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Warm unstable asymmetric nuclear matter: Critical properties and the density
dependence of the symmetry energy
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The spinodal instabilities in hot asymmetric nuclear matter and some important critical parameters derived
thereof are studied by using six different families of relativistic mean-field models. The slopes of the symmetry
energy coefficient vary over a wide range within each family. The critical densities and proton fractions are
more sensitive to the symmetry energy slope parameter at temperatures much below its critical value (7, ~
14—16 MeV). The spread in the critical proton fraction at a given symmetry energy slope parameter is noticeably
larger near T, indicating that the equation of state of warm asymmetric nuclear matter at subsaturation densities
is not sufficiently constrained. The distillation effects are sensitive to the density dependence of the symmetry
energy at low temperatures which tend to wash out with increasing temperature.

DOI: 10.1103/PhysRevC.95.055808

I. INTRODUCTION

Core-collapse supernovae (CCSN) [1,2] are one of the most
energetic events in the Universe. Matter can reach temperatures
up to ~20 MeV and the density at bounce of the collapsing
core goes up to 1.5-2.0 times the nuclear saturation density.
During the collapse, matter does not have enough time to
reach B-equilibrium conditions [3] because the event timescale
is believed to be of the order of seconds, and usually a fixed
proton fraction of y, ~ 0.3 [1]is considered for the calculation
of the equation of state (EoS). The reader can refer to Ref. [4]
and references therein for a recent review on the relevant
thermodynamics and composition for the equation of state for
CCSN, compact stars, and compact stars mergers. At densities
below nuclear saturation, light [5,6] and heavy clusters [7]
can form, and they can modify the neutrino transport, which
will affect the cooling of the proto-neutron star [8], as
neutrinos play a considerable role in the development of
the shock wave during the collapse [9]. The determination
of the region of densities, proton fractions, and temperatures
where these instabilities exist is, therefore, very important for
core-collapse simulations.

Critical properties of hot asymmetric and symmetric nu-
clear matter may be studied with heavy-ion collisions; in
particular with nuclear reactions that involve the formation
of compound nuclei or multifragmentation. These data will
be important to constrain the CCSN EoS. As shown in
Ref. [10], the expected range of densities and temperatures
for CCSN matter just before bounce lie in the typical (p,T)
space, p ~ 0.05p0—0.4p9 and T ~ 3-8 MeV, for nuclear
multifragmentation reactions. In Ref. [11], a compilation
of the critical temperatures determined from experimental
data [12-15], and which generally fall above 16 MeV, is
compared with theoretically determined ones from RMF
models with nonlinear sigma models that have an effective
mass at saturation in the range 0.58 < m*/M < 0.65, as
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obtained from finite nuclei spin-orbit splittings, and the
incompressibility in the range 250 < K(p < 315 MeV, as
proposed in Ref. [16]. Under these conditions, it was shown
that the critical temperature from RMF models satisfies 14.2 <
T, < 16.1 MeV, far from the value proposed in Ref. [14],
where the authors have analyzed six sets of experimental
data, two involving the formation of compound nuclei and
four multifragmentation processes, and have determined a
critical temperature of 7, = 17.9 = 0.4 MeV. To be able to
reproduce the experimental critical temperature, and within
RMF models that only include o nonlinear terms, the finite
nuclei spin-orbit constraint had to be relaxed in Ref. [11]
and a larger nuclear effective mass chosen. However, these
experimental constraints for the critical temperature, above
which matter is stable against clusterization, are for symmetric
matter. Constraints for asymmetric hot matter are missing.

In Ref. [17], the authors used several methods to determine
the crust-core transition, including a Thomas—Fermi calcula-
tion of the inner crust and the thermodynamical and dynamical
spinodals, and they showed that, for finite temperature and
fixed proton fractions (CCSN conditions), the thermodynam-
ical method gave quite similar results to more demanding
calculations, such as the Thomas—Fermi calculation.

The thermodynamical spinodal, the boundary of the insta-
bility region identified by a negative curvature free energy, is
determined by equating the free-energy curvature to zero. In
Ref. [18], the authors used the thermodynamical approach to
analyze the liquid-gas phase transition in warm asymmetric
nuclear matter, as well as stellar matter, within RMF models
with and without density-dependent couplings. In particular,
they discussed the isospin distillation effect; that is, the
different isospin content of each phase, with the gas being more
neutron rich and the liquid phase with a proton fraction close to
symmetric matter. They showed that this effect is not so strong
when considering models with density-dependent couplings.
They calculated for each temperature the critical points of
the spinodal; that is, the two points where the pressure is
maximum, together with the critical temperature of the system,
i.e., the temperature at which the instability region melts. The
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two models with density-dependent couplings were shown to
have a region of instabilities that extended to smaller proton
fractions and similar density ranges when compared with
models with constant couplings, but no discussion was had on
the connection of these results with the density dependence of
the symmetry energy. In Ref. [19], the authors also used this
method together with two others to calculate the crust-core
transition and pressure at zero temperature, and using two of
the families that are also going to be used in this work. They
observed that this calculation gives a good estimate of the
transition, as the authors of Ref. [20] also found.

In this work, the critical parameters for hot asymmetric
nuclear matter for six different families of RMF models
are studied by using the thermodynamical method. These
six families of models have been built from three different
appropriately calibrated base models. An extra term that
couples the p meson either to the o or w meson is added to each
of the base models to yield wide variations in the symmetry
energy slope L. The effect of L on the critical temperature,
density and proton fraction is then explored. We also compare
our findings with experimental results from Refs. [12-15] for
the critical temperature, and the theoretical study of Ref. [11].

II. FORMALISM

We give a brief summary of the RMF formalism in the first
section, and of the thermodynamical spinodal calculation and
respective critical points in the second section.

A. Extended relativistic mean-field Lagrangian

We consider a set of families, each one characterized by the
same isoscalar properties, which are described by the scalar-
isoscalar field ¢ with mass my, associated with the o meson,
and the vector-isoscalar field V# with mass m, associated
with the @ meson. The members of each family differ by
their isovector properties which will be determined by the
vector-isovector field b* with mass m ,, associated with the p
meson, and the nonlinear terms that couple the p meson to the
o and/or the w mesons. Nucleons, with mass M and described
by the spinors v;, interact with and through the o, w, and p
mesons, according to the Lagrangian density:

;C: Z£i+£0+£w+ﬁp+‘cfrwpv

i=pn
where the nucleon Lagrangian reads
L; = 1pi[)/uiD”“ - M*]Wi,

with

iD= it — g, VI — g—z"r b —earET

M* =M — g;¢.
The mesonic Lagrangians are
= +3(0.00"p — mid* — 3k’ — 5r¢"),
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where Q,,, =9, V, —9,V,, B,,=9,b,—0,b,—g,(b, xb,),
and t are the Pauli matrices. The mesonic Lagrangian is
supplemented with the following nonlinear terms that mix the
o, w, and p mesons up to quartic order [21-24]:

Lawp = Alagsglzy¢bu -b* + Aagszgigbzbu - b*

+Aygogoby - bV, V. Q)
The parameters of RMF models, which in the present case
are the couplings gs, g,, and g, of the mesons to the
nucleons, the nucleon bare mass M, the meson masses,
the self-interacting coupling constants, «, A, and &, and the
coupling constants of the nonlinear mixing terms, A,, A,,
A\, are fixed to nuclear properties obtained experimentally,

and to astrophysical constraints [23,24].
The free-energy density is obtained from the relation

F=E-TS, 3)
with the energy density £ given by

&= Z E; + g,Vopy + gobop3

i=p,n
1 K A
+5 (Voo +mieg] + 3,60 + 59

1 £g, 4 1 2 2.2
—E 1—;V0 — E[(Vb()) +mpb0]

— (Mg Vg — Nogid” — Miogsd) gob5, 4)

where the energies E; are

|:(VV0)2 +m2V§ +

1 .
E; = ;/dppzef(ﬁ+ + fio), i=p,n, %)

with the equilibrium distribution functions defined as
. 1
~ L+expl(ef Fv)/TT

€ = (p>+ MH'2, M = M — g,¢, and the nucleon effec-
tive chemical potential

fix (6)

v = Wi — & Vo — gotsibo, )

where t3; is the third component of the isospin operator. The
entropy density S is calculated considering the nucleons as
quasiparticles

d3
s=-Y /ﬁ[ﬁﬂnﬁﬁ(l — finyIn(1 = fiy)

i=n,p

+ (fir < fi)l. ®

B. Stability conditions

In the present study, we determine the region of instability
of nuclear matter constituted by protons and neutrons by
calculating the spinodal surface in (p,, p,, T') space. Stability
conditions for asymmetric matter impose that the curvature
matrix of the free-energy density [18,25,26],
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is positive. Equation (9) can be rewritten in the form

n Bt
n 9pp
e~ (i ) o0
9pn pp
imposing
Tr(C) > 0, an
Det(C) > 0 (12)

to fulfill the stability conditions. This is equivalent to requiring
that the two eigenvalues

A = H(Tr(C) £+ v/Tr(C)? — 4Det(C)) (13)

are positive. The largest eigenvalue is always positive and
the instability region is delimited by the surface A_ = 0.
Interesting information is given by the associated eigenvectors
8p%, defined as
+ _ Oy
oot _ A5

Spn o
In particular, the eigenvector associated with the eigenvalue
that defines the spinodal surface determines the instability
direction, i.e., the direction along which the free energy
decreases. We will also calculate the critical points for each
temperature 7', which are important to define under which
conditions the system is expected to be clusterized. These
points satisfy simultaneously [18,27]

Det(C) = 0, (14)
Det(M) = 0, (15)
with
Cu Cn
9pp 0pn

The thermodynamical spinodals and respective critical points
will be calculated for a series of models in the next section.

III. RESULTS

In this section, we first briefly describe the different families
of the RMF models used for the current study. Next, we present
our results for the spinodal instabilities and critical points in
hot asymmetric matter at different temperatures. The effect of
the symmetry energy slope parameter L on these quantities
will be addressed as well.

A. Models

In this work, we consider six different families of RMF
models; namely, NL3wp [28], TMlwp [29], F,, [24,30],
NL3op [29], TMlop [29], and F, [30]. The NL3wp and
NL3op (TMlwp and TMlop) families are obtained from
the base model NL3 [31] (TM1 [32]). The F, and F,,
families are obtained from the base model BKA22 [24]. The
families NL3wp, TMlwp, and F,, include a quartic-order
cross-coupling w?p? term (A, # 0), whereas the NL3op and
TMlop families have a quartic-order cross-coupling o2 p?

PHYSICAL REVIEW C 95, 055808 (2017)

TABLE I. The values of the binding energy per particle (B/A),
charge radii (r..), neutron radii (r,,), and neutron skin thickness (Ary,)
for the *®Pb nucleus along with the maximum mass (Mp,) of
a neutron star and corresponding radius (Rp,) obtained for some
selected models.

Model B/A 7e rn Aryp M ax Rinax

(MeV) (fm) (fm) (fm)  Mp)  (km)
F,1 —7.871 5529 5751 0.280 1.99 11.77
F,7 —7.871 5559 5.680 0.179 1.97 11.33
F,1 —7.871 5529 5740 0.269 1.95 11.61
F,7 —7.870 5555 5649 0.152 1.93 11.06
NL3 —7.878 5518 5.740 0.280 2.78 13.29
NL3op6 —7.913 5535 5662 0.185 2.77 13.14
NL3wp6 —7.921 5530 5667 0.195 2.76 12.99
T™M1 —7.877 5541 5753 0.270 2.18 12.49
TMlop6  —7.923 5558 5.686 0.186 2.15 12.02
TMlwp6  —7.791 5552 5.689  0.195 2.13 11.97

term (A, # 0). On the other hand, a cubic-order cross-
coupling op? term (A1, # 0) is included in the F, family.
The strengths of the cross couplings (A,, Ay, and Ay, ), and
that of the coupling of the p mesons to the nucleons (g,), are
appropriately adjusted to vary the slope of symmetry energy
over a wide range without compromising the properties of the
finite nuclei significantly. One of the cross couplings A, or
Ay or Ay, is increased (decreased) and accordingly g, is also
increased (decreased) in such a way that either the binding
energy of “®Pb nucleus is close the experimental value or the
symmetry energy at density 0.1 fm~ is exactly the same as
that for the base model. Different combinations of coupling
strengths yield different behavior for the density dependence
of the symmetry energy. The variants of NL.3 and TM 1 models
are obtained by varying A, or A, and adjusting g, in such
a way that the symmetry energy at p = 0.1 fm~ is equal to
the one obtained for the base models [28,33]. The variants
of BKA22 model (i.e., F, and F,, families) are obtained
by varying A, or A, and adjusting g, to reproduce the
binding energy of the 2 Pb nucleus. All the families of models
considered are consistent with the observational constraints
imposed by the measured mass (~2M,) of pulsars J1614-2230
[34] and J0348+0432 [35]; see, e.g., Ref. [36] and references
therein. Besides these observational constraints, there are also
experimental results and first-principles calculations that can
allow us to set limits on the stellar matter EoS. In Table I,
we present some bulk properties of the 2%Pb nucleus as well
as the neutron star maximum mass and corresponding radius
obtained for the models with extreme values of L from each
families.

In addition to these six families of models, we also
consider as reference two extra models with density-dependent
couplings: DD2 [6] and DDME2 [37]. In Ref. [38], it was
shown that these two models satisfy a well-accepted set of
laboratorial, theoretical, and observational constraints. We are,
therefore, interested in comparing the behavior of these models
at finite temperature with the behavior of the six families of
models we are going to analyze.
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FIG. 1. Difference between the neutron matter pressure for the F,, (left panels) and F,, (right panels) families and the average pressure
obtained from a chiral EFT [39] (top) and Monte Carlo [40] (bottom) calculations, in units of the pressure uncertainty at each density,c = A P.
The gray bands represent the calculation uncertainty (light) and twice this uncertainty (dark).

In Fig. 1, we compare the neutron matter pressure of
the F, and F,, families with microscopic calculations based
on nuclear interactions derived from chiral effective field
theory (EFT) [39] and quantum Monte Carlo techniques with
realistic two- and three-nucleon interactions [40]. We show
the difference from the neutron matter pressure of each model
with respect to the microscopic results, normalized to the
pressure uncertainty of the microscopic calculations,oc = AP,
at each density. These uncertainties are represented by light
gray bands, and they indicate that the points that lie inside
those bands are within the data limits. Also shown are dark
gray bands that denote twice the calculation uncertainties, 2o .
We observe that only F,,5 and F,,6 lie in the bands’ limits.
All the other models fail to satisfy these constraints. Similarly,
for other families, it was shown in Ref. [29] that only four
models, NL3wp6, NL30p6, TM1wp6, and TM10p6, passed
these microscopic constrains.

In Fig. 2, we show the EoSs for symmetric nuclear
matter for the three base models considered together with
the experimental results from collective flow data in heavy-ion
collisions [41] and from the KaoS experiment [42]. The models
of the NL3 family do not satisfy these constraints but the
EoSs for the other models lie within the experimental bounds.
However, the modelling of flow in transport simulations is a
complex process and, therefore, these constraints should be
considered with care. Consequently, we will also include the
models of the NL3 family in the present study.

We will be discussing the effect of the density dependence
of symmetry energy on the extension of the instability. To
facilitate our discussions, we show in Fig. 3 the behavior of
symmetry energy at subsaturation densities for the models with
extreme values of the slope L. The models with the largest L
have all a very similar behavior, showing an almost linear
increase of the symmetry energy with the density, typical of
models that do not have nonlinear terms involving the p meson.

100

10

P (MeV fm™)

FIG. 2. Symmetric matter pressure as a function of the density
for the NL3 (solid), TM1 (dashed), and BKA22 (dash-dotted)
models. The colored bands are the experimental results obtained from
collective flow data in heavy-ion collisions [41] (light gray) and from
the KaoS experiment [42] (dark gray).
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FIG. 3. Symmetry energy as a function of baryon density for the
F,1,F,7, F,,1, F,,7 (solid), NL3, NL30 06, NL3wp6 (dashed), and
TM1, TM1op6, TM1wp6 (dash-dotted) models. The DD2 (green)
and DDME?2 (orange) models are also represented for comparison.

With respect to the models with the smallest L, the NL3x6
and TM1x6 models have a similar behavior and L ~ 55 MeV,
showing a larger symmetry energy below p = 0.1 fm~> than
the models with large L. F>,7 has a more extreme behavior
due toits lower L, L = 45 MeV. The symmetry energy curves
for the models corresponding to extreme values of L cross
each other at p ~ 0.1 fm 3, except for the F, family. The F,7
crosses F),1 at a smaller density.

B. Spinodal sections and critical points

We start with the analysis of the effects of temperature on
the spinodal sections obtained for the models with extreme
values of L, in particular the largest and the lowest of each
family. In Figs. 4 and 5, we plot the spinodal sections of
members 1 and 7 of the F, and F;, families for T = 0, 6,
12, and 14 MeV, and, in Fig. 4, we also represent the line

0.08+ Fol e T=0Mev
) :$i?2Ml\?|Vv
o 0,06 YT R IV
E £
— 004 | . 1t
< i \\ \‘\\
0.02- b ;‘) 1
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FIG. 4. Spinodal sections on the (p,, p,,) plane for F,1 (top left),
F,7 (top right), F>,1 (bottom left) and F>,,7 (bottom right) models at
T =0,6, 12, and 14 MeV.
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FIG. 5. Spinodal sections on the (p,, p,) plane for F,1, F,7,
F,,1, and F,,7 models at T = 0 (top left), 6 (top right), 12 (bottom
left), and 14 (bottom right) MeV.

of critical points by a dashed line. At these points, which are
common to both the binodal and the spinodal, the direction
of the instability is parallel to the tangent at the spinodal, and
the pressure is maximum. Some conclusions are in order: (a)
The behavior with temperature is similar to the one obtained in
Ref. [18], the larger the temperature the smaller the spinodal
section and matter is more symmetric inside the spinodal.
Eventually, at the critical temperature, the section is reduced
to a point and, for larger temperatures, homogeneous matter
is always stable. (b) The spinodal sections of models F,1
and F,,1, left panels of Fig. 4, are very similar, as expected,
because, these two models have very similar properties (see
also Fig. 3): they are the models with the largest slope L
and the strength of the cross couplings is very small. (c) The
same is not true for the members with the smallest values of
L, F,7, and F,,7. The spinodal of the F,,7 model becomes
larger, extending to larger asymmetries and densities. This
same behavior was obtained with the NL3 and TM1 families
and has been discussed in Refs. [29,43], but for dynamical
spinodals. The F, family shows a different behavior, and the
spinodal of the model with the smallest L, F,7, is smaller than
F,1. This may be attributed to the different behavior of the
symmetry energy for this model, as can be seen from Fig. 3.
In Fig. 5, where we compare the four models at different

TABLEII. Critical temperatures, and their correspondent critical
densities and pressures for all the models considered in this work.
The proton fraction is 0.5.

Model T. (MeV) pe (fm™3) P. (MeV fm™)
DD2 13.73 0.0452 0.1785
DD-ME2 13.12 0.0445 0.1556
F,, 14.01 0.0444 0.1802
NL3 14.55 0.0463 0.1999
T™1 15.62 0.0486 0.2365
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temperatures, it is clear that /5,7 is the one for which the
spinodal section extends to a larger range of densities and
asymmetries. This behavior is expected since this is the model
with the smallest L.

We now consider the variations of the critical density and
proton fraction with the temperature and the symmetry energy
slope parameter. Before embarking on this, we would like to
discuss briefly the results for the critical temperature.

The critical temperature is totally defined by the isoscalar
properties of the model and, therefore, it is the same for
models that only differ in the isovector properties: the critical
temperatures for NL3xp, TM1xp, and F\, are the same as

PHYSICAL REVIEW C 95, 055808 (2017)

those for the corresponding base models NL3, TMI, and
BKAZ22, respectively. The values of the critical temperature,
density, and pressure for the base models, as well as for
the DD2 and DDME2 models, are given in Table II. For
the BKA22 model, the critical temperature is very close to
14 MeV, while for the TM1 model, the critical temperature is
above 15 MeV, and for NL3, 7, = 14.55 MeV. The TM1 and
NL3T, values fall inside the interval of temperatures 14.2 <
T. < 16.1 MeV, obtained in Ref. [11] from a set of RMF
models with nonlinear o terms that have an effective mass
at saturation that reproduces finite nuclei spin-orbit splittings,
and an incompressibility in the range 250 < Ky < 315 MeV,

TABLEIII. Critical densities p. and proton fractions Y ,. for different temperatures and for all the models considered. The slope parameter

L and temperature T are in MeV. The critical density p is in fm™>.

Model L T=0 T=6 T =12 T=14
Pe Ypr Pe Y[u: Pe ch Pe ch

DD2 57.94 0.0792 0.0293 0.0702 0.0862 0.0511 0.2343

DD-ME2 514 0.0838 0.0272 0.0750 0.0883 0.0510 0.2749

F,1 108.77 0.0746 0.0604 0.0678 0.1307 0.0486 0.2587 0.0444 0.4848
F,2 86.77 0.0717 0.0424 0.0641 0.1046 0.0481 0.2410 0.0444 0.4836
F,3 79.02 0.0691 0.0341 0.0605 0.0883 0.0469 0.2287 0.0444 0.4829
F,4 75.10 0.0672 0.0294 0.0574 0.0766 0.0458 0.2210 0.0444 0.4825
F,5 72.74 0.0656 0.0260 0.0548 0.0676 0.0449 0.2159 0.0444 0.4824
F,6 71.16 0.0643 0.0234 0.0526 0.0605 0.0443 0.2127 0.0444 0.4823
F,7 70.02 0.0633 0.0217 0.0504 0.0539 0.0437 0.2105 0.0444 0.4823
Fp1 97.19 0.0759 0.0559 0.0688 0.1256 0.0493 0.2560 0.0444 0.4845
F,2 88.44 0.0769 0.0505 0.0694 0.1191 0.0498 0.2525 0.0443 0.4842
F,3 81.62 0.0780 0.0466 0.0700 0.1129 0.0504 0.2483 0.0444 0.4839
F,,4 76.17 0.0785 0.0408 0.0703 0.1059 0.0510 0.2440 0.0444 0.4835
F,5 62.45 0.0797 0.0253 0.0705 0.0799 0.0527 0.2198 0.0444 0.4815
F,,6 50.80 0.0797 0.0098 0.0685 0.0391 0.0547 0.1527 0.0444 0.4741
F,7 45.91 0.0791 0.0039 0.0644 0.0112 0.0562 0.0788 0.0446 0.4405
NL3 118.00 0.0766 0.0565 0.0700 0.1235 0.0517 0.2369 0.0473 0.3664
NL3op1 99.00 0.0787 0.0506 0.0713 0.1162 0.0524 0.2319 0.0475 0.3634
NL30p2 88.00 0.0802 0.0445 0.0724 0.1085 0.0533 0.2272 0.0477 0.3602
NL3op3 76.00 0.0817 0.0363 0.0733 0.0969 0.0543 0.2183 0.0480 0.3548
NL3op4 68.00 0.0825 0.0279 0.0737 0.0836 0.0553 0.2069 0.0483 0.3478
NL3op5 61.00 0.0828 0.0202 0.0735 0.0683 0.0564 0.1905 0.0487 0.3375
NL3op6 55.00 0.0826 0.0133 0.0722 0.0487 0.0575 0.1622 0.0493 0.3184
NL3wpl 101.00 0.0787 0.0519 0.0713 0.1178 0.0525 0.2337 0.0475 0.3642
NL3wp2 88.00 0.0808 0.0464 0.0728 0.1108 0.0533 0.2287 0.0477 0.3611
NL3wp3 77.00 0.0827 0.0390 0.0742 0.1017 0.0544 0.2226 0.0480 0.3570
NL3wp4 68.00 0.0847 0.0318 0.0756 0.0908 0.0556 0.2138 0.0483 0.3515
NL3wp5 61.00 0.0863 0.0244 0.0766 0.0775 0.0570 0.2013 0.0487 0.3437
NL3wp6 55.00 0.0874 0.0170 0.0773 0.0625 0.0585 0.1829 0.0492 0.3323
™1 111.00 0.0774 0.0496 0.0709 0.1112 0.0553 0.2044 0.0512 0.2862
TMlopl 94.00 0.0788 0.0438 0.0718 0.1034 0.0558 0.1972 0.0516 0.2803
TMlop2 85.00 0.0799 0.0384 0.0724 0.0962 0.0566 0.1917 0.0520 0.2754
TMlop3 76.00 0.0809 0.0321 0.0730 0.0868 0.0573 0.1828 0.0525 0.2681
TMlop4 68.00 0.0815 0.0258 0.0732 0.0759 0.0581 0.1717 0.0530 0.2585
TMlop5 60.00 0.0818 0.0186 0.0727 0.0604 0.0590 0.1528 0.0537 0.2417
TMlop6 56.00 0.0817 0.0142 0.0718 0.0485 0.0593 0.1356 0.0543 0.2254
TMlwpl 95.00 0.0789 0.0451 0.0720 0.1056 0.0558 0.1988 0.0516 0.2817
TM1wp?2 85.00 0.0804 0.0404 0.0729 0.0993 0.0566 0.1941 0.0520 0.2773
TM1wp3 76.00 0.0819 0.0354 0.0739 0.0921 0.0575 0.1878 0.0525 0.2718
TM1wp4 68.00 0.0832 0.0297 0.0748 0.0834 0.0586 0.1799 0.0531 0.2648
TMl1wp5 61.00 0.0845 0.0243 0.0754 0.0732 0.0595 0.1691 0.0537 0.2554
TM1wp6 56.00 0.0856 0.0189 0.0760 0.0624 0.0607 0.1555 0.0545 0.2430
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FIG. 6. Critical proton fraction, Y., as a function of L for several temperatures, and for all the models considered in this study. The right

panel shows the results for 7 = 0 and 6 MeV only.

as proposed in Ref. [16], and the critical temperature for the
BKA22 model lies very close to the bottom limit. While the
incompressibilities for TM1 and NL3, 281 and 272 MeV,
respectively, lie inside the range considered [11], for the
BKA22 models, it is 220 MeV and, therefore, it is outside
that interval. However, the critical temperatures predicted by
the models in the present study are far from the value 7, =
17.9 & 0.4 MeV obtained in Ref. [14] from the analysis of six
different sets of experimental data from heavy-ion reactions.
Let us stress that three of the models considered (DD2,
DDME2, and NL3wp6) went through a set of laboratorial and
theoretical constraints for neutron matter, besides predicting
star masses above 2M, as identified in Ref. [38], and they
predict critical temperatures below 14.55 MeV, even below
14 MeV. Besides these three models, also models NL3o p6,
TM1wp6, TM10 06, and F,,6 satisfy most of these constraints:
TMI1 models have an incompressibility outside the range
considered in Ref. [38], but well inside the range proposed
in Ref. [16], and F,,6 predicts a maximum neutron star mass
just below 2M. In Ref. [14], the authors have performed
a quite complete compilation of theoretical predictions for
the critical temperature and, in fact, the RMF models that
predict a critical temperature close to 7. = 17.9 & 0.4 MeV
do not satisfy most of the laboratorial constraints at saturation
density or below. Thus, one conclusion that can be drawn is
that the theoretical critical temperature predicted by the models

fitted to the ground-state properties of finite nuclei and nuclear
matter, and satisfying the 2M, constraint, does not agree with
the experimentally extracted value of the critical temperature.

The critical points give us an indication of the phase-space
region where nonhomogeneous matter is expected. The critical
densities for neutron-rich matter and the respective proton
fraction for T = 0, 6, 12, and 14 MeV are given in Table III,
and displayed as a function of L in Figs. 6 and 7. The
largest temperature considered, 14 MeV, is very close to
the critical temperature of the F, and F,, models. Above the
critical temperature, the models do not present instabilities
and the formation of clusters is not expected. We first discuss
the critical proton fraction. This quantity tells us that matter
at the critical density with smaller proton fractions is stable
against clusterization at the temperature considered. In the
left panel of Fig. 6, the critical proton fractions are given
for all the temperatures considered. This allows us to see the
dependence of the critical proton fraction on the temperature.
The right panel of Fig. 6 shows the same but more extensively
for T =0 and 6 MeV. There is a clear dependence of the
critical proton fraction on the slope L (see right panel of Fig. 6
for more details). The critical proton fraction increases when
L increases: this behavior is valid for all the temperatures
considered. However, it should be pointed out that, the smaller
L, the softer is the increase of Y, with temperature, for
temperatures well below the critical temperature, and this
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T T 1 Dmi e [ TEIMY g onis 0
—~ B B | 1 @oNL3 06
e 0.07 - //A T /4/"" el TN HTMI;O-G
=) t & + t -
= *_*TMIMPO—G
”0.06 - T - %@j ¢ DD2 -
| | | a, S | B DDME2
ot M«n‘*
0.05F T=0MeV T=6MeV | = P =T T @ e oo o
i W TAA A —pAAL M A A -
0 04 | 1 | L 1 1 1 1 L 1 L 1 L n | 1 1
40 60 80 100 120 60 80 100 120 60 80 100 120 60 80 100 120
L (MeV) L (MeV) L (MeV) L (MeV)

FIG. 7. Critical density p. as a function of L, for several temperatures, and for all the models considered in this study.

055808-7



N. ALAM, H. PAIS, C. PROVIDENCIA, AND B. K. AGRAWAL PHYSICAL REVIEW C 95, 055808 (2017)

FIG. 8. The fluctuations 8p,, /ép, at T = 0 MeV as a function of the proton fraction Yp (top panels) with p = 0.06 fm™3, and as a function
of p/py (bottom panels) with ¥, = 0.30 (solid) and 0.05 (dashed). The calculations shown are for the models F, and F>, (left), NL3wp and
N L3op (middle), and T M 1wp and T M 1o p (right panels).

results in a much wider range of critical proton fractions at and 0.0788 (0.2587) at temperature 7 = 0, 6, and 12 MeV,
finite temperature than at 7 = 0. For instance, the critical  respectively.

proton fractions for F,,7 (F,1) associated with smaller We also notice that the spread in the values of the critical
(larger) values of L are 0.0039 (0.0604), 0.0112 (0.1307), proton fraction, at a given L, among the various models
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FIG. 9. The fluctuations 8p, /8p, as a function of the proton fraction Y for a fixed baryon density of p = 0.04 fm=> at T = 0 MeV (top),
T = 6 MeV (middle), and T = 12 MeV (bottom panels), for the F,, (left), NL3xp (middle), and TM1xp (right) families.
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FIG. 10. The fluctuations 6p; /8p,; as afunction of p/py, for a fixed proton fraction of Y, = 0.3,at T = 0 MeV (top), T = 6 MeV (middle),
and T = 12 MeV (bottom panels), for the F,, (left), NL3xp (middle), and TM1xp (right) families.

considered, increases with temperature. For a given L, the
spread of values is not larger than ~0.01 at 7 = 0 MeV. At
T =6 (12) MeV the critical proton fractions spread over at
least ~0.03 (~0.1), for a fixed L. The largest temperature
considered is almost coincident with, or close to, the critical
temperature of the models under study. It is striking that there
can be a difference of ~0.25 between the proton fractions
of these models. Taking as reference L ~ 56 MeV, a value
within the constraints imposed by experiments, Y, varies
between 0.018 and 0.023 for 7 = 0 MeV, 0.048 and 0.065 for
T = 6 MeV, 0.136 and 0.186 for T = 12 MeV, and between
0.225 and 0.478 for T = 14 MeV. These trends indicate that
the models which are calibrated by using the bulk ground-state
properties of the finite nuclei do not constrain very well the
values of the critical proton fractions at finite temperatures. In
fact, it should be pointed out that the large spread of the critical
proton fraction close to 14 MeV results from the fact that, for
some models, BKA22 (base model for F, and F,, families),
this temperature is very close to the critical temperature, while
for the TM 1 models, the critical temperature is above 15 MeV,
and for NL3, 7, = 14.55 MeV. Temperatures of the order
5-12 MeV occur in core-collapse supernova matter. We may,
therefore, expect a different evolution of the supernova when
different models are considered as the underlying model of
the simulation. In the neutrino-trapped phase, a typical proton
fraction is 0.3, and we conclude from the left panel of Fig. 6
that, while for NL3, F,, and F,,, matter at T = 14 MeV
is not clusterized, for TM1, nonhomogeneous matter still

occurs under these conditions. As a reference we also include
the critical proton fractions and the critical densities of the
models DD2 and DDME?2 in Figs. 6 and 7, since these
models satisfy many well-established properties. They both
have a critical temperature below 14 MeV. At T = 0, they
show a proton fraction above that predicted by the model
with a symmetry energy similar to that of the six families
studied. This difference grows as the temperature increases,
because these models have a lower critical temperature than all
the others.

Let us now discuss how the critical density p. changes with
L and T. In Fig. 7, the critical densities are plotted for the
different models and temperatures considered. The model F),
stands out because it is the only one that presents a critical
density that increases when L increases, for all temperatures.
The density dependence of the symmetry energy in this model
is determined by the term 0,02, while all the others have a
term o2p? or w?p>. Models F,,, NL3op, and TMlop also
show this trend for the lowest temperatures considered, 0 and
6 MeV, and L < 60 MeV. In all other cases, p. decreases when
L increases. The critical densities of models DD2 and DDME2
agree with the other models. Taking again L = 56 MeV as
reference, p. decreases with T, from 0.080—0.087 fm™3 at
T = 0,t00.044—0.054 fm ™3 at T = 14 MeV, while the spread
of p. increases slightly with temperature, from 0.006 fm™>
at T =0 MeV to 0.01 fm=> at T = 14 MeV. This quantity
seems, therefore, to be more constrained than the critical
proton fraction.
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We address next the distillation effect referred in
Refs. [18,44] within the models under discussion. This is
possible from the analysis of the instability direction given
by 8p, /8p, . This quantity, calculated at 7' = 0, has been
plotted in Fig. 8 as a function of the proton fraction Yp
for p =0.06 fm™> in the top panels, and as a function of
the density divided by the nuclear saturation density, p/po,
in the bottom panels, and two different values of Y, (0.30
and 0.05) for the models F, and F, (left), NL3wp and
NL3op (middle), and TMlwp and TMlop (right panels).
The two proton fractions considered are of the order of the
proton fractions expected in cold catalyzed stellar matter. It
is seen that the distillation effect is present in all models,
the direction of instability favors a more isospin-symmetric
dense matter and a more asymmetric gas phase. However,
there is a clear difference between models with a large L
and a small L: the distillation effect is much stronger for
the first ones, and for a fixed proton fraction, the distillation
effect increases with density, while for the second ones, after a
maximum attained at ~0.02 fm 3, the ratio 8p, /8p, decreases
as the density increases. A similar behavior was obtained
for density-dependent models in Ref. [18]. While F,,7 has
a behavior very similar to NL3xp7 and TM1xp7 models, with
X = o or w, once more the F,7 shows a particular behavior,
showing a smaller (larger) distillation effect for p < 0.04 fm~>
(p > 0.04 fm—>) than the other models with a similar L.
Below saturation density, models with a smaller L have larger
symmetry energies that disfavor a strong distillation effect.

In Figs. 9 and 10, the quantities dp,/ép, are plotted
for different temperatures. We have considered the density
0.04 fm~3 in the set of plots of Fig. 9 because this is the density
that corresponds to clusterized matter at all temperatures. It is
evident that the dependence of the distillation effects on the
symmetry energy slope parameter gets washed out with the
temperature, and for 7 = 6 MeV, the differences are already
small, although there are still noticeable differences for the
F,, families.

In Fig. 10, the proton fraction has been fixed to a typical
value that occurs in trapped neutrino matter, y, = 0.3, and
the dependence of 8p,/ép, on the density is shown for
different temperatures. Models of the TM1 and NL3 families
are different above densities p ~ 0.03-0.04 fm~3, with the
models with smaller slopes L showing a decrease of the ratios,
with a larger effect on the models with a o?p> nonlinear
term. Models of the F\, families show larger differences at all
temperatures, with the small L models having larger 6p, /3p,

values below p ~ 0.02 fm™>. The F,7 model differs again
from all the other models with a similar L, showing a 5p,, /8p,;
that increases monotonically with p at finite 7.

IV. CONCLUSION

In the present study we analyzed the extension of the
nonhomogeneous nuclear matter in the density, isospin, and
temperature directions, as predicted by six different families
of RMF models, together with two density-dependent models.
The six families of models have been built from three different
base models, whose parameters are fit to the ground-state

PHYSICAL REVIEW C 95, 055808 (2017)

properties of nuclei. An extra term that couples the p meson
either to the o or w meson is appropriately added to each of the
base models to yield the variation in the symmetry energy slope
L approximately between 50 and 100 MeV [28,30,33]. The
thermodynamical spinodal sections are determined by the loci
in phase space where the curvature matrix of the free energy
is zero. These spinodal sections and lines of critical points
are obtained for temperatures below the critical temperature
above which there is a smooth transition from a gas to a liquid
phase. The critical proton fractions and densities for a given
temperature give us an indication whether clusterized matter
could occur under some particular conditions. In particular,
the clusterized matter is not expected at densities larger
and proton fractions smaller than the corresponding critical
values.

It is shown that, for a given symmetry energy slope
parameter L, the models that include a nonlinear o-p cross
coupling predict smaller critical densities and proton fractions.
The effect is especially strong for the F, family, which
includes a op? cross-coupling term. The critical density is
more constrained. In fact, considering a slope L = 56 MeV,
the spread on the critical density increases from 0.006 fm~ at
T =0 to ~0.01 fm™> at T = 14 MeV. The critical proton
fraction at zero temperature increases when the slope L
increases and, for a given value L, it is almost independent of
the model considered. This is not the case at finite temperature,
where a spread on the proton fraction of 0.25 for T = 14 MeV
is found, when all the different models are considered. This
large spread on the critical proton fraction close to 14 MeV can
be attributed to the different critical temperatures of the models
under study. Since the models considered predict different
critical temperatures associated with symmetric matter, the
critical proton fractions at temperatures above 10 MeV may
show a large spread.

We have also analyzed the behavior of the distillation effect
with temperature. In particular, previous results, concerning a
smaller effect within models with a smaller slope L, were
confirmed. Although the temperature washes out some of the
differences between the models, mainly among the models of
the same family, some differences remain; the stronger ones
among models belonging to the F,, families.

It is observed that the F, family, which includes a cubic
cross-coupling term of the type op?, behaves differently as
compared with the other families of models in which quartic
cross-coupling terms of the type o> p? or w? p? are considered.
Five of six families contain at least one model that satisfies
the constraints coming from microscopic calculations for pure
neutron matter at subsaturation densities (see Fig. 1 and
Ref. [29]); the F, family being the only one that does not
satisfy this constraint.

Seemingly, these results favor the inclusion of quartic-
order cross-coupling terms over the cubic-order term, al-
though a cubic term should also be included from “natu-
ralness” arguments [22,45]. Therefore, a more careful cal-
ibration should be undertaken, which takes into account
constraints from nuclear ground-state properties, as well as
constraints coming from microscopic calculations for neutron
matter.
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