was shown to appear in the Boltzmann-
Uehling-Uhlenbeck (BUU) transport model of central colli-
sions between two equal ions with Coulomb forces switched
off [2]. It appeared in quantum molecular dynamics calculation
[3]. It is seen in the canonical thermodynamic model [4–6].

The question we ask is as follows: If the corruptive effects of
Coulomb interaction is so strong that bimodality is destroyed,
is there any other observable that points to vestiges of a first-
order phase transition? Our answer is yes. We use the canonical
thermodynamic model (CTM) [7] to establish our claim. But
we need first to turn to bimodality in CTM without and with
Coulomb interaction.

Two different microcanonical versions employing similar
physics as CTM are the statistical multifragmentation model

(SMM) by the Copenhagen group [8] and the microcanonical
metropolis Monte Carlo (MMMC) by the Berlin group [9].
All these models [7–9] were very successfully used to fit
many data in HIC. Results from CTM and SMM have been
found to be very close [10]. Here we use CTM. We will
skip all calculational details of CTM as they can be found
in many places. Composites carry charge and the long-range
Coulomb interactions between composites are included in
Wigner-Seitz approximation [8] in SMM and are also adopted
in CTM. We will use results from a previous calculation
and, in particular, Fig. 1 of Ref. [5]. The example studied
dissociation of a system with N and Z equal to 75. The
Coulomb effects were studied by varying the strength of
Coulomb interaction using a multiplicative factor xc. xc = 0
means no Coulomb interaction, and xc = 1 means the actual
strength of Coulomb force. An intermediate value of xc means
a reduced value of Coulomb interaction. The lesson that we
learn from that work is this: For xc = 0, bimodality appears.
In addition, the specific heat cv hits a maximum value at the
bimodal point. For small values of xc, the bimodality region
is shrinking and the maximum value of cv is close to the
bimodal temperature but not identical. Bimodality disappears
before reaching xc = 1, but the usual behavior of cv reaching
a maximum at phase transition temperature continues until
xc = 1. So if we could measure the cv , we would see vestiges of
first-order phase transition even with the usual Coulomb force.
But since measuring cv is not a practical suggestion, is there
some other measurable quantity that also maximizes when cv

does? Theoretical modeling predicts that the derivative of total
multiplicity with respect to temperature displays a maximum
which coincides with the maximum of cv . This is shown in
the next section. Since temperature increases with increasing
beam energy, the maximum can be located in experiments.

Results. In central collisions of nearly equal mass ions,
one can measure with 4π detectors the total multiplicity
M = ∑

Ma . Here a denotes the mass numbers of composites.
In CTM, the derivative of M with T as a function of T is seen
to have a maximum. Figure 1 (left panel) shows the total
multiplicity for fragmenting system having proton number
(Z) = 82, neutron number (N ) = 126, and its derivative
dM/dT (the right panel). Results for both real nuclei and for
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FIG. 1. Variation of multiplicity M (left panels) and dM/dT

(right panels) with temperature (bottom x axes) and excitation per
nucleon (top x axes) from the CTM calculation for fragmenting
systems having Z = 82 and N = 126 (top panels). Bottom panels
represent the same but for a hypothetical system of one kind of
particle with no Coulomb interaction but the same mass number
(A = 208). E∗ is E − E0, where E0 is the ground-state energy of the
dissociating system in the liquid drop model whose parameters are
given in Ref. [7].

one kind of particle have been displayed in order to emphasize
the effects of Coulomb interaction. The rise and the peak are
much sharper in the absence of Coulomb interaction, clearly
indicating the role of the long-range interaction. As the system
size decreases (Fig. 2), the features become less sharp, as in
Z = 28 and N = 30. The peak in dM/dT coincides with
the maximum of specific heat at constant volume Cv as a
function of temperature, and this is seen in Figs. 3 and 4
for Z = 82, N = 126 and Z = 28,N = 30 respectively. Of
course, experiments do not give T directly but a plot against
E∗/A will also show a nearly coincident maximum (see Figs. 1
and 2). The peak in Cv is a signature of first-order phase
transition. In dM/dT , we have the peak coinciding with that
of Cv and hence we are proposing it as a new method for
testing the occurrence of first-order phase transition in HIC.
Even where bimodality develops, it may be easier to locate
the position of the maximum in the derivative of M since the
bimodal region is very narrow.

It is also worth mentioning that near the maximum of
dM/dT , the entropy of the dissociating system makes a higher
jump than is seen far from it. This is also shown in Fig. 5. For

FIG. 2. Same as Fig. 1 but the fragmenting systems are Z = 28
and N = 30 (top panels) and A = 58 (bottom panels).

the hypothetical (one-particle) system, the increase in entropy
near the maximum of dM/dT is much more pronounced
(lower panel), while the Coulomb effect smears the rise in
the real system (upper panel).

It is well known that composites from CTM are excited and
hence will undergo sequential two-body decay [11], which will
change the total multiplicity. We have examined this and found

FIG. 3. Variation of dM/dT (red solid lines) and Cv (green
dashed lines) with temperature from CTM for fragmenting systems
having Z = 82 and N = 126 (left panel) and for hypothetical systems
of one kind of particle with no Coulomb interaction of mass number
A = 208. To draw dM/dT and Cv in the same scale, Cv is normalized
by a factor of 1/50.
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FIG. 4. Same as in Fig. 3, but the fragmenting systems are Z = 28
and N = 30 (left panel) and A = 58 (right panel).

that this will not alter our conclusions. In fact, sequential decay
makes the peak in dM/dT sharper. This is shown in Fig. 6.

Lastly, we have examined the features of intermediate-mass
fragments (composites with charge 3 � z � 20) and it is
observed that similar behavior is also displayed by MIMF and
its derivative, as shown in Fig. 7. It was shown earlier for
an idealized system with one kind of particles that there is a
dramatic increase in MIMF in a short temperature interval [12].
For the sake of completeness, we have also shown here how
MIMF behaves with temperature with Coulomb interaction
included. The peak in the derivative does not exactly coincide
with that of Cv and this is expected since in MIMF all the
composites and nucleons are not included which are used in

FIG. 5. Variation of entropy (blue dashed lines) and dM/dT (red
solid lines) with temperature from CTM for fragmenting systems
having Z = 82 and N = 126 (top panel) and for hypothetical system
of one kind of particle with no Coulomb interaction of mass number
A = 208 (bottom panel). To draw S and dM/dT in the same scale,
S is normalized by a factor of 1/20 for Z = 82 and N = 126 system
and 1/50 for hypothetical system of one kind of particle.

FIG. 6. Effect of secondary decay on M (left panel) and dM/dT

(right panel) for fragmenting systems having Z = 28 and N = 30.
Red solid lines show the results after the multifragmentation stage
(calculated from CTM), whereas blue dashed lines represent the
results after secondary decay of the excited fragments.

the calculation of Cv . MIMF is also an important experimental
observable which is measured in many situations [13–15]
instead of the total multiplicity M . However, prescription of
considering full M and its derivative is more precise in locating
the position of the maximum of cv , which signifies that we are
at first-order phase transition.

Discussions. Establishing evidence for phase transitions in
nuclear matter from data obtained from intermediate-energy
heavy-ion collisions has attracted much attention in the past
twenty years. Here we have used measurable dM/dE and
dMIMF/dE as evidence for first-order phase transition should
a maximum be seen. The answer is unambiguous: It is either
yes or no. Most past investigations have suffered from
ambiguity. An example was trying to fit an individual Ma

to a−τ f (aσ (T − Tc)) [16–20]. Equally acceptable but quite
approximate fits were found with very different models, so
no conclusions could be made. One model that predicted
first-order phase transition was the lattice gas model [21], but
the property of M was not investigated. It will be interesting
to pursue that.

FIG. 7. Variation of intermediate-mass fragment (IMF) multiplic-
ity MIMF (left panels) and first-order derivative of IMF multiplicity
dMIMF/dT (right panels) with temperature from CTM calculation for
fragmenting systems having Z = 82 and N = 126. Variation of Cv

with temperature (T ) is shown by green dashed line in right panel.
To draw dMIMF/dT and Cv in the same scale, Cv is normalized by a
factor of 1/100.
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