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Jacobi-type transitions in the interacting boson model
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We examine, within the framework of the interacting boson model, the structural evolution along the excitation
energy across the saddle points of potential wells in a finite nuclear system, and its connection with excited-state
quantum phase transitions (ESQPTs). We find that transitions between γ -rigid and γ -soft shapes occur as a
function of angular momentum, L, analogous to the Jacobi transitions occurring in rotating stars. Empirical
evidence of these transitions is found in the rotational spectra of 156–162Gd.
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In recent years, quantum phase transitions (QPTs) have
become an important subject of investigation in many fields of
physics. QPTs describe changes in the ground-state properties
of systems at zero temperature, hence the name ground-state,
or zero-temperature, quantum phase transitions (GSQPTs)
given to them. Although a definition of phase transition in
terms of singularities implies infinite systems, nonetheless the
main features of GSQPTs have been found to persist even for
mesoscopic systems with N ∼ 10 [1]. Sudden changes in the
effective order parameters (observables sensitive to QPT) as a
function of the control parameters are identified as precursors
of GSQPTs defined in the large-N limit. Nuclei provide rich
examples of such GSQPTs, and the related topics have been
widely discussed in the past two decades [2–4].

Considerable attention has very recently been given to the
so-called excited-state QPT (ESQPT) [5–13]. Unlike GSQPT,
an ESQPT can occur not only with variation of the control
parameters of a model Hamiltonian but also with increasing
excitation energy. ESQPTs in a given system are deeply rooted
in the corresponding GSQPT, and they can be considered as an
extension of the GSQPT toward excited states. Algebraic ap-
proaches provide convenient ways to investigate both GSQPTs
and ESQPTs in mesoscopic systems. The best examples are the
interacting boson model (IBM) [14] for nuclear structure and
the vibron model (VM) [15] for molecules and atomic clusters.
Evidence of the ESQPT associated with the GSQPT in the VM
[9,10] has been identified from the bending motions in nonrigid
molecules [16,17]. However, there is still no experimental evi-
dence reported for ESQPT in nuclei despite the fact that model
calculations within the IBM have shown that more abundant
ESQPTs are present in the large-N limit of this model [13].

In this work, we investigate whether ESQPTs in the IBM
survive in a realistic situation as the GSQPTs did [1], and we
discern possible fingerprints of ESQPT in deformed nuclei. In
particular, we study transitions that occur as a function of the
angular momentum, L, from γ -stable, γ = 0◦, to γ -unstable,
〈γ 〉 = 30◦, structures. These transitions are analogous to those
which occur in gravitating rotating stars, where they are known
as Jacobi transitions [18]. Several studies of Jacobi transitions
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in nuclei have been done [19–24]. In these studies within the
framework of the liquid drop model, Jacobi transitions from
oblate to triaxial shapes occur in rotating nuclei at typical
values of L ∼ 60. Here we show that similar phenomena occur
at lower values of the angular momentum, L ∼ 8, specifically
transitions from axially deformed prolate to γ -unstable shapes,
with the framework of the interacting boson model. Since
these are similar but not identical to those discussed previously
[19–24], we denote them here as Jacobi-type instead of simply
Jacobi transitions. We also show that these transitions can be
related to precursors of ESQPTs only in a small region of the
IBM phase diagram and are otherwise gradual changes in the
evolution with angular momentum.

A Hamiltonian in the IBM framework is constructed from
two kinds of boson operator, s boson with Jπ = 0+ and d
boson with Jπ = 2+ [14]. Specifically, we consider the IBM
consistent-Q Hamiltonian [25]

Ĥ (η,χ ) = ε

[
(1 − η)n̂d − η

4N
Q̂χ · Q̂χ

]
, (1)

where n̂d and Q̂χ = (d†s + s†d̃)(2) + χ (d†d̃)(2) with η ∈ [0,1]
and χ ∈ [−√

7/2,0]. The dynamical structures of this Hamil-
tonian are controlled by two parameters (apart from a scale
factor ε), η and χ . It can be proved that the Hamiltonian is in
the U(5) dynamical symmetry (DS) when η = 0, in the SO(6)
DS when η = 1 and χ = 0, and in the SU(3) DS when η = 1
and χ = −

√
7

2 . Its classical limit (Landau potential) can be
obtained by the method of coherent states in terms of two
classical coordinates β and γ . The scaled potential energy
surface, E(β,γ )/εN , is given by [1]

V (β,γ ) = β2

1 + β2

[
(1 − η) − (χ2 + 1)

η

4N

]

− 5η

4N (1 + β2)
− η(N − 1)

4N (1 + β2)2

×
[

4β2 − 4

√
2

7
χβ3cos3γ + 2

7
χ2β4

]
. (2)

To determine types and orders of the GSQPTs, one
minimizes the potential function in (2) by varying β and γ
for given η and χ . The optimal values are denoted as βe and
γe, with which one can get the ground-state energy per boson
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FIG. 1. The phase diagram of the IBM.

defined as Eg = V (η,χ,βe,γe). For second-order QPT, Eg and
∂Eg

∂x
are continuous, but ∂2Eg

∂x2 is not, where x represents the
corresponding control parameter. For first-order QPT, Eg is

continuous, but ∂Eg

∂x
is not. Based on these criteria [14], one

can prove that the first-order GSQPTs occur in the large-N
limit at the critical point ηc = 14

28+χ2 with χ ∈ [−√
7/2,0],

which are collectively called spherical-deformed GSQPTs.
The two-dimensional phase diagram of the IBM described
by (1) can be mapped onto a triangle [25] as shown in Fig. 1,
where the critical line denoted by ηc cuts the triangle into two
regions, the spherical and deformed. In this diagram, the line of
first-order transitions ends at a point of second-order transition
at ηc = 0.5,χ = 0 [14], namely U(5)-SO(6) GSQPT. Notably,
the phase diagram of Fig. 1 should be doubled, if the range of
χ is extended to χ ∈ [−√

7/2,
√

7/2] [26]. However, because
of the Z2 symmetry, χ → −χ , of the potential energy surface
(2), we confine our discussion here to χ � 0. It has been
shown [6,9,13] that ESQPTs are associated with GSQPTs
of Fig. 1 in the deformed region of the phase diagram. The
critical excitation energy, Ec, varies from zero along the critical
value, η = ηc, to the top of the spectrum of η = 1. While
a classification of the GSQPTs is feasible by means of the
method of coherent states discussed above, a more complicated
semiclassical analysis is needed in order to classify the
associated ESQPTs [6,7,11–13,27]. In the following, we will
focus on (i) identification of signatures of ESQPTs associated
with deformed nuclei rather than classification of ESQPTs in
the IBM and (ii) whether ESQPTs or their precursors persist
for finite N . We will also discuss whether the transitions are
phase transitions or simply crossovers.

In order to study whether finite N precursors of ESQPTs
occur in the deformed region of the phase diagram, we select
two typical parameter points with (η,χ ) = (0.65,−1.3228 	
−

√
7

2 ) and (η,χ ) = (1.0,−0.5), and N = 15. The potential
energy contours obtained from (2) for the selected two cases
are shown in Fig. 2. As seen from Fig. 2(a), the constant-energy
surfaces develop a clear low-energy well (blue color) around
β 	 √

2 and γ = 0◦, which indicates that the states confined
in the well are γ rigid [28,29] and associated with the SU(3)
quasidynamical symmetry [28,30,31]. Once they are excited
out of the low-energy well (as signified with the arrow in
Fig. 2), the states may become γ soft since the γ degree of
each constant-energy surface outside of the well ranges from
0◦ to 60◦. The γ -soft picture outside of the well in the present
case is very similar to that in the spherical region of the triangle,
where the γ degree of each constant-energy surface also ranges

FIG. 2. Potential energy surfaces (N = 15), according to Eq. (2),
for the selected two cases.

from 0◦ to 60◦ [14]. Hence, the transition from inside to outside
of the well as a function of excitation energy is referred to as a
γ -rigid to γ -soft transition. The transitional point is defined by

Ec(η,χ ) = εN [V (η,χ,βs,γs) − V (η,χ,βe,γe)] (3)

with ∂V
∂γ

|βs,γs= 0, ∂V
∂β

|βs,γs= 0, ∂2V
∂β2 |βs,γs> 0, and

∂2V
∂γ 2 |βs,γs< 0, where V (η,χ,βs,γs) is the saddle-point energy.
Specifically, one gets Ec = 1.31ε for that shown in Fig. 2(a),
where the γ -soft picture appearing outside of the well is due
to the U(5) DS involved in the Hamiltonian. This transition
from SU(3) to U(5) can be regarded as an extension of the
U(5)-SU(3) GSQPT along the excitation energy [13]. As seen
in Fig. 2(b), there is still a prolate minimum but the transition
out of the well occurs at Ec = 1.76ε and is much smoother,
indicating a crossover from γ rigid to γ soft rather than a
phase transition in accordance to Fig. 1, when going from
SU(3) to SO(6). In general, the γ -rigid to γ -soft transition is
present in all the deformed region of the phase diagram but
with different properties. The γ -soft characteristics may come
either from the U(5) or SO(6) DS or their mixing, while the
γ -rigid characteristics originate from the SU(3) DS [28,29].

In studying ESQPTs in the IBM, we note that its excitation
spectrum consists of vibrational and rotational states. ESQPTs
in vibrational and rotational spectra were studied in Ref. [6]
within the framework of the U(3) vibron model [32]. By
studying the dependence of the gap on excitation energy for
various L (0 � L � 15), as in Fig. 8(c) of Ref. [6], it was
found that there is an ESQPT in the vibrational spectra for
L = 0, and that the singularity at E = Ec disappears for large
angular momentum and the transition becomes a crossover.
Examples were later found in several molecules [16,17]. In
IBM, the nature of the vibrational excitation is more complex
than in the vibron model, consisting of β and γ vibrations.
Furthermore, the values of N ∼ 10–20 are smaller than in
the vibron model N ∼ 100. The IBM is thus well suited
to study ESQPTs in complex finite-N systems. To this end,
we begin by considering the d-boson occupation probability
ρ ≡ 〈L|n̂d |L〉/N as the effective order parameter [6,10,13].
This parameter is shown in Fig. 3 as a function of E/ε. The
behavior of ρ is similar to that of Fig. 8 of Ref. [6] and confirms
the result that precursors of ESQPT persist in finite-N systems.
However, a detailed analysis of the results shows that the
precursors of ESQPT are very clear in Fig. 3(a) at Ec/ε ≈ 1.3,
but that the signatures of ESQPTs gradually disappear when
going to Fig. 3(c). This result is consistent with Fig. 2 where
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FIG. 3. (a) Behavior of the effective order parameter ρ as a
function of the excitation energy for Lπ = 0+ in the case with (η,χ ) =
(0.65,−1.3228). (b) The same as in panel (a) but for Lπ = 4+.
(c) Behavior of ρ for Lπ = 0+ in the case with (η,χ ) = (1.0,−0.5).
(d) The same as in panel (c) but for Lπ = 4+. In addition, the dashed
red lines are included to guide the eye.

one can see that well is sharper for η = 0.65, χ = −1.3228
than for η = 1.0, χ = −0.5, and transitions out of the well are
thus sharper in the former case than in the latter case.

We next study the behavior as a function of the angular
momentum, L. In order to study this behavior, Regan et al.
[33] suggested using the quantity R = Eγ (L→L−2)

L
[33], where

Eγ (L → L − 2) represents the γ -ray decay energies, namely
the energy difference between the adjacent levels with 
L = 2
in a given band. One can derive that the quantity R for the
ground band is given by R ∝ 1

L
in the U(5) limit, R ∝ (1 + 2

L
)

in the SO(6) limit, and R ∝ (4 − 2
L

) in the SU(3) limit. It
is clear that the values of R in both the U(5) and SO(6)
limits monotonically decrease with the increase of the angular
momentum L, thus with the rotational excitation energy,
but that they always increase monotonically in the SU(3)
limit. Although the evolutional behavior of R may change
quantitatively away from the symmetry limits, its monotonicity
is only determined by the dominant DS. For example, R
may keep decreasing as a function of the excitation energy
in the whole spherical region as well as the U(5)-SO(6)
leg of the triangle, which in turn suggests that the behavior
R ∝ (1 + 2

L
) generated from the E(L) ∝ τ (τ + 3) rule with

τ = L
2 in the SO(5) symmetry can be applied to characterize

the γ -soft rotational feature caused by either U(5) or SO(6).
In short, R increases in the γ -rigid situation [SU(3)-like] but
decreases in the γ -soft situation [U(5) or SO(6)-like]. It is thus
expected that this qualitative difference can provide a signature
for a structural change (γ -rigid to γ -soft) in the rotational
excitations of nuclei. To check this point, the evolutionary

FIG. 4. (a) Behavior of the quantity R/ε as a function of
the rotational energy for the ground band (up to L = 20) and
excited bands (up to L = 16) in the case corresponding to (η,χ ) =
(0.65,−1.3228). The curves denoted by γ rigid and γ soft are those
given by R ∝ (4 − 2

L
) and R ∝ (1 + 2

L
), respectively. (b) The same

as in panel (a) but for (η,χ ) = (1.0,−0.5).

behaviors of R as a function of the rotational excitation energy
of the ground band and the excited bands in the IBM are shown
in Fig. 4, where the behaviors R ∝ (1 + 2

L
) and R ∝ (4 − 2

L
)

are used to signify the γ -soft and γ -rigid features, respectively.
As seen from Fig. 4(a), the values of R in the ground band
rapidly grow up in a γ -rigid way with the increase of the
excitation energy and then suddenly turn to a monotonic
decrease as in the γ -soft way. The changes in monotonicity are
also present in the rotational spectra for both the β band and γ
band, as shown in the inset. A similar picture could be found
from Fig. 4(b), where the sudden change in the evolutional
behavior of R indicates the occurrence of the γ -rigid to γ -soft
transition in the SU(3)-SO(6) leg. More generally, the sudden
changes in the monotonicity of the behavior of R widely appear
in the deformed region of the phase diagram. In contrast,
the behavior of R as a function of the excitation energy in the
spherical region as well as in the three symmetry limits of the
IBM is always monotonic.
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FIG. 5. Comparison between the experimental values of R for the ground bands (up to L = 16) in 152–162Gd [34] and IBM calculations.
The scale factor ε is fixed by fitting the experimental values of E(2+

1 ) in each case, and values of (η,χ ) shown in each panel are taken from
Ref. [35] with slightly changes in those for panels (c) and (d).

As discussed above, the γ -rigid to γ -soft transitions in the
IBM may persist for a realistic boson number N , so it would
be and should be reflected in nuclei. To check this point,
we have compared the calculated and experimental [34] R
values in 152–162Gd. The parameters adopted in the calculation
are taken from Ref. [35], where the low-lying structures of
rare-earth nuclei were well fitted with the IBM Hamiltonian
of Eq. (1). As clearly seen from Fig. 5, the experimental data
are well described by the IBM calculation. Most importantly,
the features of the γ -rigid to γ -soft transitions are clearly
seen both in theory and experiment in 156–162Gd, which lie in
the deformed region of the phase diagram [35]. In contrast,
as shown in Fig. 5(a) there are not any γ -rigid to γ -soft
transitional signals for 152Gd, which lies in the spherical region
of the phase diagram, and only incipient signals are seen in
154Gd, which lies on the critical line. A similar conclusion
can be drawn from an analysis of nuclei with the neutron
number Nn � 90 including 152–160Sm, 158–164Dy, 160–166Er,
164–168Yb, and 168,170Hf. The γ -rigid to γ -soft transition is
instead never found in nuclei with Nn < 90 in this mass
region. This point fully agrees with the theoretical predictions
that the transition from γ rigid to γ soft may occur only
to the right of the critical line of the spherically deformed
GSQPTs, as nuclei with Nn = 90 in the rare-earth region are
usually identified as critical point nuclei [2]. It should be also
mentioned that the transition occurs much earlier than the
back-bending phenomenon due to band crossing. In addition,

the back-bending phenomenon along the yrast line often occurs
with a transition from vibrational to rotational structures [33],
while the γ -rigid to γ -soft transition appears in inverse order,
namely from rotational (γ -rigid) to anharmonic vibrational (or
γ -soft rotational) patterns. As a result, the transition discussed
here is a new phenomenon.

In summary, ESQPT transitional features in IBM have
been investigated in realistic situations. It has been found
that precursors of ESQPTs persist for finite N with properties
analogous to those discussed in Ref. [6]. In addition and most
importantly, it has been found that a Jacobi-type transition from
axial to triaxial (γ rigid to γ soft) appears at some critical
values Lc of the angular momentum in nuclei lying on the
deformed side of the phase diagram. Experimental data in the
Gd isotopes support this conclusion. The results presented
here provide new insight into nuclear structural evolution
as a function of angular momentum. When combined with
the results of Refs. [19–24], they indicate that this evolution
may include several steps, first from the ground-state prolate
γ -rigid structure to a γ -unstable structure as discussed here,
then from γ -unstable to an oblate structure, and finally to a
triaxial structure.
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