
RAPID COMMUNICATIONS

PHYSICAL REVIEW C 95, 061305(R) (2017)

Spreading widths of giant resonances in spherical nuclei: Damped transient response
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We propose a general approach to describe spreading widths of monopole, dipole, and quadrupole giant
resonances in heavy and superheavy spherical nuclei. Our approach is based on the ideas of the random
matrix distribution of the coupling between one-phonon and two-phonon states generated in the random-phase
approximation. We use the Skyrme interaction SLy4 as our model Hamiltonian to create a single-particle spectrum
and to analyze excited states of the doubly magic nuclei 132Sn, 208Pb, and 310126. Our results demonstrate that the
approach enables to us to describe a gross structure of the spreading widths of the giant resonances considered.
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Damping of collective motion in finite many-body quantum
systems is one of the topical subjects in mesoscopic physics.
The question of how, for example, multipole giant resonances
(GRs) in nuclei [1] and metal clusters [2] dissolve their energy
is still not well understood. There is, however, a consensus
of opinion that, in particular, in a nucleus, once excited by
an external field, a GR progresses to a fully equilibrated
system via direct particle emission and by coupling to
more complicated states produced by the intrinsic motion of
nucleons (see, for example, Ref. [3]). The former mechanism
gives rise to the escape width �p. It is expected that the decay
evolution along the hierarchy of more complex configurations
till compound states determines spreading width �. A full
description of this decay represents a fundamental problem
which is, however, difficult to solve (if even possible at all)
due to the existence of many degrees of freedom.

In general, the description of spreading width in mesoscopic
systems is based on the study of the electromagnetic strength
distribution (strength function) [4] in some energy interval.
This interval should be large enough to catch hold of basic
features of a GR under investigation. Note that, in deformed
systems, the experimental widths are systematically larger and
may develop a two- or three-peak structure. In this paper we
consider only spherical nuclei in order to highlight a generic
nature of the width � in monopole, dipole, and quadrupole
resonances in heavy and superheavy systems.

The nuclear shell model may be used to analyze spreading
widths of GRs. However, the complexity of the calculations
increases rapidly with the size of the configuration space. This
fact severely restricts the feasibility of shell-model calculations
for heavy and superheavy nuclei. In addition, even for a
medium 48Ca isotope, the state-of-art shell-model calcula-
tions [5], which operate with the Hamiltonian matrices of a
huge dimension, produce questionable results for the dipole
GR. Although these calculations reproduce reasonably well its
peak position and peak width, the enhancement of the classical
Thomas–Reiche–Kuhn sum rules is too overestimated. As a
result, the number of shell-model studies, in particular, dipole
GRs in heavy and superheavy nuclei are limited and rather
focused on details of the low-energy region (see, e.g., Ref. [6]).

The success of random matrix theory (RMT) [7–12],
which is based on universal features in the spectra of
complex quantum systems, gives hope that light will be
shed on the spectral properties and the distribution of the
transition-strength properties of GRs, when specific details
become not of a primary importance. As is well known,
RMT assumes only that a many-body Hamiltonian belongs
to an ensemble of random matrices that are consistent with
the fundamental symmetries of the system such as parity,
rotational, translational, and time-reversal symmetries. We
believe that it is quite suitable for our aim; namely, to provide
a generic principle for the decay of highly excited states
with angular momentum and parity: Jπ = 0+, 1−, 2+. On
the other hand, to understand the realistic fragmentation of
high-lying states over complex configurations, observed as
structures in the spreading width, it is necessary also to exploit
a realistic nuclear structure model. It should be based on
the microscopic many-body theory, where the effects of the
residual interaction on the statistics must be studied in large
model spaces. Introducing a residual interaction in general
implies a transition to the Gaussian orthogonal ensemble
(GOE)—properties above some excitation energy [13]. In fact,
recent analysis of 151 experimental nuclear levels up to the
excitation energy of Ex = 6.2 MeV in 208Pb indicates already
that the spectral properties are described by the GOE due to a
residual interaction, even though there is a small admixture of
regular dynamics brought about by the low-lyings states [14].

The quasiparticle-phonon model (QPM) [15] offers an
attractive framework for such studies. We will use the modern
development of the QPM, a finite rank separable approx-
imation (FRSA) [16]. That approach employs the Skyrme
forces to calculate the single-particle (sp) spectrum and the
residual interaction in a self-consistent manner in order to
avoid any artifacts [17]. As an example of the parameter set,
we consider the widely used SLy4 [18] which is adjusted to
reproduce the nuclear matter properties, as well as nuclear
charge radii, binding energies of doubly magic nuclei. This
set shifts the island of stability towards high charge numbers
around 310

184126 [19]. Evidently, another parameter set can be
used as well for our purposes. The continuous part of the
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SEVERYUKHIN, ÅBERG, ARSENYEV, AND NAZMITDINOV PHYSICAL REVIEW C 95, 061305(R) (2017)

sp spectrum is discretized by diagonalizing the Hartree–Fock
Hamiltonian on a harmonic-oscillator basis. The cutoff of the
continuous part is at the energy of 100 MeV.

The residual particle-hole interaction is obtained as the
second derivative of the energy density functional with respect
to the particle density. By means of the standard proce-
dure [20] we obtain the familiar equations of the random-phase
approximation (RPA) in the one particle-one hole (1p-1h)
configuration space. The eigenvalues of the RPA equations are
found numerically as the roots of a relatively simple secular
equation within the FRSA [16]. Being a linear combination of
1p-1h states, the RPA solutions are treated as quasibosons
with quantum numbers λπ . Among these solutions there
are one-phonon states ωλi corresponding to collective GRs
and pure two-quasiparticle states. The configurations with
various degrees of complexity can be built by combining
different one-phonon configurations λ

π1
1 , λ

π2
2 , . . . of fixed

quantum number λπ . As a result, one obtains the n-phonon
components [λπ1

1 ⊗ λ
π2
2 ⊗ · · · ⊗ λπn

n ]λπ of the wave function.
The diagonalization of the model Hamiltonian in the space
of the one-phonon and complex configurations produces
eigenstates of excited states. These states carry information on
the fragmentation of the one-phonon component over complex
configurations in the resulting eigenfunction.

A natural question arises: what degree of complexity of
configuration should be enough in order to understand a gross
structure of a particular GR which data are available in modern
experiments? In addition, once this complex configuration
is defined one can further ask about statistical properties
of states that compose a GR strength distribution.

In the actual calculations of the GRs strength distributions
in the spherical nuclei 132Sn, 208Pb, and 310126 considered
as examples, we have included in our model space different
multipoles λπ = 0+, 1−, 2+, 3−, 4+. Tentative estimates for
the position of the resonance centroids Ec and the spreading
width � are defined by means of the energy-weighted
moments mk = ∑

B(Eλ)Ek: (i) Ec = m1/m0, (ii) � =
2.35[m2/m0 − (m1/m0)2]1/2 (see, for example, Ref. [21]).
Note that the coefficient 2.35 has its roots in the experimental
definition of the width (full width at half maximum) related
to the variance of the Gaussian (see, for example, Ref. [3]).
Next, we construct various combinations of two-phonon states
ωλ1i1 + ωλ2i2 to define the energy interval for location of the
resonance width of fixed quantum number λπ , taking 95%
of the energy-weighted sum rule symmetrically around the
centroid’s position (Ec). It is noteworthy that, for all GRs,
considered in the present paper, the matrix elements for direct
excitation of two-phonon components from the ground state
are about two orders of magnitude smaller relative to ones
for the excitation of one-phonon configurations. On the other
hand, the density of these complex configurations is much
higher than the one-phonon density and contributes essentially
to statistics of the final states.

From our preliminary analysis of complex structure ob-
served in the region of the isoscalar giant monopole reso-
nance (ISGMR) with Jπ = 0+ of the doubly magic nucleus
208Pb [22] we have found that the spectrum can be explained
as a result of mixing of one- and two-phonon components of
the wave function, i.e.,

�ν(JM) =
{∑

i

Ri(Jν)Q+
JMi +

∑
λ1i1λ2i2

P
λ1i1
λ2i2

(Jν)
[
Q+

λ1μ1i1
Q+

λ2μ2i2

]
JM

}
|0〉,

where Q+
λμi |0〉 is the RPA excitation having energy ωλi , λ

denotes the total angular momentum, and μ is its z projection
in the laboratory system.

In the case of the phonon-phonon coupling (PPC) the
variational principle leads to a set of linear equations for
the unknown amplitudes Ri(Jν) and P

λ1i1
λ2i2

(Jν) (see details
in Ref. [23]):

(ωJi − Eν)Ri(Jν) +
∑

λ1i1λ2i2

U
λ1i1
λ2i2

(J i)P λ1i1
λ2i2

(Jν) = 0,

(1)∑
i

U
λ1i1
λ2i2

(J i)Ri(Jν) + 2
(
ωλ1i1 + ωλ2i2 − Eν

)
P

λ1i1
λ2i2

(Jν) = 0.

(2)

To resolve this set it is required to compute the coupling matrix
elements

U
λ1i1
λ2i2

(J i) = 〈0|QJiH
[
Q+

λ1i1
Q+

λ2i2

]
J
|0〉 (3)

between one- and two-phonon configurations.
A few remarks are in order. Our approach is similar to

the particle-vibration coupling (PVC) model based on the

Green’s function method (see for a recent review Ref. [24])
that has been used in the study of the monopole [25] and the
quadrupole [26] GR widths in 208Pb with the aid of Skyrme
forces. Note that the PPC includes as well the coupling of
one-phonon state with two-particle two-hole states, important
in the PVC model, as a particular case (see discussion in
Chapter 4.3 of the textbook [15]). However, a consistent
realization of the QPM as well as the PVC model (which
closely follows the concept of the “conserving approximation”
introduced by Baym and Kadanoff [27]) is very difficult
to implement numerically. In particular, in order to let the
two-phonon components of the above wave function obey the
Pauli principle the exact commutation relations between the
phonon operators should be taken into account [15]. As a
result, this would lead to the “dressed” two-phonon energies,
which are not accounted for here. As we will see below, the
random matrix approach enables to us to effectively avoid this
problem.

We start our discussion from the analysis of the spreading
width of the isovector giant dipole resonance (IVDGR)
in the spherical 208Pb nucleus, since it is the best-known
example of nuclear vibrations. The coupling (the PPC) of the
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FIG. 1. 208Pb: (a) experimental B(E1) strength distribution. (b)
Comparison of the results obtained by means of the microscopic
(dotted line) and the random (solid line) coupling matrix elements
between the one- and two-phonon configurations. (c) B(E1) strength
distribution for one-phonon states (dashed line) and for the PPC case.
The smoothing parameter 1 MeV is used for the strength distribution
described by the Lorentzian function. The experimental data are taken
from Ref. [28].

one-phonon states with an intermediate complex background
of two-phonon states yields a strong redistribution of the
one-phonon dipole strength in the region of the IVDGR
[see Fig. 1(c)]. It suppresses the high-lying one-phonon
strength near (∼17 MeV) and pushes this strength down
(see also Ref. [29]). As a result, we obtain a reasonably
good description of the dipole strength distribution over the
resonance localization region [compare Figs. 1(a) and 1(b)].
It appears that the presence of two-phonon components in
our wave function, in addition to the one-phonon components,
already enables us to describe the gross strength distribution
of the typical dipole response in the heavy spherical nucleus
208Pb. Similar conclusions have been drawn on the basis of
shell-model calculations for the states above 8 MeV in Ref. [6].

The relatively broad realistic distribution seen in Fig. 1
indicates that many two-phonon configurations contribute to
the fragmentation process. Indeed, the RMT measurements

such as the nearest-neighbor spacing distribution (NNSD)
and the spectral rigidity �3 indicate a transition towards the
GOE when the coupling is switched on (see Figs. 3 and 4 in
Ref. [22] for the ISGMR). Evidently, the extension of the wave
function to more complex configurations would increase the
fragmentation of the one-phonon strength over many excited
states. This complexity suggests an approach from random
matrix theory to describe the fragmentation of the transition
strength between the RPA states and the ground state.

The coupling of the phonon states to more complex
background states can be described by a simple doorway-state
Hamiltonian (cf Ref. [4])

HJπ = Hd + Hb + V, (4)

where Hd describes the doorway states, Hb describes the
background states, and V describes the coupling between
doorway states and background states. The RPA-phonon states
constitute the doorway states, Hd = ∑

i ωJ iQ
+
J iQJi , and the

background states are two-phonon and possibly more complex
states, with eigenstates Hd |d〉 = ωd |d〉 and Hb|b〉 = eb|b〉,
respectively. The Hamiltonian HJπ represents a set of good
quantum numbers Jπ , and the RPA phonons as well as all
background states fulfill these quantum numbers. We assume
no coupling between different doorway states or between
different background states, 〈d|V |d ′〉 = 0 and 〈b|V |b′〉 = 0,
but all coupling takes place between the doorway states and
the complex background states, 〈d|V |b〉 = Vdb.

Similar ideas were discussed in Ref. [30] where some
limiting analytical estimates for the GDR strength function
were obtained by coupling a collective state to chaotic
background states. Our aim is to describe microscopically
the one-phonon GR states for arbitrary multipolarity and
attempt a random-matrix-inspired treatment of the coupling
to complex surrounding states, here viewed as two-phonon
states. The quality of the random treatment can then be
studied by comparing results with the microscopic PPC model
predictions.

The doorway states are thus taken from the microscopic
RPA calculation for the isoscalar or isovector Jπ mode
providing energies ωd and transition matrix elements to the
ground state (|0〉), Bd = 〈d|MJπ |0〉, via the transition operator
MJπ . No transition can occur between a background state and
the ground state, 0 = 〈b|Mπ

J |0〉. After diagonalization of the
Hamiltonian HJπ , the transition strength of the doorway states
is fragmented on all states, and provides the full transition
strength distribution.

The modeling of background states, eb, and couplings, Vdb,
can be performed on different levels of approximation. In the
PPC model, the background energies eb are obtained as the sum
of two RPA phonon energies, ωλ1 + ωλ2 , coupled to Jπ . The
coupling matrix elements Vdb are subsequently obtained from
Eq. (3). To account for underlying complexity we now replace
these matrix elements by a random coupling. The parameter
that determines the strength of the coupling is the rms value
of the matrix elements, σ = (〈V 2

db〉)1/2. The actual distribution
of the random interaction is not important, as long as it is
symmetric, 〈Vdb〉 = 0. While the microscopic matrix elements
follow a truncated Cauchy distribution, we chose a Gaussian
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FIG. 2. The same as Fig. 1, in the case of ISGMR in 208Pb. The
experimental data are taken from Ref. [31].

distribution for the random interaction,

P (V ) = 1

σ
√

2π
exp

−V 2

2σ 2
. (5)

Solutions of HJπ are ensemble averaged over the random
interaction and give the transition strength distribution.

Choosing the strength of the random interaction from
the microscopic calculation of coupling matrix elements,
which is the rms value σc of the coupling matrix elements
given by Eq. (3), we get the B(E1) distribution strength of
IVGDR for 208Pb. It is noteworthy that the comparison of the
strength distributions obtained with the aid of the PPC and
the random distribution of the matrix elements demonstrates
a remarkable similarity [see Fig. 1(b)]. Moreover, by means

of the latter distribution (5) we reproduce the experimental
strength distribution of the IVGDR as well [compare Figs. 1(a)
and 1(b)].

The RPA analysis provides the location of the ISGMR in
208Pb in the energy region Ex = 10.5–18.5 MeV. The PPC
yields a detectable redistribution of the ISGMR strength in
comparison with the RPA results. It results in the 1 MeV
downward shift of the main peak (see Fig. 2). Our analysis
shows that the major contribution to the strength distribution is
brought about by the coupling between the [0+]RPA and [3− ⊗
3−]RPA components. In contrast, the use of the random matrix
distribution yields the backshifting of this peak. Evidently, in
this case there is only an average strength that does not produce
any preferences in the coupling between one- and two-phonon
states of different one-phonon nature. The strength distribution
of the ISGMR obtained in this case is rather close to the
experimental distribution [31].

In the same manner we calculate and compare different
estimations for the strength distribution of the GRs in 132Sn
and 310126 nuclei. The results of calculation and comparison
with the experimental data and the empirical systematics are
displayed in Table I. The description of the spreading width
by means of the PPC and the random distribution (5) provide
similar results for the ISGMR and IVGDR in all considered
nuclei. For the isoscalar giant quadrupole resonance (ISQGR)
the PPC yields the widths that are larger relative to those
produced by the random distribution. Reliable experimental
measurements are required in order to remove systematic un-
certainties in experimental analysis based on optical potentials
(see also the discussion in Ref. [26]).

Considering the interaction strength as a parameter, we
investigate the complexity of the energy states in terms of the
NNSD by studying the Brody mixing parameter [7] q versus
σ . A smooth increase is found from regularity (q = 0; Poisson
statistics) when σ = 0 to chaos (q ≈ 1; GOE) when σ = σr ,
where the critical value σr depends on considered nucleus and
the type of GR. It is remarkable that the onset of chaos appears
at a σ value very similar to the interaction strength of the

TABLE I. Characteristics of the giant multipole resonances for 132Sn, 208Pb, and 310126 nuclei: centroid energies Ec and the spreading widths
� calculated with the RPA and RPA plus phonon-phonon coupling with the microscopic (PPC) and random distribution of coupling matrix
elements (Random) are compared with available experimental data [31–34]. The values of Ec and � have been computed in corresponding
energy intervals �E. For comparison the centroid energy and width values from the empirical systematics (Syst.) are presented [33,35,36].

Ec (MeV) � (MeV) �E (MeV)

Expt. Syst. Theory Expt. Syst. Theory

RPA PPC Random RPA PPC Random

ISGMR 132Sn 15.71 16.8 16.6 16.7 2.7 4.7 3.4 12–21
ISGMR 208Pb 13.7 ± 0.1 13.50 14.7 14.4 14.6 3.3 ± 0.2 1.9 3.9 2.7 10.5–18.5

13.96 ± 0.20 2.88 ± 0.20
ISGMR 310126 11.82 12.7 12.7 12.7 1.4 3.0 1.8 9.5–16
IVGDR 132Sn 16.1 ± 0.7 15.26 15.5 15.4 15.3 4.7 ± 2.1 4.67 4.9 5.0 5.2 11–20
IVGDR 208Pb 13.43 13.73 14.0 14.0 13.8 4.07 4.15 4.6 4.9 4.8 9.5–18.5
IVGDR 310126 12.53 12.6 12.6 12.4 3.80 4.3 4.4 4.7 8.5–17.5
ISGQR 132Sn 12.71 14.8 14.7 14.7 3.91 2.1 4.0 2.6 10–20
ISGQR 208Pb 10.89 ± 0.30 10.92 13.0 13.0 13.0 3.0 ± 0.3 3.04 1.4 3.1 2.1 8–18
ISGQR 310126 9.56 11.5 11.4 11.4 2.43 1.2 2.7 1.7 8–16

061305-4



RAPID COMMUNICATIONS

SPREADING WIDTHS OF GIANT RESONANCES IN . . . PHYSICAL REVIEW C 95, 061305(R) (2017)

FIG. 3. B(E1) strength distribution of 208Pb: comparison of the
results obtained by means of the random coupling matrix elements
between the one- and two-phonon configurations. Results are shown
of the calculations [see Eqs. (1) and (2)] with the energies ωλ1i1 +
ωλ2i2 (solid line) and with random GOE-generated two-phonon
energies (dashed line). The smoothing parameter 1 MeV is used
for the strength distribution described by the Lorentzian function.

microscopic phonon coupling model. We thus find that σc ≈ σr

for each considered case. A way to chose the strength of the
random interaction may thus be to find the σ value where the
GOE properties appear, σr (practically defined as q = 0.95),
rather than performing the full microscopic PPC calculation.

While the NNSD provides information about correlations
on short energy scales, the spectral-rigidity measure �3 char-
acterizes long-range correlations between the energy levels.
For the coupling strength σc (≈σr ), full short-range GOE
correlations were found in the NNSD. The spectral rigidity
�3 only reproduces the GOE distribution �̄3(L) ≈ 1

π2 (ln L −
0.0687) up to an L value of Lmax. For the IVGDR of 208Pb we
find Lmax = 7. This implies long-range GOE correlations in
the strength distribution around the centroid energy within an
energy range of about Lmax/ρ(Ec) = 0.2 MeV, where ρ is the
density of background states. Consequently, only correlations
beyond this energy range may provide specific structure
information. Note, however, that the smoothing (1 MeV)
smears out the strength effectively over more background
states, which are not considered in the model. As a result,
the correlation energy obtained by means of Lmax is expected
to be larger.

Since the energy spectrum shows full GOE properties
when the appropriate coupling strength has been included,
another step in the doorway state model can be introduced.
Instead of calculating the background-state energies with
the aid of the RPA calculations, one might employ random
GOE-generated energies, following a smooth level-density
function of background states, which on the average agrees
with the density of two-phonon states. The resulting strength
distribution calculated in this way coincides perfectly with
the case when microscopic background energies are included
(see Fig. 3). This implies that the exact position of the
two-phonon energies is unimportant for the description of
the gross structure of the GRs, and the complex RPA
calculation of two-phonon energies may be replaced by
random-matrix-generated energies. In addition, the obtained
results demonstrate an expected negligible importance of the
Pauli-principle dressing of two-phonon energies on the gross
structure of the considered widths. This further simplifies the
model and provides possibilities to calculate spreading widths
of giant resonances in a quite general way.

In summary, we suggest a way to describe spreading
widths of GRs by including the coupling between one- and
two-phonon states. A detailed shell structure is included on
the (one-phonon) RPA level with a Skyrme interaction while
the strength fragmentation is treated with ideas from random-
matrix theory: the coupling between one- and two-phonon
states is generated by means of the random distribution of
coupling matrix elements (5), and the energies of the two-
phonon states are generated from the GOE distribution. For the
studied cases we find that the coupling strength can be obtained
from the GOE limit of the NNSD of spectra generated by the
coupling between one- and two-phonon states, characterized
by the same quantum number Jπ .
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