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Combined mean-field and three-body model tested on the **0 nucleus
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We combine few- and many-body degrees of freedom in a new computationally efficient model applicable to
both bound and continuum states and adaptable to different subfields of physics. We formulate a self-consistent
three-body model for a core nucleus surrounded by two valence nucleons, where the core is treated in the mean-
field approximation and the same effective Skyrme interaction is used between both core and valence nucleons.
We apply the model to 2°0, where we reproduce the known experimental data as well as phenomenological
models with more parameters. The decay of the ground state is found to proceed directly into the continuum
without effect of the virtual sequential decay through the well-reproduced d3,, resonance of 0.
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Introduction. Self-consistent mean-field calculations ef-
ficiently provide accurate average properties for N-body
systems [1-3]. A long list of other methods have been
developed in an attempt to treat correlated systems [4—10]. All
these methods are first of all aimed at describing bound states.
Resonances, their decay, and continuum states in general are
often addressed, but only with much more difficulty. The
challenges are often referred to as problems in connection
with open quantum systems [11]. This concept is defined
as quantum systems in interaction with the environment via
external fields or, more appropriate in the present context, by
coupling to continuum degrees of freedom.

When the number of particles is less than about 15, com-
plete correlated, ab initio solutions, fitted to some fundamental,
observed properties, can be obtained [12—14]. This limit
is gradually being increased, but the complexity increases
exponentially with the number of particles, and progress is
slow. The solutions are obtained with few-body techniques
that are as analytically or numerically accurate as necessary in
the context. Thus, all necessary effects from couplings to the
continuum can in principle be fully included for light systems.
Moderately heavy systems can also be treated using vari-
ous approximations or simplifications [15]. Generally, these
few-body techniques are designed to operate for distances
larger than the radii of the fundamental, constituent particles
necessarily assumed to be inert. This is in contrast to the
many-body methods designed to treat approximately bound
or at least quasistable states at small distances.

Few of the existing methods can treat both small-distance
structure and large-distance decay properties with even ap-
proximately the same level of detail. Generally, the traditional
few-body cluster methods assume small-distance boundary
conditions at the surface of the constituent particles and
provide corresponding large-distance behavior. The many-
body methods provide detailed small distance structures and
therefore correct boundary conditions for few-body calcula-
tions. Those extended ab initio models that attempt a detailed
treatment of both small- and large-distance aspects, such as the
no-core shell model with couplings to continuum [12], do so
at the expense of great computational complexity [16,17]. Not
only are such models limited to a low number of total particles,
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but also two- and in particular three-body cluster structures are
very difficult to incorporate.

The ideal model would treat small- and large-distance
structures equally well, while also be able to describe cluster
configurations for any type of system, light or heavy. The
combination of these properties in one model would be
extremely useful and of general interest in all subfields of
physics. More so, if the combination could be done with less
of a computational limitation and thereby more flexibility.
Specifically, a number of interdisciplinary topical problems
can be better understood microscopically. This applies in
particular to the concept of universality in connection with
halo formation and decay [18] and the extreme of Efimov
physics [19]. Both phenomena appear in nuclei and nu-
clear astrophysics, as well as in cold atomic and molecular
gases.

The purpose of this Rapid Communication is to provide
an overall framework for a simple combination of the few-
and many-body treatments of relative and intrinsic motion
of the constituent particles. We shall use the hyperspherical
adiabatic Faddeev expansion method for the few-body part
[20] and the mean-field approximation for the many-body part
[21]. The applied many-body effective interaction is in this
Rapid Communication consistently incorporated in the few-
body treatment. As is always the case when expanding the
Hilbert space, the interactions must be renormalized for use
in the expanded space, which can pose a challenge. Most ab
initio models focus on the need to establish some fundamental
interaction, which is used to derive the more complicated,
multiparticle structures. The equally critical Hilbert space is
assumed to adjust accordingly. Here, the expansion of the
Hilbert space will be treated more explicitly.

The simple implementation we have investigated as illus-
tration of the method requires a spherical mean-field core. We
added the valence particles on top of the Fermi surface where
the Pauli exclusion from core neutrons is most easily taken into
account. This implies that the two-neutron separation energy
preferentially should be small since for simplicity we used
the free NN interaction between these two particles. Both
conditions can be relaxed by appropriate modifications left for
future work.
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The practical implementation is crucial to test applicability,
accuracy, and efficiency. We choose 260, where the nucleons
in 24O core and the additional two neutrons require different
treatment [22] and where the traditional methods are inappro-
priate. The 2°0 nucleus is an ideal test case on the neutron
dripline with the double magic [23] and spherical >*O core
and the two valence neutrons [24-26]. However, the method
is not limited to light nuclei and can be applied to any system
where a mean-field calculation can produce a self-consistent
solution.

Theoretical formulation. We consider an A + 2 nucleon
system divided into a core with mass number A and two
valence nucleons. We assume the same two- and three-body
interactions, V;; and V;jx, acting between all the nucleons in
core and valence space. The general Hamiltonian can then be
written

A+2 A+2 A+2
H=) Ti=Tw+) Vij+ ) Vi (D
i=1 i<j i<j<k

where T; and T, are the kinetic energy operators for the
ith nucleon and for the total A 4+ 2 system, respectively. We
reorganize H into terms related to core, H,, and valence, H,,
particles, i.e., explicitly

H:Hc(rl,...,rA)"l‘Hu(rvlarvz)» (2)
A A A
H. = Z T, — T + Z Vij + Z Vij, 3
i=1 i<j i<j<k

H, =T+ Tay1 +Tago — Tem + Vagi,a42
A A
+ Z(Vi,A+1 + Viar2) + Z Via+1,442

i=1 i=1

A
+ ) (Vijart + Vijara) €
i<j
where the spin, isospin, and space coordinates of the ith core
or valence nucleons are r; and r,,, respectively.
The decisive approximation is now the choice of the Hilbert
space allowed for the wave function, that is

\\ :A(q)c(rl,...,rA)q)v(rulvrvz))’ (5)

where @, = det({¢;}) is the Slater determinant, of single-
particle wave functions, ¢;, for the core nucleons, @, is the
three-body wave function, and .4 symbolizes antisymmetriza-
tion of all nucleons. The form of W in Eq. (5) clearly exhibits
how we combine mean-field treatment of the core and ordinary
treatment of the two three-body relative degrees of freedom.
The total energy, E, is a sum of two terms corresponding to
core, E,, and valence, E,, Hamiltonians in Eq. (2), that is

E=E.+E, = (V[H|V) + (V|H, V). (6)
We find the equations for the lowest energy solution by varying
the wave functions over the allowed Hilbert space, that is,
SE SE

= = O, 7
sPr 5P 7
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where both @, and ®, must be normalized during the variation.
The forms of the two resulting equations are

HHF((DU9(DL')¢i = €i¢i; Hv(cpv’q)c)(bv = E,®,, (8)

where the effective interactions in both Hartree-Fock single-
particle, Hyp, and three-body, H,, Hamiltonians depend on
both ®, and ®,. The coupled equations in Egs. (8) must be
solved simultaneously, which in practice means iteratively,
to determine &, and ®,, and subsequently the energy, in a
self-consistent procedure.

Interactions. We focus on the neutron dripline nucleus, 269,
with the dominating configuration of two neutrons around a
240 core. The choice of mean-field approximation requires a
corresponding effective interaction. For the nucleon-nucleon
interactions, we choose the popular Skyrme form [21] with
SLy4 parameters [27]. The three-body interaction in Eq. (3) is
implemented as a density-dependent two-body interaction.

The Skyrme interaction is of zero range and therefore not
directly applicable in Hilbert spaces beyond Slater determi-
nants. The necessary renormalization is possible but requires
additional investigations. Instead, we use the finite-range
nucleon-nucleon interaction in vacuum for V44 442 in Eq. (4)
[28]. This choice is almost indistinguishable from the result of
using a finite-range Gogny-interaction [29] for the mean-field
calculation, but in that case the self-consistency would be
complete. We leave a more consistent adjustment to future
refinements, because this interaction has very little influence
on the small-distance structures, while more importantly the
large-distance asymptotic properties are correct [28].

The phenomenological density dependence of the Skyrme
interaction parametrizes all otherwise omitted influences, e.g.,
three-body effective forces. These effects are all accounted
for by the two-body terms in Egs. (3) and (4) except for
Z,‘A Vi.a+1,4+2. Again we leave a more consistent derivation
to future studies, because this term has very small structure
influence, but it is necessary if fine-tuning of the global Skyrme
energy is needed. We replace this term by V. aij 442 =
So exp(—p?/p3), where the hyperradius p is defined as

“R) (o~ R

- rvz)za (9)

where m,, m., and R. are neutron mass, core mass, and
core center-of-mass coordinate, respectively. The range and
strength parameters are pp = 6 fm and Sy = —6.45 MeV.
The Skyrme interactions lead to density-dependent effective
masses, which also appear in the coupled Egs. (8). This is a
new feature in three-body equations and in few-body physics
in general.

The space allowed for the valence nucleons is only
limited by the presence of the identical core nucleons. In the
three-body calculation, these core-occupied Pauli forbidden
states are removed either by excluding the corresponding
lowest adiabatic potentials or by constructing phase equivalent
potentials with less bound states [30]. The voluminous and
tedious but straightforward derivation along with the subtleties
and the space-requiring detailed formulas will be discussed in
forthcoming publications.

(mn + mc)pz =mc[(rv1

+ mVl (rul
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FIG. 1. The lowest adiabatic potentials for the SLy4 interaction,
after removal of the Pauli forbidden states. The hyper-radius, p, is
normalized with the neutron mass [20].

Meaningful combination and parallel treatment of core
and valence spaces require careful selection and perhaps
adjustments of the interactions. Our choices are consistent
but two less important links between the interactions still need
to be fine-tuned. Achieving rigorous consistency is probably
difficult in general and the most obvious first application
is on small- to large-distance dependence of two-nucleon
correlations around a finite nucleus.

Three-body energies. With these interactions, we find from
Eq. (7) the self-consistent variational solution where the core
particles are affected by the valence nucleons and vice versa.
We use the hyperspherical adiabatic expansion method [20]
for the three-body part where the basic ingredients are the
adiabatic potentials displayed in Fig. 1. The lowest potential
is attractive at small distances with a wide barrier of height
0.8 MeV. The higher lying potentials are mostly repulsive
with features of avoided crossings.

The three-body energy and wave function are found by
solving the set of coupled radial equations corresponding to
these potentials [20]. The energy, E (*0)= —172.490 MeV,
is obtained for a wave function of the form in Eq. (5),
which is 62 keV lower than obtained when the wave function
is a pure Slater determinant, EHF(26O)= —172.428 MeV.
Both these energies are higher than the energy, EHF(24O)=
—172.508 MeV, obtained by moving the two neutrons in-
finitely far away, but maintaining the wave function in Eq.
(5). Thus, the two-neutron energy is 18 keV in this picture.
The influence of the two neutrons on the *O core is measured
by its distortion energy, which is 285 keV above Epp(**0),
within the ground state of 26(), Therefore, the two neutrons are
bound by 267 keV with respect to the distorted >*O nucleus.

These numbers are compared in Fig. 2, where we notice
that our method qualitatively has the correct properties. The
240 nucleus is excited from its ground state by the presence
of the two neutrons. The Hartree-Fock energy of 2°0 is higher
than E(*°0), which is reassuring since we should provide an
improvement of the pure mean-field calculation. Apparently
we have consistently extended both interactions and Hilbert
space beyond Slater determinants. Thus, the detailed structure
of the wave function is an essential improvement in our model.
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FIG. 2. The distortion energy of 240 (left) within the 2°0 system,
and the ground-state energies of 20 (right) for the Hartree-Fock
approximation and the present method. The zero point is the energy
of 0 in the Hartree-Fock ground state.

Three-body structure. The probability distribution is shown
in Fig. 3 as a function of neutron-neutron distance, and core
to neutron-neutron center of mass distance. Two sharp peaks
are seen corresponding to a distance between the neutrons and
their center of mass and the core of about (6,2) fm and (3,3) fm,
respectively. These are approximately linear and equal -ssided
triangular configurations, as shown schematically in Fig. 3. A
much fainter peak at distances (4,1.8) fm is also seen, tempt-
ingly interpreted as a dineutron signature. In Ref. [31], the
same triple peak structure is obtained using phenomenological
interactions, but the dineutron configuration is concluded to be
the dominating structure.

To compare properly, we repeated the calculation using
the neutron-core potential given in Ref. [31] and found very
similar peak structures as in Fig. 3. We find that the dineutron
configuration in Ref. [31] is much smaller than, but separated
from, the other two peaks. The differences from us are due to
different adjustments of neutron-core Woods-Saxon potential

0.08
0.06
0.04
0.02
0.00

r2n,n r2c,nn [®y(rn,n, rc,nn)l2 [fm2]

FIG. 3. The probability distribution of the two valence neutrons in
260 calculated using the Skyrme SLy4 interaction [27] as a function of
neutron-neutron distance, r, ,, and core to neutron-neutron center-of
mass-distance, r.,,. The insets are a schematic illustration of the
configuration at the peaks.
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FIG. 4. The invariant mass spectra of core neutron for the SKM*
(dash-dotted, orange) and SLy4 (solid, red) Skyrme parameters. The
SLy4 core-neutron d-wave contribution (dashed, blue) and neutron-
neutron (dotted, purple) invariant mass spectrum is also included. The
black step curve is the measurements from Ref. [26].

to give the 20 properties, and the density-dependent neutron-
neutron pair potential to give the 2°0 energy with the use of
the bare nucleon mass. In particular, the last adjustment differs
from our model.

We can also study the structure of the 2O ground-state
resonance through the invariant mass spectra of two of the
particles after knockout of the third one [32]. The results are
shown in Fig. 4, where we first notice the expected structureless
neutron-neutron spectrum. The neutron-core spectrum is more
interesting with a peak at 0.85 MeV for the SLy4 [27] Skyrme
force, and a peak at 0.83 MeV for the SkKM* [33] Skyrme force,
which is only 0.1 MeV higher than the experimentally known
d3, resonance at 0.749(10) MeV [26].

This is in fact a remarkably good agreement for three
reasons. First, this result of the neutron-core resonance energy
is obtained without any free parameters, that is without any
adjustment, and it is found directly from the same interaction
as between the nucleons in the core. This is also in contrast to
phenomenological models [31], where this two-body energy
is used as input parameter. Second, a pure Hartree-Fock
calculation of 20, with the SLy4 Skyrme force, yields a ds 2
energy of —0.96 MeV. This is a bound state and far from the
experimental value, and as such reveals the inadequacy of the
Hartree-Fock approximation. Third, the final state in 2O is
populated in two different reactions in experiment and theory,
i.e., by high-energy proton and neutron knockout, respectively.
Fourth, the resonance energy is reproduced even with a fairly
old and less sophisticated Skyrme force such as the SkM*. This
indicates that even a rudimentary core description is enough to
yield a core-neutron interaction sufficient to describe the full
three-body system in great detail.

The calculated width does not include effects of the unavail-
able experimental resolution and therefore understandably
smaller than the observed value. The neutron-core spectrum
is almost indistinguishable from the d-wave contribution also
shown in Fig. 4. This reflects the structure of 90% neutron-core
d3 > wave in the total three-body wave function. The rest is an
equal distribution of p3/3, ds;2, and f7/, waves.

max
[}
]

(i)

P(p,E|/E

0 - T T T T ‘\

0 0.2 0.4 0.6 0.8 1

Ei/ Ef’r?ax

FIG. 5. Single-particle energy distributions after decay of the
ground-state resonance [35,36]. Here E; is core (solid) or neutron
(dashed) energy, and E{) is the maximum energy available for
particle i, while red (gray) and blue (light-gray) correspond to
p = 150 and p = 160 fm, respectively. The peak for the core energy
is due to numerical inaccuracies.

Lifetime and decay properties. As already mentioned, a
central aspect of the present method is how the presence of the
valence nucleons affects the core. This is reflected in distortion
of the core wave function and therefore also in the energy. By
going from small to large values of hyper-radius, p, the core
should change from a distorted structure to the free solution.
However, currently only the average effect is included and
the core structure is maintained for all distances. This lack
of a gradual relaxation means that while the bulk part of
the calculated potential in Fig. 1 is correct, the large-distance
asymptotic value of the potential is too high, in this case by
285 keV. However, by extending the adiabatic approach and
solving the coupled expressions from Eq. (8) for each step
in p, a smooth transition could be obtained. We leave this
more elaborate procedure for future improvements, because
this would only marginally change any of the observables
except possibly the width.

This width of the >0 ground-state resonance can still
be fairly well estimated in the present implementation as
the oscillator-approximated knocking rate multiplied by the
WKB tunneling probability through the modified barrier in
the lowest adiabatic potential [34]. First, we shift the full
adiabatic potential by 285 keV. This leads to an outer turning
point of 66.3 fm and a lifetime of 107'¢ s. Instead, when
only lowering the potential by 285 keV in the tail outside
66.3 fm, the well-defined outer turning point at the energy of
18 — 285 = —267 keV leads to a lifetime of about 1013 .
Experimentally, the half-life is found to be between 10717 s
and 10715 s [26], and we conclude that even when employing
a very crude transition mechanism this exponentially sensitive
observable is predicted remarkably well by the model.

The resonance is decaying into two neutrons and the
core. Following Refs. [35,36], the single-particle energy
distributions after decay are obtained in coordinate space from
the stable spatial distribution of the particles for large values of
p, where the hyperangles in coordinate and momentum space
coincide. The results are shown in Fig. 5 for two p values, 150
and 160 fm, to show convergence. The extremes, where one
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particle takes either maximum or zero energy, leaves either
zero or maximum energy in the relative motion between the
other two particles.

We then see in Fig. 5 that the core energy is weighted
toward its maximum with a corresponding decreasing fraction
left for the relative motion of the neutrons (solid curves). Each
neutron has largest probability for appearing with half of its
maximum energy, again implying that the other half is in
relative neutron-core motion (dashed curves). This shows that
the decay mechanism is direct population of the continuum,
consistent with the fact that the d3/, resonance in 20 is too
high in energy to be even virtually populated during the decay.

Summary. The present study provides a consistent, flex-
ible, and computationally efficient approach to including
the intricacies of few-body formalisms into a many-body
context. The model is practical and efficient as demonstrated
in the application on the challenging nuclear neutron dripline
nucleus, 2°0. The data of both 20 and 2°0 are reproduced with
fewer parameters than found in dedicated phenomenological
models. Furthermore, the exponentially sensitive lifetime is
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obtained within measured uncertainties. This is particularly
remarkable considering the simple self-consistent Skyrme-
Hartree-Fock calculation for the core. In the future, this could
be replace by more sophisticated methods.

The novel features of the quantum mechanical model are
that few- and many-body properties respectively at large
and small distances are self-consistently connected. The
model is applicable to both bound and continuum states and
addresses challenges in open quantum systems. In addition, the
efficiency and flexibility of this method opens up the possibility
of examining heavy, many-particle systems in full detail
without incurring insurmountable computational difficulties.
The universal character of halos and Efimov states suggests
applications in other subfields of physics.
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