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α-cluster formation and decay in the quartetting wave function approach
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We present a microscopic calculation of α-cluster formation in heavy nuclei by using the quartetting wave
function approach. The interaction of the quartet with the core nucleus is taken in local density approximation.
The α-cluster formation is found to be particularly sensitive to the interplay of the mean field felt by the α-cluster
and the Pauli blocking as a consequence of antisymmetrization. The striking feature of α-cluster formation
probability across the major shell closures of 82 protons and 126 neutrons is reproduced. The shell (or subshell)
effects on the α-cluster formation in superheavy nuclei are also analyzed.
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Introduction. Although radioactive α decay is an important
issue dating back to the early days of nuclear physics, the
α-cluster formation problem as a major challenge in α-decay
theory has still not been fully understood [1]. The description
of α-cluster formation in heavy nuclei, in principle, involves a
complicated many-body problem and is very difficult to handle
technically [2,3]. Only a few microscopic calculations have
been carried out to estimate the α-cluster formation probability
in the typical nucleus 212Po (α + 208Pb) [4,5]. The fully
microscopic treatment of α-like correlations in heavy nuclei
is still not feasible with present computer capabilities. This is
in contrast to the situation in light nuclei, where the α-like
correlations of selfconjugate nuclei have been investigated
extensively using microscopic approaches [6–10]. Systematics
of α-cluster formation probability Pα in heavy nuclei have
been considered for a long time [11,12]. Empirical values of
Pα were extracted from measured data by using analytical
formulas or semiclassical approximations [11–16]. The main
message is that there exists a striking change of α-cluster
formation probability across the closed shells, especially the
neutron shell closure N = 126 and proton Z = 82. This shell
(or subshell) effect may also be crucial for the α-decay of
superheavy nuclei [17].

Method. In this work, α-cluster formation in both heavy
and superheavy nuclei is investigated by a quartetting (four-
nucleon) wave function approach, which is inspired by
the THSR (Tohsaki-Horiuchi-Schuck-Röpke) wave function
concept for light nuclei and has been successfully applied
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to the α decay of 212Po [18,19]. In this approach, the wave
function of quartetting state is subdivided in a unique way in
the center of mass (c.m.) part and the intrinsic part [18,19].
The separation of the c.m. motion is a key to simplify
the problem of α-cluster formation. A coupled system of
wave equations is obtained describing the c.m. motion and
a similar equation for the intrinsic motion. To make the
approach practicable, we use a local-density approximation
for the lead core nucleus, neglecting the derivative terms of
the intrinsic wave function. The Schrödinger equation for
c.m motion contains the kinetic part as well as the potential
part, which is approximated by an effective c.m. potential
W (r) = W intr(r) + W ext(r) [18,19]. The intrinsic part W intr(r)
approaches for large r the bound-state energy of the free
α particle: E(0)

α = −28.3 MeV. This binding energy will
be reduced at short distance r because of Pauli blocking
effects. The external part W ext(r) is determined by the mean-
field interaction V mf

τ (r), including the strong nucleon-nucleon
interaction as well as the Coulomb interaction. Using the
two-potential approach [20], the effective c.m. potential is
separated into two parts at the separation point rsep. By solving
the corresponding c.m. Schrödinger equation, the bound-state
wave function �(r) will be calculated. Here the α-transition
probability is given as product of the formation probability
Pα , the pre-exponential factor ν, and the exponential factor
T [19]. The α-cluster formation probability Pα is obtained
by integrating the bound-state wave function �(r) from the
critical radius rc (corresponding to the critical density nMott

B ,
see below) to infinity [18,19]:

Pα =
∫ ∞

0
d3r|�(r)|2�[

nMott
B − nB(r)

]
. (1)

In the region r > rsep, the scattering state wave function χ (r)
is obtained as a combination of regular and irregular Coulomb
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FIG. 1. Comparison of the c.m. effective potentials, the c.m. wave
functions, and the Fermi energies for two neighboring α emitters 210Po
and 212Po.

functions [19,20]. The decay width is then calculated by using
the values of �(r) and χk(r) at the separation point rsep [19,20].

Model parameters. To avoid the problems of odd-nucleon
blocking and angular momentum, only the favored transitions
of even-even α emitters are considered. First, we focus on the
most important case, i.e., the α decay of polonium isotopes
(Po → Pb + α). We start with the nucleon density in the
lead core and determine the critical radius rc where the α-
like bound state is dissolved [18]: nB(rc) = 0.02917 fm−3. We
use the following neutron and proton densities for the lead
nucleus [21]:

nn(r) = N

1343.62

/
[1 + e(r−6.7)/0.55],

np(r) = Z

1303.76

/
[1 + e(r−6.68)/0.447] (2)

(in units of fm). To calculate the different isotopes of Po,
we fix the proton number Z = 82 and vary the neutron
number N only. The Pauli blocking term is determined by
the baryon density nB = nn + np with a fitted formula (in
units of MeV, fm) W Pauli(nB) = 4515.9 nB − 100935 n2

B +
1202538 n3

B , which is valid in the density region nB �
0.03 fm−3 with relative error below 1% [18]. Both the nuclear
and Coulomb potentials of the α-core system are obtained
from a double-folding model using the matter (and charge)
densities of the core and the α particle. For the nuclear
potential, the M3Y-type nucleon-nucleon interaction with a
short-range repulsion part (c) and a long-range attraction part
(d) are used, v(s) = c exp(−4s)/(4s) − d exp(−2.5s)/(2.5s),
in which s denotes the nucleon-nucleon distance [22]. In a first
attempt, the parameters c and d are fitted to the experimental
α-decay energy (Qα) and half-life (T1/2) for each polonium
isotope [23]. Below we discuss the systematics of these
parameters which shows the predictive power of our approach.

Results. In Fig. 1, we compare the c.m effective potentials
and the corresponding c.m motion wave functions for two
neighboring polonium isotopes 210Po and 212Po. Note that
their empirical α-cluster formation probability has the most
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FIG. 2. α-cluster preformation probability Pα of even-even Po
isotopes by the quartetting wave function approach. For comparison,
the empirical analysis of α decay reduced width δ2 taken from
Ref. [13] are given in the insert.

significant change across the N = 126 major shell. As shown
in Fig. 1, the c.m effective potentials of both 210Po and 212Po
are dominated by the Coulomb repulsion for large distances.
At short distances, both the attractive nuclear potential and
repulsive Pauli blocking between the α cluster and the lead
core become relevant. At a critical radius rc, the α cluster is
suddenly dissolved and the four nucleons added to the core are
implemented on top of the Fermi energy μ4 [18]. The critical
radii are rc(210Po) = 7.432 fm and rc(212Po) = 7.438 fm,
respectively. The bound-state energy Etunnel is above the Fermi
energy μ4 for the c.m. potential at r < rc. Interestingly, there
exists a deep pocket for 212Po but a very shallow one for 210Po.
This pocket is of particular importance in calculating the c.m.
wave function �(r).

The c.m. wave functions �(r) are also numerically com-
puted for 210Po and 212Po. As shown in Fig. 1, both wave
functions exhibit an approximately linear increase up to the
region of the critical radius and then decreases. However, the
c.m. wave function of 212Po is more extended to the surface
region (r > rc) because of the deep pocket. This is different
from the case of 210Po. As the α-cluster formation probability is
calculated by an integral of �(r) in the surface region (r > rc)
[see Eq. (1)], the difference between the c.m. wave functions of
210Po and 212Po explains why there is an abrupt change across
the N = 126 major shell. As seen in Fig. 1, the deep pocket
of 212Po yields a bound-state energy Etunnel = −19.346 MeV
very close to the Fermi energy μ4 = −19.771 MeV, which is
also different from the case of 210Po.

It is of interest to present the calculated α-cluster formation
probability Pα of all even-even polonium isotopes by using
our quartetting wave function approach. A plot of Pα as
a function of neutron number N is given in Fig. 2. For
comparison, in the insert the empirical values of the α-decay
reduced width δ2 = 2πh̄λ/P are shown, as given in Ref. [13].
Here, λ is the measured decay constant and P penetrability
factor for the α particle to tunnel through the Coulomb and
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FIG. 3. The quantity Etunnel − μ4 as a function of the neutron
number N for the Po isotopes.

centrifugal barriers. Taking the same penetration probability
P as T calculated in our quartetting wave function approach
as introduced above, we have the relation Pα = δ2/(2πν).
Therefore, both quantities, the empirical α-decay reduced
width δ2 and the formation probability Pα , are closely related,
and the behavior of Pα in Fig. 2 is in excellent agreement with
the empirical analysis [13]. As shown in Fig. 2, the values
of Pα are quite close to each other from 190Po to 196Po. This
feature is called the “saturation effect” in previous studies
[13]. Then the values of Pα decrease with the increasing of
neutron number until a sudden jump from Pα(210Po) = 0.054
to Pα(212Po) = 0.142 appears. This is clearly due to the effect
of N = 126 neutron shell closure. As demonstrated by the
two sketches in Fig. 2, the formation of an α cluster in 210Po
involves two neutrons below the major closed shell. This is
in contrast to the case of 212Po, in which two neutrons are on
top of the lead core. In contrast to the empirical analysis,
here the formation probabilities are consistently computed
in a microscopic way, which reveals very clearly the shell
structure of heavy nuclei. It is also found that there exists
strong correlation between the difference of Etunnel − μ4 and
the α-cluster formation probability, cf. Ref. [19]. A systematic
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FIG. 4. α-cluster preformation probability Pα of even-even
N = 126 isotones by the quartetting wave function approach.

dependence of the energy difference Etunnel − μ4 on the
neutron numbers N is shown in Fig. 3 for the Po isotopes.
As clearly shown by Figs. 2 and 3, if the bound-state energy
Etunnel is close to the Fermi energy μ4, a large α preformation
probability is obtained.

Another typical example is the α-cluster formation proba-
bility of the even-even N = 126 isotones (daughter nuclei). We
show in Fig. 4 the calculated α-cluster formation probability of
α emitters 210Pb, 212Po, 214Rn, 216Ra, and 218Th as a function
of proton number Z. As expected, there is large increase of
α-cluster formation probability from Pα(210Pb) = 0.081 to
Pα(212Po) = 0.142 because of the effect of Z = 82 closed
shell.

For superheavy nuclei, the shell effect is considered to
be the determining factor for their stability. In the majority
of cases, the superheavy nuclei decay via α decay. It is
expected that the shell effect also manifests itself in the
α-cluster formation in superheavy nuclei. In Table I, the
details of the calculated α-cluster formation probabilities of
all even-even superheavy nuclei available are presented. The
parameter values c and d in the nucleon-nucleon interaction are
carefully chosen so that both the measured decay energy Qα

TABLE I. The α-cluster formation probabilities of even-even superheavy nuclei by the quartetting wave function approach. Strong deviations
indicating a possible proton shell closure are highlighted in bold face.

Mass Z N Qα Half-life c d Fermi energy Etunnel Etunnel − μ4 Pα

MeV T1/2 (s) (MeV fm) (MeV fm) μ4 (MeV) (MeV) (MeV)

294 118 176 11.810 1.4 ×10−3 17066.70 4847.61 −16.889 −16.490 0.399 0.110
292 116 176 10.774 2.4 ×10−2 19237.20 5365.62 −17.772 −17.526 0.246 0.197
290 116 174 10.990 8.0 ×10−3 19027.50 5315.41 −17.568 −17.310 0.258 0.191
288 114 174 10.072 7.5 ×10−1 18743.70 5251.07 −18.549 −18.228 0.320 0.156
286 114 172 10.370 3.5 ×10−1 17237.40 4892.79 −18.349 −17.930 0.419 0.104
270 110 160 11.117 2.1 ×10−4 17079.10 4847.45 −17.547 −17.183 0.364 0.144
268 108 160 9.623 1.4 ×100 15653.10 4516.39 −19.171 −18.677 0.494 0.077
264 108 156 10.591 1.1 ×10−3 17054.60 4843.76 −18.088 −17.709 0.379 0.140
260 106 154 9.901 1.2 ×10−2 17488.80 4948.93 −18.759 −18.399 0.360 0.152
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FIG. 5. The comparison of experimental and calculated half-lives
for the Po isotopes by using linear mass-dependent parametrization
of M3Y interaction strengths.

and half-life T1/2 are reproduced [23]. Also, the experimental
bound-state energy Etunnel = Qα − 28.3 MeV is reproduced,
which is above the value of Fermi energy μ4. Interestingly,
an abrupt jump of α-cluster formation probability from 268108
(Pα = 0.077) to 270110 (Pα = 0.144) is observed. They belong
to the N = 160 isotones. This shows that Z = 108 is a possible
proton shell (or subshell) closure in the superheavy mass
region. More discussion of Z = 108 shell effect can be found
in Ref. [24].

Discussion of model parameters. By adjusting the strengths
c and d in the M3Y interaction for each nucleus, we find the
gap in the α-formation probability Pα , which is a signature of
shell closure. At present we are not explicitly performing shell
structure calculations for the core nucleus. An attempt is made
to construct a “smooth” mass-dependent parametrization of
M3Y interaction strengths. As shown in Fig. 5, the strength
c of M3Y interaction is chosen as an arbitrary constant and
the strength d is found to have linear mass dependence for
the Po isotopes with A < 212 and A � 212, respectively
(see the upper panel). A comparison between the experimental
and calculated half-lives is given in the lower panel of
Fig. 5. This may be considered as predictive power of our
approach where only five parameters are fitted to describe
the half-lives of the entire range of Po isotopes. A similar
analysis is presented for superheavies in Fig. 6 where the
strength c is the same constant but d has different linear mass
dependence with A � 270 and A > 270. For both the Po
isotopes and superheavies, a reasonable agreement between
data and theory is obtained, but deviations occur at shell
closures, e.g., N = 126 and Z = 108. To further improve the
agreement and make reliable predictions, a rigorous treatment
of shell structure for the core nucleus which is missing in the
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FIG. 6. The comparison of experimental and calculated half-
lives for the superheavy nuclei by using linear mass-dependent
parametrization of M3Y interaction strengths.

present calculation based on a local-density (Thomas-Fermi)
approach will be needed in future.

Summary. The physics of cluster formation in heavy and
superheavy nuclei is not fully understood and the numerical
treatment is quite complex. In this work, we consider α-cluster
preformation in both the heavy and superheavy nuclei. The
approach presented here to include four-nucleon correlations,
in particular bound states, is based on a first-principle approach
to nuclear many-body systems. The c.m. motion as a collective
degree of freedom is introduced to characterize the cluster
and the equation for c.m motion is numerically solved. An
important point is that the α cluster can only be formed on
the surface region of the core with r > rc because of the
Pauli blocking effects. The interplay of the mean field and
the Pauli blocking as a consequence of antisymmetrization
leads to the formation of a “pocket” in the effective c.m.
potential. We found a deeper pocket results in a more extended
c.m wave function on the surface region and consequently a
larger cluster formation probability. Systematics of α-cluster
formation probability in heavy nuclei is well reproduced by
our quartetting wave function approach. We also found that
the shell (or subshell) effect of Z = 108 manifests itself in
α-cluster formation for superheavy nuclei which has been
derived from data; see Table I.
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