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Quantum nuclear pasta and nuclear symmetry energy
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Complex and exotic nuclear geometries, collectively referred to as “nuclear pasta,” are expected to appear
naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta
geometries depend on the average baryon density, proton fraction, and temperature and are critically important
in the determination of many transport properties of matter in supernovae and the crusts of neutron stars.
Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of
large scale quantum simulations of pasta phases at baryon densities 0.03 � ρ � 0.10 fm−3, proton fractions
0.05 � Yp � 0.40, and zero temperature. The full quantum simulations, in particular, allow us to thoroughly
investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the SKY3D code
that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction
we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei,
hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated
by tuning two purely isovector observables that are insensitive to the current available experimental data. We find
that a minimum total number of nucleons A = 2000 is necessary to prevent the results from containing spurious
shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present
in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the
nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations
at T = 0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable
solutions are discussed.
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I. INTRODUCTION

The baryon matter in the Universe organizes itself based on
the short-range nuclear attraction and the long-range Coulomb
repulsion. At densities much lower than the nuclear saturation
density, ρ0 ≈ 0.16 fm−3, the nuclear and atomic length scales
are well separated, so nucleons bind into nuclei that, in turn,
are segregated in a Coulomb lattice. All terrestrial materials
as well as the matter in the outer layers of the neutron
star crust are expected to harbor such sites. However, the
density of matter inside the neutron star crust—as well as
in the regions of supernovæ—has a range that spans several
orders of magnitude. In high-density regions, ρ � ρ0, which
are expected in the cores of neutron stars, the short-range
nuclear interaction significantly dominates over the atomic
length scales and the matter assumes a uniform phase. At
subsaturation baryon densities, 0.1ρ0 � ρ � 0.8ρ0, a region
expected at the bottom layers of the inner crust, these two
length scales become comparable, and the matter develops
complex and exotic structures as a result of the so-called
Coulomb frustration. In this case, there is a strong competition
between the Coulomb and the strong interactions, which
leads to the emergence of various complex structures with
similar energies that are collectively referred to as “nuclear
pasta.” Significant progress has been made in simulating this
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exotic region [1–6], since its initial prediction over several
decades ago [7–9]. There are ongoing efforts aiming to
determine the possible shapes of the nuclear pasta [10], as
it is believed that the elastic and transport properties—such
as electrical and thermal conductivities, shear, and bulk
viscosities—of nuclear pasta play a crucial role in thermal
evolution, magnetic field evolution, rotation, and oscillations
of neutron stars [9,11–14]. Moreover, they can significantly
impact neutrino opacities in core-collapse supernovæ, which
in turn strongly influences the dynamics of the core collapse
and the cooling of proto-neutron stars [3,15–17]. In this paper
we will investigate large scale quantum simulations of nuclear
pasta phases at baryon densities 0.03 � ρ � 0.10 fm−3, proton
fractions 0.05 � Yp � 0.40, and zero temperature by using
a set of self-consistent microscopic nuclear energy density
functionals, and discuss the role and impact of the nuclear
symmetry energy.

The traditional approach to study nuclear pasta phases
often involves symmetry arguments to determine what is
the most favored structure at a given baryon density ρ,
temperature T , and proton fraction, Yp. The system is then
minimized by either adding an external guiding potential or
with some other sorts of biased initialization that explicitly
makes assumptions about the geometrical shapes of the nuclear
pasta. Some example model calculations include the use
of the liquid-drop model [7,18,19] and Thomas-Fermi and
Wigner-Seitz cell approximations [9,20–23]. Perhaps some of
the most exotic phases obtained using pre-assumed shapes
are the gyroid and diamond morphologies [19,24]. There are
other approaches that do not explicitly assume any shape for

2469-9985/2017/95(5)/055804(21) 055804-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.95.055804


F. J. FATTOYEV, C. J. HOROWITZ, AND B. SCHUETRUMPF PHYSICAL REVIEW C 95, 055804 (2017)

the nuclear pasta phase. These include calculations based on
the Thomas-Fermi approximation [20,25–27], nonrelativistic
Skyrme Hartree-Fock methods [28–31], relativistic density-
functional theory [23], relativistic mean field approxima-
tion [32–34], quantum molecular dynamics (QMD) [1,2,35–
39], and semiclassical molecular dynamics (MD) [3–5,10,40–
46] simulations. Recently, using MD simulations, more exotic
structures have also been identified, such as flat plates with
a lattice of holes, termed as “nuclear waffles” [44], and flat
plates that are connected by spiral ramps [45].

For small systems, these studies are often performed in a
unit cell filled with neutrons, protons and electrons alongside
the specific symmetry assumptions and boundary conditions.
The pasta matter is then described as a lattice made of a
large number of these unit cells. When performing numerical
studies, it is important to consider the nontrivial role of the
simulation volume. Since only periodic geometries that fit
into the unit cell can be explored, the simulation space must
be sufficiently large to contain at least one unit cell of the
pasta structure. Even if this condition is fulfilled, finite size
effects such as dependence on the geometry of the simulation
space [47] and numerical shell effects [28] may appear. As a
result, the simulation volume needs to be maximized to ensure
that finite size effects are minimal. Advances in computational
power in the last decade have allowed for sophisticated fully
self-consistent calculations by using Skyrme Hartree-Fock
(SHF) calculations at finite temperature [28–31]. Whereas
these computations showed a richer variety of pasta shapes
than the original five geometries [8], consistent with results
obtained by the MD simulations that use significantly larger
simulation volumes, they are typically reproduced by assuming
various symmetry arguments or a priori assumed final pasta
shapes. Moreover, due to the limitation of computational
power, these calculations were often limited to a single periodic
structure, therefore leading to pasta shapes that may exhibit
significant dependence on the finite size of the simulation box.
Therefore, it is necessary to perform quantum simulations
with a much larger number of nucleons to overcome finite
size effects, as well as to minimize various numerical effects
coming from different symmetry considerations. The progress
in high-performance computing in recent years allows us to
take further steps in this direction, which is the main topic of
this paper. Indeed, the recent decadal nuclear survey [48] puts
forward that “high performance computing provides answers
to questions that neither experiment nor analytic theory can
address; hence, it becomes a third leg supporting the field of
nuclear physics.”

Calculations with more than a few thousand nucleons so far
were only manageable by considerably simplifying the nuclear
interaction. That is what was done in previous works that study
nuclear pasta using classical or quantum MD simulations.
The advantage of MD simulations lies in their ability to
simulate large systems where the length of the simulation
space is several hundred fermis, and therefore significantly
exceeds the size of a unit cell. This allows one to study pasta
structures that are less bound to the geometry and boundary
conditions of the simulation volume. However, although MD
approaches can include quantum effects qualitatively, the
nuclear interaction is typically given by a schematic two-

body potential. For self-consistent quantum calculations that
account for Pauli blocking, spin-orbit forces, and nucleon
pairing, simulations using microscopic energy density density
functionals (EDF) in the form of SHF are usually performed.
As mentioned above, the current drawback of these methods
is their high computational cost. As a consequence, the size
of the system is typically chosen to be much smaller than
the one for MD methods. By using nuclear configurations that
conserve reflection symmetry in the three Cartesian directions,
Newton and Stone [28] were able to simulate effectively larger
quantum systems by performing the computation only in one
octant of the unit cell. In this study we will not restrict our
simulation with nuclear configurations that assume any kind
of spatial symmetries. In particular, we will perform quantum
simulations of nuclear pasta using the Skyrme Hartree-Fock
model [49] with no pre-assumed pasta geometries, and we will
address the following main questions:

(a) What is the minimum size of the simulation volume
necessary to minimize finite size effects?

(b) What is the role of nuclear symmetry energy in the
nuclear pasta formation in neutron star crusts and
supernovae?

(c) How does the initial configuration of the system impact
the converged pasta structure?

We have organized the paper as follows. In Sec. II we review
the essential details required to simulate nuclear pasta. First,
we modify the density dependence of the symmetry energy in
the Skyrme force interaction UNEDF1 by adapting two purely
isovector parameters. We present predictions for the ground
state properties of several closed-shell finite nuclei using the
original and the modified parametrizations. Then, we discuss
the impact of the grid spacing, accuracy considerations, and
optimum simulation runtime. Special attention is paid to the
impact of finite size effects, in which we identify the minimum
simulation volume that contains at least one period of the pasta
structure. In Sec. III we discuss the outcomes of our results.
First, we provide predictions for nuclear pasta with low proton
fractions corresponding to the crust of neutron stars. Second,
we explore a range of proton fractions corresponding to the
matter found in supernovae. Last, we discuss the nontrivial
effect of initial configurations on the final pasta configuration.
Finally, we offer our conclusions in Sec. IV.

II. FORMALISM

A. Nuclear interaction and symmetry energy

To simulate the nuclear pasta structures we use the publicly
available Skyrme TDHF code SKY3D that solves the static
Skyrme Hartree-Fock equations in a three-dimensional (3D)
Cartesian mesh with a damped gradient iteration method on
an equidistant grid and without symmetry restrictions [49].
For the nuclear pasta simulations we use periodic boundary
conditions that also include a homogeneous negative electron
background to ensure the charge neutrality of the system. This
so-called jellium approximation is suitable for the nuclear
pasta studies as they are expected to be present in charge
neutral environments, such as in the inner crusts of neutron
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stars. A screened Coulomb interaction is not considered, as its
influence should be very small for the box lengths considered
in our study [50]. For a full description of the code and the
Skyrme Hartree-Fock method we refer the reader to Ref. [49].

For the nuclear interaction we select a state-of-the-art
energy density functional (EDF) of Skyrme type. The total
energy is given by

Etot = Ekin + ESk + EC, (1)

where Ekin is the kinetic energy, ESk is the Skyrme contribu-
tion, and EC is the Coulomb contribution. The Skyrme energy
function contains five contributions

ESk = E0 + E1 + E2 + E3 + Els, (2)

which are in detail
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∫
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for time-independent calculations, where E0 is known as the
zero-range term, E1 as the effective mass term, E2 as the
finite-range term, E3 as the density dependent term, and Els

as the spin-orbit term. Here ρ is the total particle density, τ is
the total kinetic density and �J is the total spin-orbit density,
and if a subscript q is present it labels the densities of either
neutrons or protons. The Coulomb energy EC consists of the
standard expression for a charge distribution in its own field
plus the exchange term in the Slater approximation:

EC = e2

2

∫
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4
3
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where e is the elementary charge. The parameters α, bi and
b′

i , i ∈ {0,1,2,3}, are fitted to experimental data. We chose
the UNEDF1 parametrization, whose parameters were fitted
to a selected set of nuclear masses, charge radii, odd-even
mass differences, and the experimental excitation energies of
fission isomers in the actinides [51]. Given that UNEDF1 was
introduced to better study largely deformed nuclei, we find this
Skyrme force very suitable for our studies of nuclear pasta that
can take shapes of strongly elongated nuclei, in particular.

Although the current extensive experimental database is
sufficient to constrain most of the parameters of the nuclear
interaction, many nuclear forces widely disagree in their
description of the isovector channel of the nuclear force due
to poorly constrained isovector parameters. In the realm of

nuclear matter this means that the density dependence of
the nuclear symmetry energy remains poorly determined.
Since nuclear pasta is expected to form in a neutron-rich
environment, the role of the nuclear symmetry energy on
the pasta formation and the pasta phase transition needs to
be thoroughly analyzed. It has been shown by Oyamatsu
and Iida that pasta formation may not be universal in the
neutron star crust and that its existence is intimately related
to the density dependence of the symmetry energy [52],
where the pasta regime was predicted to appear when the
density slope of the symmetry energy is L � 100 MeV (see
Ref. [53] for definitions of symmetry energy parameters).
Recently there have been several studies in the context of
the Thomas-Fermi approximation that analyzed the impact
of density slope of the nuclear symmetry energy L on the
pasta phase structure [27,54,55]. In particular, it was found
that whereas models with small value of L exhibit a variety of
pasta structures, most of these structures fade away when one
considers models with the large value of L corresponding to
the stiff nuclear symmetry energy. Very recently, using QMD,
Nandi and Schramm [56] found that the low-density onset
of the nuclear pasta phase is quite insensitive to the density
dependence of the symmetry energy when the proton fraction
is Yp = 0.3.

Intensive efforts have been devoted to constrain the density
dependence of the nuclear symmetry energy in recent years,
using various approaches (please see Refs. [57–59] and
references therein). These efforts have recently led to a close
convergence of the value of symmetry energy at saturation
density of around J ≈ 30 MeV and the density slope of
L ≈ 60 MeV. Nevertheless, the associated error bars from
different approaches vary broadly, and the possibility that J
and L parameters can be significantly different from these
currently inferred values cannot be ruled out [59]. For this
reason, we have modified two purely isovector parameters of
the UNEDF1 by following the tuning scheme as described in
Ref. [60]. In particular, we modify the Skyrme parameters x0

and x3 (Table I), that in turn modify the parameters b0, b′
0, b3,

and b′
3 of the EDF [Eqs. (3a) and (3d)] which are given by

b0 = t0
(
1 + 1

2x0
)
, b′

0 = t0
(

1
2 + x0

)
,

b3 = 1
4 t3

(
1 + 1

2x3
)
, b′

3 = 1
4 t3

(
1
2 + x3

)
(5)

in terms of the Skyrme parameters t0, t3, x0, and x3. The tuning
method allows one to generate a family of model interactions
that are almost indistinguishable in their predictions for a
large set of the nuclear ground state observables that are
mostly isoscalar in nature, yet predict different isovector
observables. As a contrast to the original UNEDF1 model that
has a relatively soft symmetry energy with L = 40 MeV, we
generated a model that predicts a rather stiff symmetry energy
of L = 80 MeV.

In Table I we present the nuclear matter bulk parameters
for these two interactions. In Table II we show the success of
such tuning by presenting predictions for binding energies and
charge radii of several closed shell nuclei. We also present the
corresponding neutron skin thicknesses rskin of these nuclei. It
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TABLE I. Bulk parameters characterizing the behavior of neutron-rich matter around saturation density ρ0. Here x0 and x3 are the two pure
isovector parameters of the Skyrme force UNEDF1 that have been refitted to obtain an interaction with the stiff symmetry energy, UNEDF1�.
The quantities ε0, K0, and Q0 represent the binding energy per nucleon, incompressibility coefficient, and the “skewness” coefficient of
symmetric nuclear matter at ρ0. Similarly, J , L, and Ksym represent the energy, slope, and curvature of the symmetry energy at saturation
density. All quantities are in MeV, except for ρ0 which is given in fm−3. A detailed explanation of all these quantities may be found in Ref. [61].

Model x0 x3 ρ0 ε0 K0 Q0 J L Ksym

UNEDF1 +0.053 756 920 0 −0.162 491 170 0 0.1587 −15.80 220.0 −405.0 28.99 40.00 −179.5
UNEDF1� −0.323 725 909 0 −0.772 575 829 9 0.1587 −15.80 220.0 −405.0 32.87 80.00 −71.42

is worth mentioning that the measurements of rskin in 48Ca
and 208Pb are of enormous significance due to their very
strong correlation to the slope of the symmetry energy around
saturation density [62–65]. The neutron skin thickness of 208Pb
has been preliminarily measured by the PREX Collaboration
at Jefferson Laboratory [66], and will be measured with higher
accuracy by the PREX-II experiment [67] in 2017. An already
approved CREX experiment on the other hand aims to measure
the neutron skin thickness of 48Ca [68]. The calculations of
Table II were performed using the SKY3D code with isolated
boundary conditions, for the Coulomb force. The charge radius
is calculated using the point-proton mean-square radius 〈r2〉pp

from SKY3D and the approximate analytic formula [69]

〈r2〉ch = 〈r2〉pp + 〈
R2

p

〉 + N

Z

〈
R2

n

〉 + 3

4M2
+ 〈r2〉so, (6)

where 〈R2
p〉 = 0.7658 fm2 and 〈R2

n〉 = −0.1161 fm2 are the
mean-square charge radii of the proton and the neutron,
respectively, 3

4M2 = 0.033 12 fm2 is the so-called Darwin-
Foldy term, and 〈r2〉so is the relativistic spin-orbit correction.
Notice, that the slope of the symmetry energy L is closely
related to the pressure of pure neutron matter at saturation
density, i.e., L ≈ 3P (ρ0)/ρ0. Therefore a larger L results in a

TABLE II. Experimental data (where available) and theoretical
predictions of the two EDFs for the binding energy per nucleon,
charge radii, and neutron skin thickness for several closed shell nuclei.

Nucleus Observable Experiment L = 40 MeV L = 80 MeV

16O B/A (MeV) −7.98 −7.56 −7.56
rch (fm) 2.70 2.81 2.81
rskin (fm) −0.02 −0.02

40Ca B/A (MeV) −8.55 −8.52 −8.52
rch (fm) 3.48 3.50 3.50
rskin (fm) −0.04 −0.04

48Ca B/A (MeV) −8.67 −8.60 −8.61
rch (fm) 3.47 3.53 3.52
rskin (fm) 0.18 0.21

90Zr B/A (MeV) −8.71 −8.72 −8.72
rch (fm) 4.27 4.28 4.28
rskin (fm) 0.08 0.10

132Sn B/A (MeV) −8.35 −8.35 −8.33
rch (fm) 4.72 4.72
rskin (fm) 0.25 0.30

208Pb B/A (MeV) −7.87 −7.88 −7.86
rch (fm) 5.50 5.51 5.51
rskin (fm) 0.18 0.23

higher neutron pressure, which leads to greater neutron radii
and thicker neutron skins as neutrons are pushed out against
surface tension.

In Fig. 1 we display the resulting density dependence of the
nuclear symmetry energy for these two interactions. The large
magnitude of the density slope L ensures that at subsaturation
densities pertaining to the crusts of neutron stars the nuclear
symmetry energy acquires smaller values. Thus for large L
it becomes energetically favorable for the system to become
more neutron-rich at these densities. For the same reason, the
proton fraction Yp in the system increases when L is small
(soft symmetry energy).

B. Grid spacing and accuracy considerations

As noted above, in SKY3D the wave functions and fields are
defined on a three-dimensional regular Cartesian grid [49]. In
particular, in calculating the values of Table II we used a cubic
box with size a = 24 fm and grid spacing of �x = 1.00 fm in
each direction. As shown in Ref. [31], changing the box size
to larger values does not significantly change the total energies
of the ground state. In fact, doubling the box size can add an
additional energy of only less than 0.012%. On the other hand,
the choice of the physical spacing between the grid points can
be more important, especially when the grid spacing is larger
than �x = 1.00 fm. The calculations presented in Table II
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FIG. 1. Density dependence of the nuclear symmetry energy for
the two models discussed in the text.
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FIG. 2. The absolute value of the binding energy per nucleon
and the simulation runtime as a function of the grid spacing �x

for a system of A = 800 nucleons at an average baryon density of
ρ = 0.0512 fm−3 and proton fraction of Yp = 0.4.

uses a very fine grid of �x = 0.25 fm. However, this comes at
a significant cost on computational time. For accurate results
in finite nuclei calculations, a typical value was suggested
to be taken as �x ≈ 0.75 fm. Indeed, when we used �x =
1.00 fm, the error is less than 0.013%, whereas the calculation
speeds up by about 100 times. Ideally, the computation time
is expected to scale as n3, where n is the total number of
the grid points in one direction, n = a/�x. In Ref. [70], it
was shown that the maximum grid spacing for nuclear pasta
calculations may be taken as large as 1.30 fm. Notice that the
simulation runtime also depends on the number of nucleons
A, and scales approximately as ∼A2 due to diagonalization
of the Hartree-Fock Hamiltonian. Thus, for a fixed average
baryon density and fixed physical spacing between the grid
points, doubling the simulation volume (i.e., A → 2A) makes
the simulation runtime approximately eight times longer.

With the aim to maximize the volume of nuclear pasta
systems, we explored the optimal value of the physical grid
spacings that allows one to perform nuclear pasta simulations
without the loss of accuracy in energies. Notice that nuclear
pasta phases are expected to be sensitive to binding energy
differences of as small as 0.01 MeV per nucleon. In Fig. 2 we
display the absolute values of the binding energy per nucleon
for a system with A = 800 nucleons as a function of the grid
spacing. We initialize our system with all nucleons randomly
distributed within the box, and the initial single-particle wave
functions are given as a sum of 27 three-dimensional Gaussians
with widths of σ = 2.5 fm that are centered at the nucleon
coordinates with their closest images formed due periodic
boundary conditions. As is evident from Fig. 2—and as far as
the binding energies are concerned—the accuracy of the results
is maintained within 0.06% for grid spacings of as large as
�x = 1.50 fm. Moreover, while the corresponding simulation
runtime gets significantly reduced, an appreciable speed-up in
the convergence is not observed beyond �x > 1.50 fm. Since
the numbers of grid points must be chosen as even numbers
to preserve the reflection symmetry, we ensure that our grid

spacings are chosen as large as possible but not larger than
�x = 1.50 fm in our pasta calculations.

In SKY3D the coupled mean-field equations are solved
iteratively. The wave functions are iterated with a gradient step
method which is accelerated by the kinetic-energy damping
(see Ref. [49] for details):

ψ (n+1)
α

= O
{
ψ (n)

α − δ

T̂ + T0

(
ĥ(n) − 〈

ψ (n)
α

∣∣ĥ(n)
∣∣ψ (n)

α

〉)
ψ (n)

α

}
,

where T̂ = p̂2/2m is the operator of kinetic energy, O means
orthonormalization of the whole set of new wave functions,
ĥ is the single-particle Hamiltonian, and the upper index
indicates the iteration number. The damped gradient step has
two numerical parameters: the step size δ and the damping
regulator T0. Maruhn et al. [49] suggest a value of δ = 0.1–0.8
and T0 = 100 MeV should be optimal. Larger values of δ
yield faster iteration, but can run more easily into pathological
conditions.

In an effort to optimize our simulation, we introduced a
variable step size that starts with an initial δ = 0.2 and is
systematically increased by a factor of 1.005 if the new single-
particle energies are smaller than the one from the previous
iteration; otherwise it is decreased by a factor of 1.250. This
ensures in average an about three times faster convergence
than when a constant δ is assumed.

To avoid getting trapped in a metastable state, we run
our simulations very long and have chosen our convergence
criterion to be �εtot = ε

(m)
tot − ε

(n)
tot < −10−4 MeV, where εtot

is total energy per nucleon at a given iteration, and m =
n + 10 000. The total energy of the ground state is then found
as εg.s. = ε

(m)
tot .

C. Finite size effects and the minimum number of nucleons

Having settled on the optimum choice of the grid spacing,
in this subsection we explore the role of the finite size effects
on the energetics and geometries of the nuclear pasta. In Fig. 3
we plotted the isosurface of proton densities for systems with
A = 400, 800, 1200, 1600, and 2000 nucleons, respectively,
at a fixed average baryon density of ρ = 0.05 fm−3 and
proton fraction of Yp = 0.40. In Table III we present the
corresponding energetics and maximum local densities.

It turns out that all of these systems are energetically very
close to one another, with accuracy of less than 0.0445 MeV
in the binding energy per nucleon. Nevertheless, as depicted
in Fig. 3 the corresponding pasta phases assume a seemingly
different shape for each case. Considering that these systems
obey periodic boundary conditions, it is not difficult to
see that most of them are in the nuclear waffle state with
the exception of A = 800 and A = 1200, where there are
additional 3D connections [44]. The existence of nuclear
waffles as perforated plates was observed by Schneider
et al. [44] using MD simulations and also by Schuetrumpf
et al. [29], who denoted it as the rod(2) shape. This phase
is expected to lie in the transition between a phase made
up of elongated cylindrical nuclei and a phase formed of a
stack of parallel flat plates. Recently it was shown [31] that
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FIG. 3. The appearance of the nuclear waffle phase at Yp = 0.40,
ρ = 0.05 fm−3 for different volume sizes containing A = 400, 800,

if the simulation is initialized from the single-particle wave
functions constructed from a converged MD simulation, the
waffle state remains stable even when quantum mechanical
effects are considered. Even starting from a completely random
initial configuration, we confirm that the waffle state is a
true stable nuclear pasta configuration, in agreement with the
results obtained by Schuetrumpf et al. [29] and Schneider
et al. [44]. Looking more closely at the individual energy
components as given in Table III, we realize that the highest
percentage error comes from the Coulomb energy contribution.
This is because the Coulomb force has long-range interaction
and can extend much beyond the boundaries of smaller boxes.
The individual energy terms from the Skyrme force have
also larger percentage errors as opposed to the total energy.
This is primarily due to the fact that the ground state is, by
definition, obtained by minimizing the total energy. Therefore
individual terms can have different values stemming from the
competition between nuclear and electric forces and as a result
of their overall effort to minimize the ground state energies.
Thus, although the final ground state energies are close to
one another, the final shape of the nuclear pasta depends on
the system size as a result of such competition. Following
Fig. 3 where we obtained at least two pasta structures for a
system with an average baryon density of ρ = 0.05 fm−3, in
the next part of our discussions we assume systems containing
A = 2000 nucleons.

III. RESULTS

A. Neutron star crust: Yp = 0.05

Every simulation described here has A = 2000 nucleons.
These nucleons are initially randomly positioned within a
cubic box with sides a = 3

√
A/ρ, and corresponding initial

single-particle wave functions are constructed by folding
Gaussians over each nucleon. We present and discuss our
results for a fixed proton fraction of Yp = 0.05. This condition
mimics the matter content in the neutron star crust. For a proper
description of the neutron-star matter, one must obtain proton
fractions self-consistently by using the condition of chemical
equilibrium:

μn = μp + μe, (7)

where μq is the chemical potential of species q = n,p,e
for neutrons, protons, and electrons, respectively. Assuming
uniform nuclear matter in beta equilibrium, we find that both
interactions predict proton fractions to be less than 5% at
densities of 0.03 < ρ < 0.10 fm−3 where the emergence of
nuclear pasta is expected; see Fig. 4. In this figure we also

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FIG. 3. (Continued.) 1200, 1600, and 2000 nucleons from top to the
bottom, respectively. The sides of the cubic volumes correspondingly
are equal to 20, 25.2, 28.8, 31.7, 34.2 fm. The blue color represents
isosurface proton densities of ρp = 0.9(Ypρ) and the red color
represents the region with the highest proton density ρmax

p within the
pasta structure, where ρ is the average nucleon density. This figure
and all other similar figures throughout the paper are generated using
the PARAVIEW software [71].
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TABLE III. Various contributions to the total energy of the system are given in units of MeV for nuclear pasta configurations with different
number of nucleons, A, at a fixed average baryon density of ρ = 0.05 fm−3 and proton fraction of Yp = 0.40. To make a meaningful comparison
between these systems, energies per nucleon are presented only. Also the maximum local total density ρmax

tot is given, as well as the maximum
local proton density ρmax

p , within the pasta structure in units of fm−3.

A Etot Ekin E0 E1 E2 E3 Els EC ρmax
tot ρmax

p

400 −11.8565 18.9389 −94.0201 −0.3275 0.6632 62.3350 −0.2240 0.7780 0.1486 0.0612
800 −11.8164 18.7521 −92.4597 −0.3081 0.7419 61.1158 −0.2592 0.6008 0.1491 0.0613
1200 −11.8320 18.9109 −93.6282 −0.3226 0.6640 61.9873 −0.2340 0.7905 0.1497 0.0619
1600 −11.8609 19.0713 −94.8028 −0.3240 0.7245 63.0520 −0.2606 0.6787 0.1515 0.0630
2000 −11.8520 18.8880 −93.4096 −0.3150 0.7394 61.8989 −0.2639 0.6103 0.1529 0.0645

display proton fractions at a few fixed baryon densities which
were obtained directly from the nuclear pasta simulations.
For this we fixed the proton number at Z = 14 and varied
the neutron number, N = A − Z, in search for the value of
A that satisfies the condition (7). Notice that this search is
quite exhausting as far as the simulation computing times are
concerned. Moreover, for realistic results one must choose
proton numbers to be Z  14. We intend to carry out such
simulations in the future. However, we would like to point out
that whereas at densities close to saturation the proton fractions
closely match that obtained from a uniform matter distribution,
at lower subsaturation densities the realistic proton fractions
can be larger due to clustering effects, as hinted by the left
arrow in Fig. 4. The question of whether exotic structure
phases can develop in a proton-deficient environment was
critically analyzed by Piekarewicz and Toledo Sanchez [41].
In particular, they found an interesting behavior displayed
in the structure factor S(q) that could be indicative of
significant structural changes in the system. Nevertheless, it
was concluded that no clear evidence exists either in favor of
or against the formation of nuclear pasta at the neutron crust. To
our knowledge, no other full quantum numerical simulations
have been carried out with proton fractions less than Yp = 0.1.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.005

0.010

0.015

0.020

0.025

0.030

0.035

L = 40 MeV
L = 80 MeV

Y
p

(fm-3)

FIG. 4. Proton fractions as a function of baryon density for
uniform neutron-star matter in two models discussed in the text. Also
shown is the proton fractions at a few fixed average baryon densities
obtained directly from nuclear pasta simulations (diamonds).

In Fig. 5 we plot the isosurface of proton densities for
models with both soft, L = 40 MeV, and stiff, L = 80 MeV,
symmetry energies. At the lowest density of ρ = 0.03 fm−3

considered in our simulations, we observe a combined total of
eight spherical and deformed nuclei, unequal in size, in both
models. Their locations are randomly distributed within the
box and do not form a lattice structure of any kind. Notice
that such density already corresponds to a deeper layer of
the inner crust. The transition from the outer crust to the inner
crust is predicted to occur at about ρ > 0.000 24 fm−3 [72,73].
Whereas at the top layer of the inner crust one expects a
Coulomb crystal of neutron-rich nuclei immersed in a uniform
electron gas and a dilute neutron vapor [41], at ρ = 0.03 fm−3

the neutron vapor becomes much denser, and the crystalline
structure is already destroyed. These so-called gnocchi phases
could be said to form a liquid-like (or amorphous) structure
with an approximate average charge of 〈Z〉 ≈ 12.5. This likely
is because the system is not equilibrated. These nuclei are well
separated from one another, and their sizes and shapes are
mostly dictated by the Coulomb repulsion between protons and
the surface energy of the system, which are almost identical
in both cases. The corresponding total energies per nucleon
in these two models are surprisingly different (see Table IV).
This difference primarily comes from the zero-range term E0

and density dependent term E3, whose values strongly depend
on x0 and x3 Skyrme parameters, respectively [74]. Physically,
a large slope parameter L means that the symmetry energy at
low densities is small, thus nuclei can easily become neutron
rich. On the other hand, the symmetry energy at ρ = 0.03 fm−3

is larger for a model with small value of L, thus it becomes
energetically favorable for the system to maintain larger proton
fractions. We further examined the single-particle energies and
have found that the number of free neutrons, Nf , identified as
the number of neutrons with positive single-particle energies,
is indeed smaller for L = 80 MeV than L = 40 MeV; see
Table IV. Thus the system became effectively neutron rich with
an effective proton fraction Y �

p = Z/(A − Nf ) being smaller
in the former.

As the average baryon density increases to ρ = 0.04 fm−3,
the nuclei come closer, get fused, and merge into superelon-
gated nuclei of rod-like structure, see Fig. 5. Whereas all of the
eight nuclei got merged to three rod-like structures in the model
with the soft symmetry energy, only one rod-like structure and
five nuclei are observed in the model with L = 80 MeV, which
thus harbors a coexistence of two structures: spherical nuclei
and superelongated nuclei of rod-like behavior. Note again that

055804-7



F. J. FATTOYEV, C. J. HOROWITZ, AND B. SCHUETRUMPF PHYSICAL REVIEW C 95, 055804 (2017)

FIG. 5. Isosurface of proton densities are plotted for the two model discussed in the text over the range of baryon densities at a fixed proton
fraction of Yp = 0.05. The total number of nucleons is fixed at A = 2000 and the side of the cubic box varies from 40.55 fm down to 27.14 fm,
corresponding to average baryon densities of 0.03 � ρ � 0.10 fm−3, respectively.

this result is likely due to the system being not equilibrated. At
even higher density of ρ = 0.05 fm−3, the former now has two
rod-like structures only, whereas the latter has three rod-like
structures and two nuclei within the simulation box. The
corresponding effective proton fractions rise in both models,
meaning there are more free neutrons in the system now (see
Table IV). Since the symmetry energy rises faster as a function
of density in the model with L = 80 MeV, the effective proton
fraction also gets boosted further, as evidenced by the results
shown on Table IV and displayed in Fig. 6.

At ρ = 0.06 fm−3, in UNEDF1, the rod-like structures now
start getting fused in the perpendicular direction. As density
is increased to ρ = 0.07 fm−3 rods get further fused and the
system consists of a continuous crest-like structure (recall that
the system is periodic). On the other hand, at ρ = 0.06 fm−3,
the phase coexistence between rods and nuclei continues to
exist in UNEDF1�, whereas at ρ = 0.07 fm−3 we observe a
combination of P surface [75] and a flat plate, also known as
the lasagna phase. This means that pure rod-like structures in
models with the stiff symmetry energy can only exist within a

055804-8



QUANTUM NUCLEAR PASTA AND NUCLEAR SYMMETRY ENERGY PHYSICAL REVIEW C 95, 055804 (2017)

TABLE IV. Some bulk properties of nuclear pasta with average
proton fraction of Yp = 0.05. Here Nf represents the number of free
neutrons and Y �

p = Z/(A − Nf ) is defined as the effective proton
fraction of the pasta structure. All densities are given in units of
fm−3.

ρ Model Etot (MeV) ρmin
tot ρmax

tot Nf Y �
p (%)

0.03 UNEDF1 1.731 0.0217 0.1437 786 8.24
UNEDF1� 0.481 0.0225 0.1376 508 6.70

0.04 UNEDF1 2.118 0.0300 0.1316 788 8.25
UNEDF1� 0.801 0.0312 0.1275 581 7.05

0.05 UNEDF1 2.522 0.0369 0.1285 810 8.40
UNEDF1� 1.212 0.0405 0.1232 674 7.54

0.06 UNEDF1 2.937 0.0456 0.1222 848 8.68
UNEDF1� 1.715 0.0490 0.1132 770 8.13

0.07 UNEDF1 3.356 0.0537 0.1111 874 8.88
UNEDF1� 2.292 0.0594 0.1034 902 9.11

0.08 UNEDF1 3.778 0.0631 0.1061 926 9.31
UNEDF1� 2.962 0.0711 0.0975 978 9.78

0.09 UNEDF1 4.229 0.0753 0.1079 978 9.78
UNEDF1� 3.732 0.0828 0.0924 1122 11.39

0.10 UNEDF1 4.716 0.0870 0.1071 978 9.78
UNEDF1� 4.601 0.0939 0.1021 1218 12.79

very narrow region of densities. Correspondingly, only a very
thin layer of such pasta can exist in the neutron star crust.

At ρ = 0.08 fm−3 in both systems we observe hollow-
tubes, also known as the bucatini phase. More neutrons become
free than bound. The corresponding effective proton fractions
Y �

p and free neutron fractions Yn,f = Nf/A, as a function of
density, are plotted in the left and right panels of Fig. 6.

Finally, we observe spherical bubbles, also known as
the Swiss cheese phase, at densities of ρ = 0.09 fm−3 and
ρ = 0.10 fm−3. The sizes of spherical bubbles get smaller
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FIG. 6. Effective proton fractions Y �
p (top panel) and free neutron

fractions Yn,f (bottom panel) are plotted as a function of total average
baryon density for the two models discussed in the text.
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FIG. 7. Density contrast �ρ within the pasta simulation box as a
function of the average baryon density ρ for various proton fractions
Yp for models with L = 40 MeV (solid) and L = 80 MeV (dashed).
The system is considered uniform when �ρ = 0, otherwise it is pasta
rich.

as the density increases and also depend on the two models
considered above.

It is particularly interesting to observe the density contrast,
�ρ = ρmax

tot − ρmin
tot , within the nuclear pasta systems described

above. Here ρmax
tot and ρmin

tot are the maximum and the minimum
local baryon densities within the simulation volume. In
particular, ρmax

tot is the baryon density at the central regions of
pasta structures, whereas ρmin

tot is the baryon density of the free
neutron gas. The larger value of �ρ suggests that the system
organized itself into complex clusters, whereas �ρ = 0 means
the system is uniform. Considering Table IV and Fig. 7, we
see that a soft symmetry energy exhibits a pasta-rich system
throughout the neutron star crust, whereas the clustered matter
transforms quickly into the uniform matter when the symmetry
energy is stiff (see Table IV).

B. Proto-neutron stars and matter in supernovae

In cold neutron stars, proton fractions of larger than Yp >
0.05 can only occur at high densities and very low densities.
At high densities pertaining to the core of the neutron star,
the matter is uniform and no nuclear pasta phase is therefore
expected. Similarly, at very low densities applicable to the
outer crust, nucleons bind into nuclei that are then segregated
in a crystal lattice. However, the low-density regions that
contain proton fractions in the range 0.10 < Yp < 0.40 can
be present in dense proto-neutron stars (PNS) that are born
subsequent to core-collapse supernova explosions. The PNS
is cooled primarily by neutrino emission which is driven by
neutrino diffusion and convection within the PNS after the
core bounces. It is therefore interesting to understand the
role of the neutrino-matter interaction in the dynamics of
the supernova explosion. The spectrum of neutrinos emerging
from the neutrino-sphere can be observed using the current
and future terrestrial detectors as soon as the next galactic or
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FIG. 8. Isosurface of proton densities are plotted using the same prescription as in Fig. 5, except now the proton fraction of the system is
Yp = 0.10.

near-galactic supernova goes off. This spectrum can provide a
valuable information about the structure of the nuclear matter
in these regions [76].

1. Systems with Yp = 0.10

In proto-neutron stars, neutrinos are trapped for tens of
seconds in the hot and dense nuclear medium [77]. As
neutrinos diffuse out of the PNS, the proton fraction in this
beta equilibrium thermal matter also evolves. Therefore it is
useful to explore a large range of proton fractions in the nuclear
pasta formation. Notice that we use zero temperature in all

of our simulations, whereas in reality the temperature in the
supernova environment can be from a few MeV to as high as
kBT = 10 MeV and even more.

At low densities, both models again feature similar ge-
ometries (see Fig. 8). We observe eight elongated nuclei
randomly located within the simulation box. The sizes of
these structures vary, and the average charge of an individual
structure is 〈Z〉 ≈ 25. These structures significantly differ
from the unstable neutron-rich nuclear isotopes with the
same proton number. For example, the most neutron-rich
terrestrial radioactive Mn isotope (with Z = 25) known today
has N = 44 neutrons. Surprisingly, the Coulomb frustration
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TABLE V. Some bulk properties of nuclear pasta with an average
proton fraction of Yp = 0.10. Average and local baryon densities are
given in units of fm−3.

ρ Model Etot (MeV) ρmin
tot ρmax

tot Nf Y �
p (%)

0.03 UNEDF1 −0.668 0.0159 0.1485 638 14.68
UNEDF1� −1.537 0.0167 0.1423 394 12.45

0.04 UNEDF1 −0.519 0.0206 0.1382 630 14.60
UNEDF1� −1.436 0.0239 0.1334 438 12.80

0.05 UNEDF1 −0.330 0.0265 0.1275 642 14.73
UNEDF1� −1.258 0.0303 0.1310 496 13.30

0.06 UNEDF1 −0.137 0.0325 0.1256 654 14.86
UNEDF1� −1.018 0.0393 0.1157 566 13.95

0.07 UNEDF1 0.051 0.0399 0.1197 666 14.99
UNEDF1� −0.713 0.0466 0.1126 644 14.75

0.08 UNEDF1 0.252 0.0474 0.1136 698 15.36
UNEDF1� −0.363 0.0591 0.1009 770 16.26

0.09 UNEDF1 0.457 0.0623 0.1089 770 16.26
UNEDF1� 0.068 0.0825 0.0989 878 17.83

0.10 UNEDF1 0.688 0.0956 0.1073 830 17.09
UNEDF1� 0.597 0.0975 0.1045 926 18.62

at ρ = 0.03 fm−3 enables the formation of elongated nuclei
with an average neutron number of N ≈ 145 (L = 40 MeV)
or 176 (L = 80 MeV). The concentration of free neutrons
at this density now strongly depends on the interaction model
(see Table V). Although a significant fraction of neutrons carry
positive kinetic energies, the overall energy of the ground state
in this system remains negative.

At ρ = 0.04 fm−3, both models exhibit a very similar
geometry: two nuclei within the simulation box fuse together
to form one long rod-like structure. Thus a total of four
superdeformed rod-like nuclei are formed. As the density
increases, at ρ = 0.05 fm−3, we observe that rod-like struc-
tures arrange themselves in a net-like structure for the model
with L = 40 MeV. Notice that such a structure was also
observed for Yp = 0.05 but at ρ = 0.07 fm−3. On the other
hand, for the system with L = 80 MeV we observe a structure
that resembles fibrous roots. To have a better view of this
structure, in particular, we show four periodic copies of the
isosurface of proton densities along two directions, mainly x
and y, using the fact that our simulation volume is periodic.
The resulting isosurfaces of proton densities are plotted in
Fig. 9. Since the existence of many low-energy configurations
is the benchmark of frustrated systems, we believe that this
structure in particular could be in a metastable state. We
expect that the true ground state is a Y-shaped junction that
forms the backbone of a branched network of many frustrated
systems, such as low-dimensional magnetic systems. Next, at
ρ = 0.06 fm−3 we observe almost identical net-like structures
in both models. At an even higher densities the threads of these
nets structures get thicker as a result of compression and they
turn into the complex shapes previously referred to as rod(3)
structures [28–30,78]. Notice this structure continue to exist in
the model with soft symmetry energy even at ρ = 0.09 fm−3,
whereas the pasta structure almost disappears for L = 80 MeV.
Finally, at ρ = 0.10 fm−3 both systems assume uniform phase.

FIG. 9. Four periodic copies of pasta structure with Yp = 0.10,
ρ = 0.05 fm−3 for the model with L = 80 MeV are put together for
a simulation box posed at a different angle for better visualization.
The box dimensions are 68.4 × 68.4 × 34.2 fm, and the isosurface
of proton density at ρp = 0.02 fm−3 is plotted.

2. Systems with Yp = 0.20

Let us now analyze the more widely studied case of systems
with larger proton fractions. Such systems display a rich
variety of nuclear pasta even at high subsaturation densities.
For example, even at ρ = 0.10 fm−3 the density contrast in
the system is as large as �ρ = 0.089 fm−3 for the model with
soft symmetry energy (see Fig. 7 and Table VI). Although
the overall binding energy of the system is negative, there are
still some free neutrons found in this system with Yp = 0.20
(see Table VI). Nevertheless, the fractional populations of free
neutrons are much less than found before in systems with lower
proton fractions. The corresponding effective proton fractions
therefore do not deviate very much from 20%. All pasta

TABLE VI. Some bulk properties of nuclear pasta with an average
proton fraction of Yp = 0.20. Average and local baryon densities are
given in units of fm−3.

ρ Model Etot (MeV) ρmin
tot ρmax

tot Nf Y �
p (%)

0.03 UNEDF1 −5.150 0.0046 0.1438 542 24.13
UNEDF1� −5.394 0.0036 0.1426 394 22.15

0.04 UNEDF1 −5.247 0.0065 0.1382 528 23.92
UNEDF1� −5.537 0.0062 0.1349 396 22.17

0.05 UNEDF1 −5.358 0.0071 0.1354 514 23.72
UNEDF1� −5.629 0.0101 0.1306 400 22.22

0.06 UNEDF1 −5.462 0.0092 0.1296 504 23.58
UNEDF1� −5.731 0.0153 0.1274 406 22.30

0.07 UNEDF1 −5.565 0.0105 0.1302 512 23.70
UNEDF1� −5.800 0.0209 0.1213 436 22.68

0.08 UNEDF1 −5.662 0.0143 0.1253 502 23.56
UNEDF1� −5.864 0.0284 0.1161 464 23.04

0.09 UNEDF1 −5.763 0.0182 0.1194 502 23.56
UNEDF1� −5.899 0.0370 0.1107 508 23.64

0.10 UNEDF1 −5.851 0.0329 0.1222 460 22.99
UNEDF1� −5.897 0.0887 0.1077 562 24.42
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FIG. 10. Isosurface of proton densities are plotted using the same prescription as in Fig. 5, except now the proton fraction of the system is
Yp = 0.20.

structures are energetically very close to one another, yet
we observe structures that are radically different in topology.
Indeed, it was first speculated by Hashimoto et al. [8] that
the transition from a highly ordered crystal to a uniform phase
must proceed through a series of changes in the dimensionality
and topology only that depends on density but not on total en-
ergy. We also observe that the dependence on the symmetry en-
ergy is significantly reduced both in total energies and in topol-
ogy, even though the system is still relatively very neutron rich.

At ρ = 0.03 fm−3 we no longer observe a system purely
made of nuclei (gnocchi phase). Instead we observe a co-

existence of nuclei and rod-like structures. When the model
with the soft symmetry energy is used we observe two
nuclei and one rod in the simulation volume. However, for
L = 80 MeV we observe just one nucleus and a rod structure
that is bent to assume a disconnected hook-shaped structure.
At ρ = 0.04 fm−3, the first system now assumes connected
hook-shaped structures that make a wave pattern, whereas the
latter one assumes a structure that resembles donuts which
are connected through Y junctions. The lowest nonzero local
baryon densities shown in Table VI correspond to the density
of background free neutron gas.
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FIG. 11. Isosurface of proton densities are plotted using the same prescription as in Fig. 5, except now the proton fraction of the system is
Yp = 0.30.

As we progressively increase the density, at ρ = 0.05 fm−3

and ρ = 0.06 fm−3, both systems proceed into having the
donut-like shapes with less spatial separations. At higher
densities the sizes of the openings become smaller, making
a transition to cylindrical holes at densities of 0.08 fm−3 and
eventually leading to spherical bubbles for models with the soft
symmetry energy. A similar phase transition between pasta
states is observed for models with the stiff symmetry energy;
however, the system becomes uniform at much lower densities,
as can be seen from Table VI at the average baryon density of
ρ = 0.10 fm−3, where the local deviation of the density within

the simulation box is no more than �ρ = 0.019 fm−3. This
result is also depicted in the lower right panel of Fig. 10.

3. Systems with Yp = 0.30

Turning to increasingly symmetric matter, in Fig. 11 we
display the isosruface of the proton densities of various pasta
phases for Yp = 0.30 using models with both L = 40 and
L = 80 MeV. It is observed that such systems exhibit a series
of many complex geometries. We no longer observe spherical
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TABLE VII. Some bulk properties of nuclear pasta with an
average proton fraction of Yp = 0.30. Average and local baryon
densities are given in units of fm−3.

ρ Model Etot (MeV) ρmin
tot ρmax

tot

0.03 UNEDF1 −8.794 0.0000 0.1489
UNEDF1� −8.782 0.0000 0.1442

0.04 UNEDF1 −9.050 0.0000 0.1491
UNEDF1� −9.051 0.0000 0.1470

0.05 UNEDF1 −9.344 0.0000 0.1423
UNEDF1� −9.337 0.0002 0.1345

0.06 UNEDF1 −9.621 0.0000 0.1412
UNEDF1� −9.620 0.0000 0.1360

0.07 UNEDF1 −9.881 0.0001 0.1406
UNEDF1� −9.843 0.0002 0.1298

0.08 UNEDF1 −10.133 0.0002 0.1360
UNEDF1� −10.085 0.0004 0.1267

0.09 UNEDF1 −10.371 0.0001 0.1351
UNEDF1� −10.308 0.0003 0.1265

0.10 UNEDF1 −10.601 0.0001 0.1306
UNEDF1� −10.530 0.0005 0.1194

nuclei at an average density of 0.03 fm−3, which was chosen as
the starting point of our simulations. Obviously, the gnocchi
phase must have formed at an even lower density for Yp =
0.30. At the lowest density considered in our simulation we
observe fibrous root-like structures; at 0.04 fm−3 we observe
rod(3) structures. At densities of 0.05 and 0.06 fm−3 the pasta
system is composed of circular perforated complex systems, at
0.07 and 0.08 fm−3 the nuclear pasta transitions to the bucatini
phase, and finally at 0.09 and 0.10 fm−3 it forms the Swiss
cheese. The pasta systems are strongly bound, with binding
energies ranging from −8.8 MeV for systems with average
baryon density of 0.03 fm−3 to −10.1 MeV for systems with
ρ = 0.10 fm−3 (see Table VII).

All neutrons strongly participate in forming the pasta
structure, and there are no free neutrons left in the system.
Thus the neutron gas background that was making the lowest
density of the simulation box in the previous systems with
lower proton fractions now simply vanishes. The vanishing of
the neutron gas background for Yp > 0.29 was also obtained
earlier [75]. For this and larger proton fractions one can plot
either the isosurface of proton densities or total densities; they
are visually indistinguishable.

Perhaps the most interesting aspect of this system isthat the
dependence on the nuclear symmetry energy has now become
less prominent. The binding energies in all configurations
are very close. The similarity of density contrasts for these
configurations as predicted by both models suggest that the
pasta structures should also be close to one another, which
is confirmed by comparing them as displayed in Fig. 11.
Thus while the symmetry energy plays a significant role for
the nuclear pasta formation in the neutron star crust and
for the regions of supernovae with low proton fractions,
its role becomes insignificant for pasta formation at Yp �
0.30. This result is one of the important findings of our
work.

TABLE VIII. Some bulk properties of nuclear pasta with an
average proton fraction of Yp = 0.40. Average and local baryon
densities are given in units of fm−3.

ρ Model Etot (MeV) ρmin
tot ρmax

tot

0.03 UNEDF1 −11.076 0.0000 0.1605
UNEDF1� −11.050 0.0000 0.1585

0.04 UNEDF1 −11.442 0.0000 0.1559
UNEDF1� −11.394 0.0000 0.1549

0.05 UNEDF1 −11.780 0.0000 0.1532
UNEDF1� −11.756 0.0000 0.1531

0.06 UNEDF1 −12.173 0.0000 0.1529
UNEDF1� −12.145 0.0000 0.1486

0.07 UNEDF1 −12.516 0.0000 0.1472
UNEDF1� −12.482 0.0000 0.1457

0.08 UNEDF1 −12.873 0.0000 0.1426
UNEDF1� −12.830 0.0000 0.1412

0.09 UNEDF1 −13.194 0.0000 0.1395
UNEDF1� −13.156 0.0000 0.1377

0.10 UNEDF1 −13.501 0.0000 0.1363
UNEDF1� −13.504 0.0000 0.1334

4. Systems with Yp = 0.40

Finally, we study the case of Yp = 0.40. This proton
fraction is roughly comparable to that found in the collapsing
dense core of a supernovae, before the matter gets heated
further by the shock wave. As confirmed in the previous
subsection and given the fact that the matter is close to being
isospin symmetric, the role of the symmetry energy becomes
negligible. The maximum local density in the system is equal
to that of the nuclear saturation density, ∼0.16 fm−3. At
densities of 0.03 and 0.04 fm−3 the pasta system is made
of connected rod structures (see Fig. 12). At ρ = 0.05 fm−3,
rods merge to form complex structures with circular openings,
and at ρ = 0.06 fm−3 they form states that closely resemble
perforated parallel plates, which are now connected along their
normal direction. Again, as density increases, the matter forms
cylindrical holes at 0.07 and 0.08 fm−3, and finally spherical
bubbles are observed at higher densities.

The nuclear pasta at Yp = 0.40 is strongly bound; no
neutron background exists as in the case of Yp = 0.30 (See
Table VIII). The binding energy per nucleon is much smaller
than that of the uniform matter. For example, at ρ = 0.03 fm−3

we have E/A = −11.05 MeV, whereas the uniform nuclear
matter predicts an almost twice smaller value of E/A =
−5.38 MeV. When symmetric nuclear matter (SNM) is
considered, a similarly large difference in the binding energies
per nucleon would obviously be expected between the uniform
nuclear matter and the nuclear pasta. Given this fact, a word of
caution on the definition of the symmetry energy or the SNM
is in order. The symmetry energy S(ρ), which is defined as
the coefficient of expansion of the binding energy per nucleon,
ε ≡ E/A,

ε(ρ,α) = ε(ρ,0) + S(ρ)α2 + · · · , (8)

where α = (ρn − ρp)/(ρn + ρp) is the isospin asymmetry,
usually represents the energy cost per nucleon of changing all
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FIG. 12. Isosurface of proton densities are plotted using the same prescription as in Fig. 5, except now the proton fraction of the system is
Yp = 0.40.

the protons in SNM into neutrons. We should be wary about
the latter description because the ground state of matter at
subsaturation densities is not that of uniform matter. Therefore,
in this description, where the usage of SNM appears one should
explicitly state that a hypothetical uniform nuclear matter has
been considered, which can easily cluster if left alone.

C. Sensitivity of the “ground state” to the initial configurations

Notice that none of our simulations have produced parallel
plates. One reason is because parallel plates might have formed

in a very small density range not considered in our simulations.
Indeed, using an almost ten times smaller number of particles,
but exploring a density range of 0.02 < ρ < 0.12 fm−3 with
smaller steps of 0.025 fm−3, Schuetrumpf et al. [79] observed
parallel plates to appear within a very short density range.
The other reason is because our simulation could significantly
depend on the initial configurations of the system. In most of
other previous full quantum mechanical studies the existence
of a stable plate configuration was usually confirmed by
assuming that the initial state of the system is already in the
plate configuration and by using certain guiding potentials

055804-15



F. J. FATTOYEV, C. J. HOROWITZ, AND B. SCHUETRUMPF PHYSICAL REVIEW C 95, 055804 (2017)

FIG. 13. Nuclear pasta phases at ρ = 0.05 fm−3 and Yp = 0.40
that started out from two different initial configurations with nucleons
randomly distributed in the box and grid spacings of (a) �x = 1.00 fm
and (b) �x = 1.42 fm.

that lead to this form. Since we have started from a completely
random distributions of nucleons, it is not guaranteed that
our final configurations are in the true ground state of the
nuclear pasta, but the solutions are driven to a metastable
state.

We start the analysis by comparing two identical con-
figurations with ρ = 0.05 fm−3, Yp = 0.40, and A = 2000
that have started from different random initial configurations
and different grid spacings. At the final converged stated we
obtained E/A = −11.852 MeV and E/A = −11.780 MeV,
respectively. While these states have similar energies, the final
pasta shapes are not quite identical. The first one gives two
parallel plates with holes—nuclear waffle—whereas the sec-
ond one gives perforated plates with complex 3D connections;
see Fig. 13. There could be two reasons behind this difference.
The first reason is that the grid spacings in the two simulations
were different, with the first one being a fine grid spacing
of �x = 1.00 fm, whereas with the second one was �x =
1.42 fm. Our energy difference of 0.072 MeV at first suggests
that perhaps a finer grid spacing should be sought in the future
simulations. However, earlier in Sec. II A and Fig. 2 we showed
that the dependence on the grid spacing should be minimal,
with an energy difference of less than 0.007 MeV if starting
from the same initial configuration. Whereas the difference
of 0.072 MeV is still tiny (about 0.6% only), the observed
pasta topologies are quite different. The second reason for this
could therefore be that the final state of the system is very
sensitive to the initial configurations. In Fig. 14 we compare
intermediate pasta states during the convergence at various
iteration points. For the first ∼5000 iterations the simulation
converges quickly, and in the remaining ∼70 000 iterations
we do not see a significant change in both the energy and
the topology of the system. This suggests that the simulation
gets trapped in a metastable state after the first few thousands
iterations. For example, the energy difference of only �εtot =
ε

(76 000)
tot − ε

(7600)
tot < −0.0084 MeV is observed in the last

68 400 iterations, corresponding to 28 700 CPU hours in the
simulation runtime. This suggests that it is not important to
run the SKY3D simulations over about 10 000 iterations, which
saves a considerable amount of CPU hours. The question then
arises on how to find the true ground state of the nuclear pasta.

FIG. 14. Energy difference per 200 iterations versus the number
of iterations is plotted for a total of 76 000 iterations. The inset pasta
phases correspond the simulation phases at 800, 7600, and 76 000
iterations, respectively.

To further study this in more detail, we have explored
three possibilities. In addition to an already discussed case
with the initial configuration of randomly distributed nucleons
in the simulation volume, we have considered two other
cases with initial configurations of (a) parallel rods on a
face-centered site (spaghetti phase) and (b) parallel plates
(lasagna phase). The MD simulations for large proton fractions
suggest that the spaghetti phase should appear at densities
of 0.02 � ρ � 0.04 fm−3, whereas the lasagna phase should
appear at densities of 0.05 � ρ � 0.07 fm−3 [6]. Starting out
from pre-assumed spaghetti and lasagna phases we therefore
expect these pasta phases to remain stable at these densities.

The spaghetti case is prepared as follows. We fixed the
simulation volume to be cubic with sides of a = 33.6 fm.
The grid spacing was fixed at �x = 1.40 fm. A total of
eight identical parallel rods whose axes align along the z
direction and are packed in a face-centered site were formed
by randomly distributing neutrons and protons within the
rod structure. Since each rod structure contains the same
number of neutrons or protons, the total proton number Z
and neutron number N were therefore chosen as multiples of
8. Furthermore, since the volume of the system was fixed,
the average baryon density cannot be set arbitrarily but is
determined by the number of nucleons, A. We considered
a total of 13 configurations with the number of nucleons
in the range 640 � A � 4480. The corresponding average
baryon densities are 0.0169 < ρ < 0.1181 fm−3. In Fig. 15 we
display our results for these simulations. At very low densities
the system arranges itself into eight 32Ge isotopes. Notice
that indeed the spaghetti phase remains stable, in agreement
with the MD simulations, even when full quantum mechanical
effects are considered. Whereas there is a qualitative agreement
with the results displayed in Fig. 12, the overall topology
is quite different in the two cases. The complex perforated
plates with normal connections are observed at densities
of ≈0.05–0.06 fm−3. At higher densities the nuclear pasta
transitions into the bucatini phase (anti-spaghetti). It is very
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FIG. 15. Nuclear pasta simulations with proton fractions of
Yp = 0.40 for a cubic volume of fixed side a = 33.6 fm containing
640 < A < 4180 nucleons. All systems are initialized with nucleons
distributed randomly to form eight identical rods aligned on a
face-centered site.

FIG. 16. Nuclear pasta simulations with proton fractions of
Yp = 0.40 at average baryon densities of 0.01 < ρ < 0.10 fm−3

corresponding to a cubic volume with a ≈ 33.6 fm. All systems are
initialized with nucleons distributed randomly to form two identical
parallel plates.
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FIG. 17. Total energy per nucleon as a function of density
for pasta structures that are obtained from three different initial
configurations.

interesting to note that the cylindrical holes continue to exist
even at a very high density of ρ = 0.10 fm−3, where we
observe a phase coexistence between the cylindrical holes
and spherical bubbles. Recall that when we initialized the
system with randomly distributed nucleons this phase got
diminished already at ρ = 0.09 fm−3 (compare with Fig. 12).
Moreover, to the best of our knowledge, cylindrical holes at
densities as large as 0.10 fm−3 have never been observed in the
previous simulations that use simplified interactions. Finally,
regular spherical bubbles (anti-gnocchi) are formed at a very
high density of 0.11 fm−3. The system assumes a uniform
phase at higher densities and we did not display our result
here.

In the next case, we prepared our initial configurations
assuming that all nucleons are evenly distributed to make
two parallel plates. By folding Gaussians over each nucleon
we constructed the initial single-particle wave functions and
solved Hartree-Fock equations iteratively. When the simula-
tion is converged we observe completely different topologies
than the ones observed before (see Fig. 16). In particular, at a
very low density of 0.01 fm−3 we observe two superelongated
nuclei and two spherical nuclei (that resemble baseball bat
and ball). At 0.02 fm−3, a phase coexistence between two
types of rods is observed. Particularly interesting is the nuclear
waffle state that forms much earlier than observed before, at a
density of 0.03 fm−3. The initial lasagna phase remains stable
over a large density region of 0.04 � ρ � 0.08 fm−3. The
anti-spaghetti phase is not observed at all within the density
steps we considered in our simulations. After developing
through spherical bubbles at 0.10 fm−3, the pasta structure
completely disappears at ρ � 0.11 fm−3.

These results obtained above are the consequence of generic
features of matter frustration that allow many different local
energy minima, hence pasta topologies. Thus we have obtained
a series of pasta geometries where matter got trapped in a
quasi ground state. In order to determine which of these states

0.05 0.06 0.07 0.08 0.09 0.10
-0.05

0.00

0.05

0.10

0.15
εrandom
εrod

Δε
(M
eV
)

(fm-3)

FIG. 18. The energy differences of final configurations shown
in Fig. 17. Here �εrandom ≡ (E/A)random − (E/A)plate and �εrod ≡
(E/A)rod − (E/A)plate.

represent the true ground state, in Fig. 17 we plot the (quasi)
ground state energies per nucleon as a function of average
baryon density for all three cases considered above. As is
evident from the figure, energetically these pasta structures are
very close to one another. A careful observation of energies
suggests that at densities of 0.05 < ρ < 0.07 fm−3, for exam-
ple, the system favors the lasagna phase (see Fig. 18). However,
considering that we explored only a few possibilities, it is
difficult to predict the true ground state of the system—hence
the formation of other pasta geometries—just by comparing
these energies alone.

As a final note, we would like to point out that one way
to get a time-efficient convergence is to start solving the
Hartree-Fock equations by initializing the single-particle wave
functions from already converged classical or quantum MD
simulations that have been shown to give a full qualitative
picture of nuclear pasta topologies. This will significantly
reduce the simulation running time, which in turn allows
to explore much larger simulation volumes. Our preliminary
calculations show that the ground state energies are slightly
lower when the simulation is initialized from a converged state
of classical MD simulations. Clearly, much work remains to
be done on these fronts to determine the true ground state of
the nuclear pasta.

IV. CONCLUSIONS

In this work we performed large volume simulations of
nuclear pasta using the Skyrme Hartree Fock calculations with
SKY3D. We considered a range of proton fractions with Yp =
0.05, 0.10, 0.20, 0.30, and 0.40 as well as the range of baryon
densities 0.03 < ρ < 0.10 fm−3, applicable to the nuclear
matter found in the neutron star crust and supernovae. The
novel aspects of this work compared to earlier HF calculations,
such as the one pioneered by Newton and Stone [28], are as
follows:
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(1) To reduce the computational task Newton and
Stone [28] excluded the spin-orbit force from the
Hartree-Fock (HF) Hamiltonian. In this work we have
considered the full HF Hamiltonian including the
spin-orbit interaction that plays an important role in
the determination of the correct shell energies and
single-particle energy spectrum.

(2) Early HF calculations used nuclear configurations that
conserve reflection symmetry in the three Cartesian di-
rections. This allowed the computation to be performed
only in one octant of the unit cell. In this work we did
not place any symmetry restriction, which allowed us
to use the full Skyrme energy functional including the
spin-orbit and most important time-odd terms.

(3) Finally, constrained HF calculations (such as the
quadrupole constraint) have been used in the past that
physically correspond to including a guiding potential
term in the single-particle Hamiltonian. While this
approach is useful for the systematic exploration of the
shape phase space of nuclear pasta, in our work we did
not restrict ourselves to constraints in order to avoid any
biased initialization that explicitly makes assumptions
about the geometrical shapes of the nuclear pasta.

We discussed the role of the nuclear symmetry energy in
the pasta formation and have found that it strongly impacts
the nuclear pasta geometries in the neutron star crust but has
negligible effect on the nuclear pasta in supernovae, where
the proton fraction is large. In particular, the crust of the
neutron star contains a larger density regions with pasta if
the nuclear symmetry energy is soft. Various nuclear pasta
geometries exist even if the density slope of the nuclear
symmetry energy is as large as L = 80 MeV, in agreement
with previous calculations [52]. All pasta regions are found to
be filled with the neutron gas background for proton fractions
Yp < 0.30 fm. At higher proton fractions, the neutron gas
background vanishes, and all neutrons in the system strongly
participate in forming the pasta topology.

Particularly interesting is the nuclear waffle state forma-
tion. Independently of the classical MD simulations [6], we
confirmed that the nuclear waffle state forms naturally even
when full quantum mechanical effects are considered.

The existence of disconnected rod structures with Y-shaped
junctions hints that many of these pasta geometries can be

in the quasi ground state. We have explored three possible
scenarios, in which the initial state of the system was prepared
by assuming that nucleons are randomly distributed within
(1) the full simulation volume, (2) eight parallel rods on a
face-centered site, and (3) two parallel plates. The resulting
energies of the system are very close to one another with
�E/A < 0.1 MeV. Nevertheless, the final “ground” state in
each scenario has a distinct pasta geometry. Determination of
the true ground state requires the exploration of all possible
probes, which is quite tedious in practice. This is due to the
mere nature of Coulomb frustration that is at odds with the
search for a true ground state. Indeed, it has been shown
in Ref. [80] that finding the true ground state of a spin
glass has features in common with NP-complete problems, as
they are known in the language of computational complexity
theory. Whereas it is useful to exploit such rich low-energy
dynamics to investigate the response or transport properties of
the system, finding the “best” ground state among infinitely
many local energy minima remains an important task of
optimization. As a possible alternative, we suggest to initialize
simulations from the final state of various classical or quantum
MD solutions. This way the system will be converged time
efficiently, MD pasta geometries can be tested for stability
against density fluctuations by using a full quantum simulation,
and quantitatively accurate results can be presented.
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