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Nuclear pasta phases within the quark-meson coupling model

Guilherme Grams,1 Alexandre M. Santos,1 Prafulla K. Panda,2 Constança Providência,3 and Débora P. Menezes1

1Departamento de Física, CFM, Universidade Federal de Santa Catarina, Florianópolis, Brazil
2Department of Physics, Utkal University, Bhubaneswar-751 004, India

3CFisUC, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal
(Received 4 November 2016; revised manuscript received 21 March 2017; published 19 May 2017)

In this work, the low-density regions of nuclear and neutron star matter are studied. The search for the existence
of nuclear pasta phases in this region is performed within the context of the quark-meson coupling (QMC) model,
which incorporates quark degrees of freedom. Fixed proton fractions are considered, as well as nuclear matter
in β equilibrium at zero temperature. We discuss the recent attempts to better understand the surface energy in
the coexistence phases regime and we present results that show the existence of the pasta phases subject to some
choices of the surface energy coefficient. We also analyze the influence of the nuclear pasta on some neutron
star properties. The equation of state containing the pasta phase will be part of a complete grid for future use in
supernova simulations.
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I. INTRODUCTION

At very low nuclear matter density, a competition be-
tween the strong and the electromagnetic interactions takes
place [1,2], leading to a configuration in which its free
energy per particle may be lower than that corresponding to
the homogeneous phase at the same density. The so-called
pasta phases are therefore the preferred shapes of some
systems at these densities [3–6]. These structures look like
droplets, bubbles, rods, tubes, and slabs [3] and are expected to
exist [7,8] both in the crust of neutron stars (zero temperature,
very low proton fraction, matter in β equilibrium) and in
supernova (finite temperature, proton fraction around 0.3).

From analysis of these glitches, the authors of Ref. [9] have
related the fraction of the moment of inertia contained in the
crust of the Vela pulsar with the mass and the radius of the neu-
tron star and the pressure and density at the crust-core interface.
From realistic equations of state (EoS), they have obtained an
expected range of values for the pressure at the inner edge
of the crust and therefore also a relation between the radius
and mass of the pulsar. This work shows the importance of
understanding the exact density limits of the pasta phases and
its consequences on the choice of appropriate equations of
state. More recently, the existence of the pasta phase in the
neutron star crust was shown to considerably alter the neutrino
mean-free paths and its diffusion coefficients as compared with
the homogeneous matter results. The consequent differences
in neutrino opacities certainly influence the Kelvin-Helmholtz
phase of the star evolution [10,11].

On the other hand, due to well-known observational dif-
ficulties, simulations of core-collapse supernova have played
an important role in the study of supernovae explosions and
the evolution of their possible remnants. Hence, obtaining ap-
propriate equations of state (EoS) for core-collapse supernova
simulations has been a very challenging task. For this class
of EoS, one needs a grid of thermodynamic quantities with
densities ranging from 105 to more than 1015 g cm−3, proton
fractions up to about 0.6, and temperatures varying from zero
to more than 100 MeV. So far, in almost all models used for
the obtainment of a complete grid with the aim of being tested

in supernova simulations, inhomogeneous matter believed to
be present at low densities has been considered only with
the inclusion of clusters [12–16]. The EoS of Lattimmer and
Swesty [17] takes into account the presence of bubbles besides
the clusters and allows for the existence of different shapes
in a phenomenological construction. However, according to
Refs. [18,19], the pasta phase may form 10–20% of the mass
of the supernova core, and therefore its role should not be
disregarded. The pasta phase has been studied in the context of
several models [1,19–22] and all of them predict its existence
under the conditions expected to be found in the inner crust
of compact objects, although the profiles show that it varies in
many aspects [8,20].

The quark-meson coupling (QMC) model [23–25] de-
scribes nuclear matter as a system of nonoverlapping MIT-like
bags, interacting with each other by interchanging meson
fields. Hence, it contains more fundamental degrees of freedom
than the usual quantum hadrodynamic models, so far used
in the study of the pasta phases [1,10,20,26]. With the aim
of constructing a complete grid for supernova simulations, a
preliminary work at zero temperature, ρ = 1014–1016 g cm−3

and Yp = 0–0.65, was done [27] where a comparison with
other models revealed that the QMC is a promising model.

In the present work, we study the possible existence of the
pasta structures within the QMC model at zero temperature
and its dependence on the surface energy coefficient. The work
is organized as follows: In Sec. II, the QMC model is briefly
reviewed and the method of the coexisting phases used to build
the pasta phase is presented in Sec. III, where a detailed study
of the surface tension coefficient is performed. In Sec. IV,
we present our results and draw the conclusions. In the last
section, we make some final remarks.

II. THE QUARK-MESON COUPLING MODEL

In the QMC model, the nucleon in nuclear medium is
assumed to be a static spherical MIT bag in which quarks
interact with the scalar (σ ) and vector (ω, ρ) fields, and those
are treated as classical fields in the mean field approximation
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(MFA) [23]. The quark field, ψqN
, inside the bag then satisfies

the equation of motion:[
i /∂ − (

m0
q − gq

σ

) − gq
ωωγ 0 + 1

2gq
ρτzρ03γ

0
]
ψqN

(x) = 0,

q = u,d,

(1)

where m0
q is the current quark mass and g

q
σ , g

q
ω, and g

q
ρ denote

the quark-meson coupling constants. The normalized ground
state for a quark in the bag is given by

ψqN
(r,t) = NqN

exp(−iεqN
t/RN )

×
(

j0N

(
xqN

r/RN

)
iβqN

�σ · r̂j1N

(
xqN

r/RN

)) χq√
4π

, (2)

where

εqN
= 
qN

+ RN

(
gq

ωω + 1
2gq

ρτzρ03
)

(3)

and

βqN
=

√

qN

− RNm∗
q


qN
+ RNm∗

q

, (4)

with the normalization factor given by

N−2
qN

= 2R3
Nj 2

0 (xq)[
q(
q − 1) + RNm∗
q/2]/x2

q , (5)

where 
qN
≡

√
x2

qN
+ (RNm∗

q)2, m∗
q = m0

q − g
q
σ σ,RN is the

bag radius of nucleon N , and χq is the quark spinor. The bag
eigenvalue for nucleon N,xqN

, is determined by the boundary
condition at the bag surface

j0N
(xqN

) = βqN
j1N

(xqN
). (6)

The energy of a static bag describing nucleon N consisting
of three quarks in ground state is expressed as

E
bag
N =

∑
q

nq


qN

RN

− ZN

RN

+ 4

3
πR3

NBN, (7)

where ZN is a parameter which accounts for zero-point motion
of nucleon N and BN is the bag constant. The set of parameters
used in the present work is determined by enforcing stability of
the nucleon (here, the “bag”), much like in Ref. [28], so there
is a single value for proton and neutron masses. The effective
mass of a nucleon bag at rest is taken to be M∗

N = E
bag
N .

The equilibrium condition for the bag is obtained by
minimizing the effective mass, M∗

N , with respect to the bag
radius

dM∗
N

dR∗
N

= 0, N = p,n. (8)

By fixing the bag radius RN = 0.6 fm and the bare nu-
cleon mass M = 939 MeV, the unknowns ZN = 4.0050668
and B

1/4
N = 210.85 MeV are then obtained. Furthermore,

the desired values of B/A ≡ ε/ρ − M = −16.45 MeV at
saturation n = n0 = 0.15 fm−3 are achieved by setting g

q
σ =

5.9810, gω = 8.9817, gρ = 8.6510, where gω = 3g
q
ω and

gρ = g
q
ρ . The meson masses are mσ = 550 MeV, mω =

783 MeV, and mρ = 770 MeV. With this parameterization,
some of the bulk properties at saturation density, such as the

TABLE I. Nuclear matter bulk properties obtained with the QMC
model. All quantities are taken at saturation.

Model B/A n0 �v gρ M∗/M J L0 K
(MeV) (fm−3) (MeV) (MeV) (MeV)

QMC −16.4 0.15 0.0 8.6510 0.77 34.5 90 295
QMCωρ −16.4 0.15 0.03 9.0078 0.77 30.9 69 295

the compressibility, the symmetry energy, and the slope of the
symmetry energy, are given in Table I. For a slightly different
bag value, i.e., B

1/4
N = 211.033 MeV, the binding energy is

−15.7 MeV and the symmetry energy and its slope become
respectively 92.56 and 33.4 MeV. The results which we discuss
next are very similar for both bag values and relevant parameter
sets, i.e., the one just mentioned and the one shown in Table I.
The properties at saturation of the QMC model, given in
the first line of Table I, are within the accepted values (see
Refs. [29,30], for instance), except for L0 that presents a value
which is already considered too large. However, J and L0 can
be easily controlled by the inclusion of a ωρ interaction, as
discussed in Refs. [31–33]. As the value of this interaction
gets larger, the the values of the symmetry energy and its slope
become lower. We have next also included an ωρ interaction
strength that results in a symmetry energy equal to 22 MeV
at 0.1 fm−3 with a consequent change in the gρ coupling
constant. The new values of the symmetry energy and its
slope at saturation are also given in Table I. In this work,
we study how much the choice of the parametrization affects
the pasta phase structure and influences stellar matter. Other
parametrizations are also possible. Of particular interest is the
modified QMC model, where the parameters are adjusted so
that the constituent quarks are confined to a flavor-independent
potential where pionic and gluonic corrections are taken into
account [34,35]. These studies will be performed in future
investigations. Within the parametrization we have chosen,
the total energy density of the nuclear matter reads

ε = 1

2
m2

σ σ + 1

2
m2

ωω2
0 + 1

2
m2

ρρ
2
03 + 3�vg

2
ωg2

ρω
2
0ρ

2
03

+
∑
N

1

π2

∫ kN

0
k2dk

[
k2 + M∗2

N

]1/2
, (9)

and the pressure is

p = −1

2
m2

σ σ + 1

2
m2

ωω2
0 + 1

2
m2

ρρ
2
03 + �vg

2
ωg2

ρω
2
0ρ

2
03

+
∑
N

(
1

(3π2)

)∫ kN

0
k4dk/

[
k2 + M∗2

N

]1/2
. (10)

The vector mean fields ω0 and ρ03 are determined through

ω0 = gω(np + nn)

m∗2

ω

, ρ03 = gρ(np − nn)

2m∗2

ρ

, (11)

where

nB = np + nn =
∑
N

k3
N

3π2
, N = p,n, (12)
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is the baryon density and m∗
ω,m∗

ρ are the effective masses

of the meson fields given by m∗2

ω = m2
ω + 2�vg

2
ωg2

ρρ
2
03 and

m∗2

ρ = m2
ρ + 2�vg

2
ωg2

ρω
2
0.

Finally, the mean field σ is fixed by imposing that

∂ε

∂σ
= 0. (13)

As mentioned in the introduction, our interest lies in matter
at fixed proton fraction given by Yp = np/nB as well as
in stellar matter in β-equilibrium conditions, which for the
system made up of protons, neutrons, and electrons is

μp = μn − μe. (14)

Charge neutrality requires that

np = ne. (15)

In this article, we work with the low-density regions of the
neutron stars and in this region muons are not present.

III. COEXISTING PHASES APPROXIMATION

In this approximation, matter is organized in regions of
lower density, generally with a neutron gas in the background
and regions of higher density. For a given total density nB

and proton fraction Yp, the pasta structures are built with
different geometrical forms. The forms are usually called
sphere (bubble), cylinder (tube), and slab, in three, two, and
one dimensions, respectively. This is achieved by calculating
the density and the proton fraction of the pasta and of the
background gas from the Gibbs conditions, that impose that
both phases have the same pressure and proton and neutron
chemical potentials, so that the following equations must be
solved simultaneously:

P I = P II , (16)

μI
p = μII

p , (17)

μI
n = μII

n , (18)

np = nBYp = f nI
p + (1 − f )nII

p , (19)

where I (II ) label the high- (low-) density phase, np is the
global proton density, and f is the volume fraction of phase I ,

f = nB − nII
B

nI
B − nII

B

. (20)

If stellar matter is considered, the above equations are
slightly altered in such a way that

μI
n = μII

n , (21)

μI
e = μII

e , (22)

and

f
(
nI

p − nI
e

) + (1 − f )
(
nII

p − nII
e

) = 0, (23)

along with Eq. (16). Here, the density of electrons is no longer
uniform as in the fixed proton fraction case. It appears as the

solution of the above equation. After the lowest energy state is
achieved, the energy obtained for hadronic matter is given by

εmatter = f εI + (1 − f )εII + εe, (24)

to which the surface and Coulomb terms are added to account
for the total energy density of the system, which becomes

ε = εmatter + εsurf + εCoul. (25)

By minimizing the sum εsurf + εCoul with respect to the size
of the droplet (bubble), rod (tube), or slab, we get [6] εsurf =
2εCoul, where

εCoul = 2α

42/3
(e2π�)1/3

[SD(nI
p − nII

p )
]2/3

, (26)

where α = f for droplets, rods, and slabs, and α = 1 − f for
tubes and bubbles. S is the surface tension discussed in the
next subsection and � is given by

� =
{(

2−Dα1−2/D

D−2 + α
)

1
D+2 , D = 1,3

α−1−ln α
D+2 , D = 2

. (27)

As we are treating only the low-density region, we follow
the parametrization prescription proposed in Ref. [36] for the
effective nucleon mass as a nonlinear function of the σ meson:

M∗
N = MN − gσN (σ )σ (28)

with

gσN (σ ) =
(

1 + b

2
σ + c

3
σ 2

)
gσN, (29)

where gσN = 3g
q
σ SN (0) = 8.6157, b = −0.0007141

96 MeV−1, and c = 9.84481 × 10−8 MeV−2. To obtain these
parameters, we have plotted the exact effective mass at
subsaturation density and fitted the curve with a polynomial
expression. Our best fitting gives only the terms mentioned in
Eq. (29) and one can see that the c value is small, which means
that a cubic term in σ is only a correction that we have opted
to keep in our calculation. Notice that these values are valid
only for this specific parameterization.

Before we proceed to the discussion of the surface tension
coefficient, it is important to point out that the coexistence
phase (CP) method does not take into account the Coulomb
interaction and finite-size effects in a self-consistent way. An
alternative prescription within the compressible liquid drop
(CLD) model incorporates these important effects by minimiz-
ing the total free energy, where surface and Coulomb terms
are explicitly included [37] self-consistently. The resulting
pressure and proton chemical potential equilibrium conditions
are slightly different from the ones above. The differences
between both prescriptions (CP and CLD) can be easily seen
in Ref. [38] and the resulting pasta properties differ at very
low densities [37,38], generally lower than 10−3fm−3 when
the matching to the outer crust EoS is performed. As will be
shown next, our calculation depends also on a free parameter,
that is fitted according to accepted values of the surface tension.

A. The surface tension coefficient

When Gibbs’s conditions are used in the coexistence phases
approximation, the surface tension coefficient is always a
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tricky point, since the existence of the pasta phase depends
on its value. Different considerations on this coefficient have
been made in the literature [1,6,20,26,39,40] and a choice
generally employed is to fit the surface energy according to
the Thomas-Fermi results. Since there are no Thomas-Fermi
calculations for the QMC model to guide us, we have opted
to use a method with more physical ingredients than simply
choosing one specific value for S, as done in many papers
both for quark and hadronic matter. Some calculations based
on nuclear mass formula fits produce results ranging from
1.06 to 1.34 MeV fm−2 [17] and these values have been used
randomly. In the present work, to achieve a numerical value
for the surface tension coefficient, the geometrical approach
introduced in Ref. [41] is used next. In Ref. [42], this method
was used to compute the surface tension in quark matter
but recently it was also used to obtain the surface tension
coefficient for hadronic matter [26]. The main ideas are also
discussed next.

The surface tension coefficient, S, which measures the
energy per unit area necessary to create a planar interface
between the two phases, is given by

S = a

ng

√
2εg

∫ n2

n1

√
�εdn, (30)

where ng = n1+n2
2 , εg = ε(n1)+ε(n2)

2 , n1, and n2 are the two
coexistence baryonic density points and �ε = εhm − εnhm is
the difference between the energy density of the homogeneous
and the nonhomogeneous matter. The energy densities for both
phases are obtained from Eqs. (9) and (24) and then fitted to a
functional form given by εi = αin

2 + βin + γi, i = hm,nhm.
Graphs showing this construction for hadronic matter can be
found in Ref. [26] and we do not reproduce them here. In
this geometrical approach, the width of the interface region
and the magnitude of S are controlled by the adjustable
parameter a present in Eq. (30). In Ref. [42] the authors used
a = 1/mσ = 0.33 fm, where mσ = 600 MeV is the mass of
the σ meson, a natural scale for quark matter. As we are treating
hadronic matter in the present work, our initial guess was a =
1/MN = 0.21 fm, where MN = 939 MeV is the nucleon mass.
Another attempt followed the recipe used to find the surface
tension of hadronic matter in Ref. [26] with an extended
version of the Nambu-Jona-Lasino model, where a = 0.1 fm
was adopted to reproduce the value of the surface tension
coefficient for the NL3 model [43] within a Thomas-Fermi
calculation [39]. Our final choice was a = 0.023 fm, so that
the value S = 1.123 MeV fm−2 for Yp = 0.5 was reproduced
as in Refs. [26,39,40]. Note that this value is the same for all
values of the interaction strenght �v because it was chosen
for symmetric nuclear matter, where the ωρ interaction plays
no role. In Fig. 1 we compare the three choices of a in the
search for the pasta phases, i.e., a = 0.023 fm, a = 0.1 fm,
and a = 1/MN = 0.21 fm, for Yp = 0.5. We can see that there
is a larger region of the pasta phase for a = 0.023 fm. In fact,
for YP = 0.5 no pasta phases were found with either a = 0.1
or a = 0.21 fm. Therefore, we have chosen a = 0.023 fm to
be used throughout our calculations.

It is important to stress that the surface tension coefficient
varies with the isospin for a given value of a. In Table II, we
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E
/A

−M
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M
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a=0.023 fm
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a=0.21 fm
hm

FIG. 1. QMC energy per baryon as a function of the baryon
density for proton fraction 0.5 and different choices of a. hm stands
for homogeneous npe matter.

show the values of S for seven different proton fractions and
a = 0.023. In order to obtain the pasta phases in β-equilibrium
matter, we have fitted these values of S to a exponential
functional. For the QMC model, a function of the form

S = d(1 − e− (x−e)2

f ), with d = 1.58647, e = 0.0746702, and
f = 0.265407 is obtained. For the QMCωρ, we have used
the same function, with d = 1.41403, e = 0.0725015, and
f = 0.206082. In both cases, x is the global proton fraction
Yp and the functions are shown in Fig. 2. We note that there are
some works where the proton faction used in the calculation
of the surface tension is the one of the denser phase.

Previous works [1,6,20,26,39,40] have shown that the
surface tension at zero temperature not only varies with
the proton fraction but presents values in between 1.0 and
1.2 MeV fm−2 for Yp = 0.5 (see Fig. 5 in Ref. [31], for
instance). If we constrain the parameter a so that these
values are reproduced, we obtain a = 0.020–0.025 fm. The
value a = 0.020 fm yields S = 1.0 MeV fm−2 and a = 0.025
fm results in S = 1.2 MeV fm−2 for Yp = 0.5. Choosing
a = 0.025 would increase the surface energy in 8.7%, having a
very small effect on the crust-core transition of β-equilibrium
matter. Therefore, we proceed with the comparison of the
results obtained with a = 0.020 and with a = 0.023, which
entails S = 1.123 MeV fm−2 for Yp = 0.5. In Table III, we
compare the surface tension coefficient S and the transition
density ρt for the two values of a. We see that ρt is practically

TABLE II. Surface tension coefficient for QMC and QMCωρ

models and different proton fractions.

QMC QMCωρ

Yp S (MeV fm−2) S (MeV fm−2)

0.05 0.093 0.093
0.1 0.175 0.194
0.2 0.393 0.429
0.25 0.511 0.556
0.3 0.647 0.692
0.4 0.923 0.941
0.5 1.123 1.123
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FIG. 2. Surface tension fit for the QMC and QMCωρ models.

independent of a in the range [0.020, 0.023], not only for
β-equilibrium matter but also for matter with fixed proton
fractions. The surface tension coefficient as a function of
the baryon density is displayed in Fig. 3 for matter in β
equilibrium, from where we note that S decreases with the
density. We can see that the surface tension coefficient is only
slightly larger for a = 0.023 fm both from Table III and Fig. 3.

IV. RESULTS AND CONCLUSIONS

Finally, we present our results for the pasta phases obtained
with the QMC model at zero temperature, within the coexisting
phases approximation. We remark that pasta is only predicted
when its free energy per baryon is lower than the homogeneous
npe (neutron-proton-electron) matter.

In Fig. 4, we display the free energy per baryon for Yp = 0.5
and Yp = 0.3. The curves for β-equilibrium matter are shown
in Fig. 5. The three cases show the presence of pasta phases,
which are bigger for larger proton fractions, as already seen
in other works. In Fig. 6, we can see the density distribution
of the pasta structures. For Yp = 0.5, three different structures
are present: droplets (3D), rods (2D), and slabs (1D), while for
YP = 0.3, a small amount of tubes (2D) also appear. A similar
behavior was obtained in Ref. [44] for different models. The
reason was pointed out to the non-self-consistent treatment of
the Coulomb force, which prevents a redistribution of protons.

TABLE III. Surface tension coefficient for different proton frac-
tions for the QMC model, L=90 MeV, and the a values considered. ρt

is the transition density that separates the pasta from the homogeneous
phase.

Yp S a ρt

(MeV fm−2) (fm) (fm−3)

0.5 1.00 0.020 0.100
0.5 1.12 0.023 0.097
0.3 0.58 0.020 0.094
0.3 0.65 0.023 0.096
0.1 0.16 0.020 0.065
0.1 0.17 0.023 0.058
β-eq plot 0.020 0.062
β-eq plot 0.023 0.062
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FIG. 3. Surface tension coefficient as a function of the baryon
density for β-equilibrium matter obtained with the QMC model, L =
90 MeV, and two choices of a.

As a result, the CP method predicts smaller extensions of the
pasta phases as a whole and for symmetric matter the larger
electron fraction originates stronger Debye screening effects
and therefore hinders the appearance of tubes. Althougth
the isospin asymmetry affects the structures and distribution
of the pasta phases, the difference on the density dependence
of the symmetry energy of QMC and QMCωρ is not strong
enough to show any effect. In Ref. [45], rods and slabs were
present in β-equilibrium matter; however, the stellar matter

0

5

 10

 15

 20

 25

 30

 35

0  0.02  0.04  0.06  0.08  0.1  0.12

E
/A

-M
 (

M
eV

)

nB (fm-3)

QMCωρ
Yp=0.3

0.096 fm-3

QMCωρ
Yp=0.3

0.096 fm-3

hm
nhm

0

 10

 20

 30

 40

 50

 60

 70

 80

0  0.02  0.04  0.06  0.08  0.1  0.12

E
/A

-M
 (

M
eV

)

nB (fm-3)

QMC
Yp=0.5

0.097 fm-3

hm
nhm

FIG. 4. Free energy per baryon as function of the baryon density
calculated with the QMCωρ model and a = 0.023 for homogenous
matter (hm) and nonhomogeneous matter (nhm) with (a) the proton
fraction 0.5 and (b) proton fraction 0.3.
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FIG. 5. Free energy per particle for homogeneous (hm) and non-
homogeneous (nhm) matter obtained in β equilibrium with QMCωρ

with L = 69 MeV (top) and QMC with L = 90 MeV (bottom).

EoS was calculated with models with a smaller slope L, in
particular, L � 60 MeV.

The pasta phases shrink with the decrease of the proton
fraction and for β-equilibrium matter only droplets are
present. The transition density between the pasta phases and
homogeneous matter shows the same behavior as in all models;
i.e., it decreases for lower proton fraction and the lowest
value is obtained for matter in β equilibrium. The calculations
performed in Refs. [1] and [20] with the CP method used two
different prescriptions for the surface tension coefficient, based

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

A B C D E

ρ 
(f

m
-3

)

hm
Tubes
Slabs
Rods

Droplet

FIG. 6. Phase diagrams at T = 0 obtained with CP approxima-
tion for QMCωρ with L = 69 MeV: (A) Yp = 0.5, (B) Yp = 0.3,
(C) β equilibrium, and for QMC with L = 90 MeV: (D) Yp = 0.3,
(E) β equilibrium. hm stands for homogeneous matter.

0

 0.4

 0.8

 1.2

 1.6

2

 2.4

8  10  12  14  16  18

M
(M

O
)

R (km)

EoS1 
EoS2 

EoS1ωρ
EoS2ωρ

FIG. 7. Mass-radius relation for a family of neutron stars de-
scribed with the QMC and QMCωρ models with (EoS1 and EoS1ωρ)
and without (EoS2 and EoS2ωρ) the pasta phases.

on a fitting of the Thomas-Fermi results to a Skyrme and to
relativistic models respectively. Apart from these details in the
calculations that can modify slightly the quantitative results,
the qualitative conclusions do not differ in general.

We note that in Fig. 5(bottom), the transition core-crust of
a neutron star takes place at nB = 0.062 fm−3 for the QMC
model and at a slightly bigger density, nB = 0.066 fm−3,
if the ωρ interaction is included, as seen in Fig. 5(top). A
correlation between the transition densities and the slope has
been identified in Refs. [20,46] and in many other works. Since
the original QMC model has a symmetry energy slope larger
than the QMCωρ, a lower crust-core transition density was
already expected for that model.

Finally, we analyze the influence of the pasta phases on
some neutron star properties. In Fig. 7 we show the mass-radius
relation. The M(R) curves are built with four equations of
state, from where we can see the influence of the pasta phase
and of the ωρ interaction on the neutron star properties; see
Table IV. EoS1 and EOS1ωρ contain the pasta phase while
EoS2 and EoS2ωρ do not. We have used the homogeneous
QMC and QMCωρ EoS for the core, QMC and QMCωρ with
pasta, and the Baym-Bethe-Pethick (BBP) [47] EoS for the
inner crust and the Baym-Pethick-Sutherland (BPS) [48] EoS
for the outer crust.

If the QMC interaction is considered, EoS1, the BPS +
BBP EoS goes up to nB = 3.7 × 10−3 fm−3, and the pasta
phases lie in between nB = 0.4 − 6.2 × 10−2 fm−3 above
this density range the core EoS starts. We match the BPS +
BBP EoS directly to the core EoS for densities below 8.9 ×
10−3 fm−3 for EoS2. When the ωρ interaction is included,

TABLE IV. Properties of a family of neutron stars obtained with
the QMC model. Comparison between equations of state, with and
without pasta phase and with and without ωρ term.

EoS Pasta L (MeV) Mmax(M�) R (km) RM=1.4M� (km)

EoS1 Yes 90 2.14 11.53 13.61
EoS1ωρ Yes 69 2.07 10.97 12.88
EoS2 No 90 2.14 11.51 13.55
EoS2ωρ No 69 2.07 10.96 12.83
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i.e., for QMCωρ, EoS1ωρ, the BPS + BBP EoS goes up to
nB = 3.7 × 10−3 fm−3, and the pasta phases lie in between
nB = 0.45 − 6.6 × 10−2 fm−3 when the core EoS takes on.
We match the BPS + BBP EoS directly to the core EoS for
densities below 8.9 × 10−3 fm−3 for EoS2ωρ. Note that the
maximum masses do not change upon the existence of the pasta
phases, and both cases Mmax = 2.14 M� (QMC) and Mmax =
2.07 M� (QMCωρ), satisfy the constraints imposed by the
recent measurements of the 2M� pulsars PSR J16142230 and
PSR J0348+0432 [49,50].

One of the differences between the results obtained with
the EoS with and without the pasta phases appears when we
compare the radii of typical 1.4-solar-mass neutron stars. The
radii when the pasta phase are included is slightly bigger than
the radii obtained with the BPS+BBP+homogeneous EoS, in
accordance with previous findings [26]. All EoS predict radii
for a 1.4 M� star, inside the radius range proposed in Ref. [51],
where the authors constrained the canonical 1.4 M� neutron
star radii to R = 9.7–13.9 km, or the radius range obtained
in Ref. [52] for x-ray bursting NS. However, both are outside
the range determined in Ref. [53] from the analysis of spectro-
scopic radius measurements during thermonuclear bursts or in
quiescence or in Ref. [54] from experimental constraints and
causality restrictions. The range values proposed in Ref. [51]
include the possibility of a phase transition to another form of
matter inside the star. If phase transitions are excluded below
twice saturation density, the accepted neutron star radii change
to 10.7–13.1 km, according to Refs. [55,56]. If this value is
accepted, the results obtained with EoS1ωρ and EoS2ωρ, built
from the QMCωρ model, are inside the new proposed range.
However, the authors of Ref. [57] have made a compilation of
neutron star radii estimations from observations for a 1.4 M�
star and have obtained, taking into account a 2σ error, values
above 14 km. In this case, all models predict radii satisfying
this condition.

V. FINAL REMARKS

In the present work, we have revisited the calculation
of the pasta phases now using a model with quark de-
grees of freedom, the QMC model. The determination of
the inhomogeneous phases was possible by parameterizing
the effective nucleon mass at subsaturation density as a
nonlinear function of the σ meson as already done before
in Ref. [36]. Part of the results shown in the present work
will take part in a more comprehensive EoS grid that
is being built for star cooling and supernova simulations.

Our results depend quantitatively on a parameter necessary
for the calculation of the surface tensor coefficient. We
have fitted this parameter to the nuclear surface energy and
showed that when even changing it in a broad interval the
pasta extension was only slightly affected. In other words,
the prescription we have used allows us to determine the
dependence of the surface energy on the proton fraction, except
for the overall normalization that we fix to the usual surface
energy.

The general conclusions related to the size of the pasta
phases, its internal structure, and the transition density from
the pasta to homogeneous matter go in line with the ones
obtained in previous works [1,20].

It is important to stress that the value of L obtained with
the original QMC parametrization, L = 90 MeV, is larger than
present constraints impose: The one established in Ref. [55]
assumes 63.6 MeV as the largest acceptable value, but larger
values are indicated in Ref. [29], where L < 80 MeV, and
Ref. [30], with L < 86.8 MeV, where both studies take into
account extra constraints not included in the study of Ref. [55].
To improve the model so that a lower value of L is obtained,
we have added a ωρ interaction to the Lagrangian density, as
already done in previous works for different parametrizations
of the nonlinear Walecka model [33,58] and also for the QMC
model [32]. This new term in the Lagrangian density changes
the density dependence of the symmetry energy and allows
the calibration of the model parameters so that a smaller slope
of the symmetry energy is obtained at saturation. Our results
show that this interaction is mandatory in relativistic mean
field models if one wants to conciliate large maximum masses
with low radii in neutron stars described by the QMC model.

We intend to incorporate finite-size effects through the
implementation of the CLD prescription [37,38] as well. The
CLD presents smaller discontinuities at very low densities,
so it can be a useful treatment to obtain all the values that
will be needed for a complete EoS grid. The inclusion of α
particles [39] and other light clusters [40] can also slightly
modify the internal structure of the pasta phases.
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