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Enforcing causality in nonrelativistic equations of state at finite temperature
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We present a thermodynamically consistent method by which equations of state based on nonrelativistic
potential models can be modified so that they respect causality at high densities, both at zero and finite temperature
(entropy). We illustrate the application of the method by using the high-density phase parametrization of the
well-known Akmal–Pandharipande–Ravenhall model in its pure neutron matter configuration as an example. We
also show that, for models with only contact interactions, the adiabatic speed of sound is independent of the
temperature in the limit of very large temperature. This feature is approximately valid for models with finite-range
interactions as well, insofar as the temperature dependence they introduce to the Landau effective mass is weak.
In addition, our study reveals that in first-principle nonrelativistic models of hot and dense matter, contributions
from higher-than-two-body interactions must be screened at high density to preserve causality.
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I. INTRODUCTION

The precise determination of neutron star masses close to
2M� [1,2], prospects of observing gravitational waves (GWs)
from mergers involving binary neutron stars as in the recent
detection of GWs from mergers of binary black holes [3,4],
and the hope of observing a nearby core-collapse supernova
(SN) with the several neutrino observatories currently in place
have greatly strengthened the study of dense matter physics.
Central to this study is the equation of state (EOS) of dense
matter at both zero and finite temperature. Depending on the
values of the baryon densities n and temperatures T reached
in core-collapse supernovae, neutron stars from their birth
to old age, and mergers of compact binary stars, several
phases of matter may be encountered. At high densities and/or
temperatures, these phases may consist of strangeness-bearing
hadrons and/or quark matter [5].

Large-scale computer simulations [6–17] of the
astrophysical phenomena mentioned above employing
the microscopic physics input of model EOSs from both
nonrelativistic and relativistic approaches have indicated
the ranges of n/ns , where ns � 0.16 fm−3 is the nuclear
saturation density, T , and the net electron fraction Ye = ne/n
encountered. To enable simulations, EOSs that range over
n/ns up to 10, T up to 200 MeV, and Ye up to 0.6 are required.
These conditions imply an entropy per baryon S (in units of
Boltzmann’s constant kB) of up to 200. In varying amounts the
entropy is shared between the hadrons, leptons, and photons.
For EOSs with only nucleonic components, Snuc of up to 4–5 is
not uncommon. In the homogeneous phase (n � 0.1 fm−3) and
using the EOS of Akmal–Pandharipande–Ravenhall (APR)
[18], S � 30 with nucleons contributing about 5, leptons 15,
and photons 10. The highest density at which S ∼ 200 is about
0.01 fm−3 (at T = 200 MeV) with 95% of the contributions
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coming from leptons and photons. The dependence of these
numbers on the electron fraction is, generally, very weak.

The focus of this paper is on the adiabatic speed of sound cs

in matter at high density and temperature. In hydrodynamical
simulations, cs represents a physical scale which controls
the macroscopic evolution of matter. Thus, a quantitative
knowledge of how cs varies with n and T (or S) in models of
hot, dense matter can shed light on the time development of
involved hydrodynamical simulations. In physical systems, cs

cannot exceed the speed of light c. Nevertheless, many of the
EOSs used to describe nucleonic matter have nonrelativistic
underpinnings and therefore are inherently incapable of
conforming to the requirement of causality owing to the
lack of Lorentz invariance. (Relativistic field-theoretical
approaches to dense matter automatically respect causality,
and will not be addressed further in this work.) For some
nonrelativistic EOSs, typically the softer ones, which struggle
to support neutron star (NS) masses ∼2M�, the central
densities of maximum-mass stars occur at nc > (8–10)ns

(see, e.g., Ref. [19]). Consequently, the causality requirement
is only violated for densities beyond the validity of a
nonrelativistic treatment which must be eschewed. The stiffer
EOSs however, can lead to acausal behavior at densities and
temperatures for which hadronic matter is expected to persist
within a star. In some fortuitous cases, the matter may not
become superluminal prior to nc. However, a large and steady
rise in the adiabatic speed of sound should suffice to cast doubt
on a nonrelativistic treatment as finite-temperature effects
may lead to acausality, as will be shown later in the paper.

Repulsive contributions to the energy per particle
E(u = n/ns) that vary faster than linear in u give rise to
acausal behavior at high densities. Thus, higher-than-two-body
forces found necessary to achieve saturation at the empirical ns

with the empirical binding energy of symmetric nuclear matter
(SNM) must screen themselves with progressively increasing
density to ensure causal behavior. Following the suggestion
in Ref. [20], causality was maintained through the use of
Buσ/(1 + B ′uσ−1), where σ > 1, B is a constant of dimension
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energy, and B ′ is a dimensionless constant appropriately
chosen to have cs approach c from below, in the explorative
study of Ref. [19]. This implied that self-screening of repulsive
interactions at high density, while desirable, is not always
guaranteed in nonrelativistic potential model calculations. The
simple approach adopted in the above works to maintain
causality also highlights the need to identify the origin of
the needed self-screening mechanism in dense matter.

At the two-body level in the mean-field approximation, con-
tributions to E(u) arising from exchange interactions in dense
matter can either be positive or negative depending on the
nature of the exchanged meson [21]. For interactions between
nucleons mediated by pseudoscalar π and scalar σ mesons,
the exchange (Fock) terms provide positive contributions to the
energy, whereas the corresponding direct (Hartree) terms are
negative. Vector meson (ω and ρ) exchanges lead to negative
contributions from the Fock terms (except in relativistic
treatments at high densities for which positive contributions
ensue owing to relativistic effects). In all cases, however, the
Fock contributions are subdominant to the Hartree terms. In
addition, the asymptotic high-density behavior of the energy
per particle from the Fock terms is u1/3 much weaker than
u of the Hartree terms. For a comparison of the individual
contributions to the total exchange energy in relativistic and
nonrelativistic treatments, see, for example, Ref. [22]. In
models with contact interactions which subsume the exchange
interaction in a density-dependent effective mass, the kinetic
energy per particle varies as u5/3, which invariably leads to
acausality at some high density.

Beyond the mean-field approximation (as for example in
Brueckner–Hartree–Fock (BHF) treatments [23–27]), even
two-body forces can give rise to contributions that grow with
powers of u larger than 1 owing to the class of diagrams
summed, and short-range (Jastrow) correlations in the wave
functions. Higher-power attractive terms may result in such
calculations that can help to delay the onset of acausality to
densities larger than those found in the cores of neutron stars,
but at the expense of making the EOS too soft to support a 2M�
star. In the case of higher-power repulsive terms, causality will
be at stake likely at a density within the star. A detailed analysis
of causality in such treatments with and without three-body
forces, including that at finite temperature, is warranted but
outside the scope of this work.

The issue of self-screening is particularly relevant to
modern microscopic calculations of the EOS of SNM and
pure neutron matter (PNM), such as the quantum Monte Carlo
[28–30] and chiral effective field theory approaches [31–38]
in which the role of three-body forces at T = 0 have been ex-
amined. Owing to inherent technical difficulties, calculations
have been limited up to about 2ns in both of these approaches.
To calculate the structural properties of NSs, the EOSs have
been extrapolated beyond ∼2ns through the use of piecewise
polytropes that respect causality (thus screening the influence
of three-body forces present at n < 2ns , possibly prematurely
for higher densities) [39]. This polytropic extrapolation, while
satisfactory at T = 0 on a practical level, cannot however
be extended to finite temperature unless the effects of tem-
perature on the EOS are known a priori. Examples of EOSs in
which the role of three-body interactions at finite temperature

have been investigated can be found in Refs. [40–42]. To our
knowledge, tests of the causal behavior of these EOSs at high
density and finite temperature have not been performed to date.

Here, we present a thermodynamically consistent method
to maintain causality for EOSs that become acausal at both
zero and finite temperature. While such a method is available
in the literature for zero temperature [18,43,44], a method to
encompass the influence of temperature on cs has not received
much attention (the method presented in Appendix E of our
earlier work in Ref. [18] contained an inadvertent error, which
is corrected in this work). We illustrate the application of the
method by using a few chosen models [45–47] that become
acausal at high density and temperature. These models have
distinctly different behavior in their nucleon effective masses
as functions of density. For simplicity, results for PNM are
shown in all cases with the generalization to a multicomponent
system indicated in the text. We stress, however, that the
applicability of the method proposed is not limited to the
class of models chosen for illustration. As long as the relevant
thermodynamic variables such as the energy, pressure, and
chemical potential for any model are available for all densities
and temperatures of interest, the method can be used to render
the EOS causal and to satisfy the thermodynamic identity.

The paper is organized as follows: In Sec. II, the adiabatic
speed of sound cs is defined in terms of thermodynamic
quantities characteristic of an EOS at both zero and finite tem-
perature. This section also contains a discussion of the behavior
of cs in the limiting cases of degenerate and nondegenerate
bulk matter. The method devised to implement causality for
EOSs that become acausal at high densities and temperatures
is described in Sec. III. In Sec. IV, the numerical procedure
to enforce causality for models with contact interactions is
detailed. Results in the case of PNM for these models are
presented in Sec. V both at zero and finite temperature.
Additionally, results for a model in which contributions from
higher than two-body interactions are screened to prevent an
acausal behavior are presented. Section VI presents a summary
and conclusions.

II. GENERAL CONSIDERATIONS

For small-amplitude perturbations, the velocity v of fluid
particles obeys the wave equation [48]

∂2v

∂t2
− c2

s

∂2v

∂x2
= 0, (1)

whose solution f (x − cst) represents longitudinal sound wave
propagation with speed cs under the condition of adiabatic
motion for which ∂S/∂t = 0, where S is the entropy. Thus,
small density fluctuations in a compressible fluid propagate at
the speed of sound given by [49–51](cs

c

)2
= ∂P

∂ε

∣∣∣∣
S

= ∂P/∂n|S
∂ε/∂n|S

(2)

= 1

T S + μ + m

∂P

∂n

∣∣∣∣
S

= Ks

9(T S + μ + m)
= �SP

h + mn
, (3)
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where P is the pressure, ε is the energy density, n is the number
density, h = nE + P is the enthalpy density, μ is the chemical
potential, KS = 9∂P/∂n|S is the adiabatic incompressibility,
and �S = ∂ ln P/∂ ln n|S is the adiabatic index. In the variables
(n,T ), we can also express cs as [50,52](cs

c

)2
= CP

CV

n

h + mn

∂P

∂n

∣∣∣∣
T

, (4)

where CP and CV are the specific heats at constant pressure
and volume, respectively.

We will begin our analysis with nonrelativistic models that
are described by the generic Hamiltonian density

H = h̄2

2

τ (n,S)

m∗(n)
+ V (n), (5)

where the first term is the kinetic-energy density and the
second is the potential-energy density. The quantity m∗ is
the Landau effective mass defined at the Fermi surface
by m∗(n) = pF /(∂εp/∂p)|pF

, where εp is the single-particle
spectrum and pF is the Fermi momentum. Models that
employ contact interactions such as Skyrme models, the
APR model, and other microscopic models that employ the
effective mass approximation as indicated above are examples
of the representation in Eq. (5). As our discussion proceeds,
we will consider other cases, e.g., models in which finite-range
interactions at various levels of sophistication are considered
and in which additional complications are encountered. Some
physical insight is gained by examining the behavior of cs in
the limiting situations of degenerate and nondegenerate bulk
matter to which we turn below.

A. Degenerate case

For conditions such that T/TF � 1 (or, equivalently
S � 1), where TF = p2

F /(2m∗) is the Fermi temperature in
nonrelativistic models, degenerate conditions prevail. In this
case, the leading-order Fermi-liquid theory (FLT) expressions
for the thermal components of the pressure and energy density
are given by [53,54]

Pth(n,T ) = 2
3naT 2Q and εth(n,T ) = naT 2, (6)

with Q = 1 − 3

2

n

m∗
dm∗

dn
, (7)

where a = π2/(4TF ) is the level density parameter. Utilizing
the leading-order FLT result S = 2aT , we get

Pth(n,S) = S2

6

nQ

a
= 2S2

3π2
nTF Q, (8)

εth(n,S) = S2

4

n

a
= S2

π2
nTF , (9)

from which the density derivatives at constant S,

dPth

dn

∣∣∣∣
S

= Pth

n

(
1 + 2

3
Q + n

Q

dQ

dn

)
,

dεth

dn

∣∣∣∣
S

= εth

n

(
1 + 2

3
Q

)
,

dT

dn

∣∣∣∣
S

= 2

3

T Q

n
, (10)

are easily obtained. Putting together the other components in
the total P and ε, we arrive at

dP

dn

∣∣∣∣
S

= 2

5
TF

(
1 + 2

3
Q

)
+ n

d2V

dn2
+ dPth

dn

∣∣∣∣
S

,

dε

dn

∣∣∣∣
S

= m + 3

5
TF

(
1 + 2

3
Q

)
+ dV

dn
+ dεth

dn

∣∣∣∣
S

, (11)

where the first term in the first equation above and the second
term in the second represent the T = 0 results of the kinetic
parts. These results allow us to appreciate how c2

s is governed
by physical quantities in special circumstances.

(i) The case when V = 0: When the thermal contributions
can be regarded as small (S � 1) compared to their zero-
temperature counterparts,

c2
s � 2

5

TF

m

(
1 + 2

3
Q

)
(12)

= 1

5

(pF

m∗
)2 m∗

m

(
1 + 2

3
Q

)
. (13)

The physical scale of cs here is the velocity at the Fermi
surface vF = pF /m∗ modified by m∗/m and its logarith-
mic derivative with respect to density contained in Q.
For m∗(n) = m, the ideal-gas value of c2

s = (1/3)(pF /m)2 is
recovered from Eq. (13).

(ii) Density-dependent V (n): To achieve equilibrium at the
empirical nuclear density n0 � 0.16 fm−3 with the empirical
energy per particle of � − 16 MeV, and to support the
precisely determined neutron star masses of 2M�, models
of dense nuclear matter have employed contributions from
beyond-two-body forces in V (n) that vary as n2+ε . If these
contributions persist at densities n � n0 and dominate over
the other contributions including the thermal parts (S � 1),
causality is bound to be violated. Consider, for example,
V (n) ∝ nσ for which

(cs

c

)2
� nd2V/dn2

dV/dn
= σ − 1, (14)

which for σ � 2 renders (cs/c)2 � 1. Notice that the sign of
V (n), i.e., attractive or repulsive, drops out in this result. A
combination of attractive and repulsive terms with different
magnitudes and power-law behavior in n serves only to delay
the onset of superluminal behavior.

(iii) Additional contributions to the density-dependent
V (n): As apparent from Eq. (11), both the S = 0 and S 
= 0
terms contribute in determining the magnitude of (cs/c)2.
The interplay between these terms is also determined by
m∗(n) and its density derivatives as well as by Q(n) and
its derivatives. In Skyrme-like models in which m∗/m =
(1 + βn)−1 with β a constant, the kinetic-energy density
εkin ∝ n5/3(1 + βn), so that at some high n the n8/3 term
dominates causing the EOS to become acausal. In some
cases, acausality can set in at lower densities for S 
= 0
than for S = 0. A quantitative discussion of results from
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models with different behavior of m∗/m vs n will be deferred
to Sec. V.

B. Nondegenerate case

At zero temperature (entropy), cs is a function of just
the density n. As we show below, the same is true for
nonrelativistic models with only contact interactions in the
limit of either very large entropy or temperature, i.e., the
extreme nondegenerate limit. Here, the entropy is given by
the Sackur–Tetrode relation

S = 5

2
− ln

[(
2πh̄2

m∗T

)3/2
n

2

]
, (15)

where m∗ is the density-dependent Landau effective mass.
Solving Eq. (15) for the temperature, we get

T = 2πh̄2

m∗
(n

2

)2/3
exp

(
2

3
S − 5

3

)
,

∂T

∂n

∣∣∣∣
S

= 2

3

T Q

n
, (16)

with Q given by Eq. (7). In this case, thermal effects dominate
over cold matter contributions (exclusive of rest mass) to
thermodynamic properties. Consequently,(cs

c

)2 S�1−→ ∂Pth/∂n|S
m + ∂εth/∂n|S

. (17)

For nonrelativistic contact-interaction models in the nonde-
generate limit,

Pth = nT Q,
∂Pth

dn

∣∣∣∣
S

= T Q

(
1 + 2

3
Q + n

Q

dQ

dn

)
, (18)

εth = 3

2
nT ,

∂εth

dn

∣∣∣∣
S

= 3

2
T

(
1 + 2

3
Q

)
. (19)

When the mass term dominates over the thermal part in the
denominator of Eq. (17), and Q � 1 as is the case when the
effects of interactions are small,(cs

c

)2 S�1−→ 5

3

T

m
, (20)

which is the result for one-component classical gases. The
physical scale of cs here is the thermal velocity of particles.
In the case that the thermal component of the denominator in
Eq. (17) dominates over the mass,

(cs

c

)2 S�1−→ 2

3

Q
(

1 + 2
3Q + n

Q
dQ
dn

)
1 + 2

3Q
, (21)

that is, the temperature or entropy dependence drops out with
the result (cs/c)2 � 2/3 for Q � 1. It must be emphasized that
this result is obtained only at very high temperatures for which
the use of nonrelativistic considerations becomes questionable.

C. Models with finite-range forces

Finite-range forces introduce momentum dependencies
(other than p2) to the single-particle potential which in turn
cause it to acquire a temperature dependence [52]. The effects
of these interactions can still be collected in a density- and
temperature-dependent function m∗(n,T ) which, however,

can no longer be identified with the Landau effective mass.
Nevertheless, if this T dependence is weak, then

m∗(n,T ) � m∗(n,0) + T
∂m∗(n,T )

∂T

∣∣∣∣
T =0

+ · · · (22)

≡ m∗(1 + bT ), (23)

where m∗ = m∗(n,0) is the Landau mass and b(n) ≡
(1/m∗)∂m∗(n,T )/∂T |T =0 such that bT � 1. Combining
Eq. (15) with m∗ → m∗(n,T ) and Eq. (23), and expanding
in a Taylor series for bT � 1, we find

S � 5

2
− ln

[(
2πh̄2

m∗T

)3/2
n

2

]
+ 3bT

2
. (24)

Perturbative inversion of Eq. (24) yields, in the second
recursion,

T � 2πh̄2

m∗
(n

2

)2/3
exp

[
2

3
S − 5

3

− 2πh̄2

m∗ b
(n

2

)2/3
exp

(
2

3
S − 5

3

)]
. (25)

We now substitute 2πh̄2(n/2)2/3 exp(2S/3−5/3) by m∗(n,T ),
then replace m∗(n,T ) by m∗(1 + bT ) to get

T � 2πh̄2

m∗
(n

2

)2/3
exp

[
2

3
S − 5

3
− bT m∗(n,T )

m∗

]

� 2πh̄2

m∗
(n

2

)2/3
exp

[
2

3
S − 5

3
− bT (1 + bT )

]
. (26)

Now dropping b2T 2 and expanding the exponential for small
bT ,

T

bT �1
S�1−→ 2πh̄2

m∗
(n

2

)2/3
exp

(
2

3
S − 5

3

)
. (27)

This result shows that, in the extreme nondegenerate limit,
finite-range force models with weak T dependence in their
m∗ will behave similarly to zero-range models and thus they
will also obey Eq. (21).

III. IMPLEMENTATION OF CAUSALITY

The general approach described below is more conveniently
applied in the variables (n,S) that are natural to the speed of
sound as opposed to (n,T ) commonly used in tabulations of
EOS properties. Working with the former set allows us to
carry out all calculations analytically circumventing the need
for numerical integration.

Causality is preserved as long as the speed of sound cs is
less than or equal to the speed of light c:

(cs

c

)2
≡ β = ∂P

∂ε

∣∣∣∣
S

= ∂P

∂n

∣∣∣∣
S

(
∂ε

∂n

∣∣∣∣
S

)−1

� 1. (28)
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Here the total energy density ε is inclusive of the internal
energy density ε and the rest-mass energy density mn:

ε = ε + mn. (29)

By making use of

P = n2 ∂(ε/n)

∂n

∣∣∣∣
S,N

= n
∂ε

∂n

∣∣∣∣
S,N

− ε (30)

and

∂P

∂n

∣∣∣∣
S,N

= n
∂2ε

∂n2

∣∣∣∣
S,N

, (31)

where N is the number of nucleons in the system, we write
Eq. (28) as a second-order differential equation (DE):

∂2ε

∂n2

∣∣∣∣
S,N

− β

n

∂ε

∂n

∣∣∣∣
S,N

= βm

n
. (32)

Thus, in addition to entropy conservation, in our approach we
must impose the condition of baryon number conservation and,
in the case of multicomponent systems, fixed composition.
Equation (32) can be reduced to a first-order DE

∂ξ

∂n

∣∣∣∣
S,N

− β

n
ξ = βm

n
(33)

by setting

ξ = ∂ε

∂n

∣∣∣∣
S,N

= μ + T S. (34)

Note that the combination of Eqs. (30) and (34) yields the
thermodynamic identity ε + P = nμ + T s. The solution of
Eq. (33) requires that β is mapped to some function βf (n,S) �
1 ∀ (n,S). This implies that the causality-fixing density nf

obtained from

β(n,S) − βf (n,S) = 0 (35)

is an entropy-dependent function.
The approach of cs to c depends on the choice of βf (n,S).

For our illustrative calculations below, some choices of
βf (n,S) are considered.

A. Density-independent β f (n,S)

For such a constant βf , the integrating factor corresponding
to Eq. (33) is given by

f (n) = exp

(
−βf

∫
dn

n

)
= n−βf , (36)

and has the property

d

dn
[n−βf ξ ] = n−βf

βf m

n
. (37)

Integration of Eq. (37) leads to

ξ = ∂ε

∂n

∣∣∣∣
S,N

= −m + c1n
βf , (38)

where c1 is a constant of integration. A second integration
results in

ε = −mn + c1n
βf +1

βf + 1
+ c2, (39)

with another constant of integration c2, and therefore

P = c1
βf

βf + 1
nβf +1 − c2. (40)

The constants c1 and c2 are determined by the boundary
conditions

ε[nf (S),S] = εf (S), (41)

P [nf (S),S] = Pf (S), (42)

where nf is the causality-fixing density, defined by Eq. (35).
The functional forms of ε(n,S) and P (n,S) are those obtained
from the original Hamiltonian density.

From Eqs. (41) and (42), we get

c1 = εf + mnf + Pf

n
βf +1
a

, (43)

c2 = 1

βf + 1
[βf (εf + mnf ) − Pf ]. (44)

Thus the energy density and the pressure are given by

ε = −mn + (εf + mnf + Pf )

βf + 1

(
n

nf

)βf +1

+βf (εf + mnf ) − Pf

βf + 1
, (45)

P = βf

βf + 1
(εf + mnf + Pf )

(
n

nf

)βf +1

−βf (εf + mnf ) − Pf

βf + 1
. (46)

The chemical potential μ is straightforwardly obtained from
μ = ξ − T S. Equations (45) and (46) can be used for n � nf

with a fixed βf � 1 so that causality is never violated and
such that the thermodynamic identity is obeyed thus ensuring
thermodynamic consistency. At this stage, we must reiterate
the point that ε and P as given in Eqs. (45) and (46) are
functions of (n,S). The switch to (n,T ) is easily achieved by
setting

ε(n,T ) = ε[n,S(n,T )], (47)

P (n,T ) = P [n,S(n,T )], (48)

β(n,T ) = β[n,S(n,T )]. (49)

Note that the procedure outlined above for T 
= 0 closely
mirrors that for T = 0 described in Appendix E of our earlier
work in Ref. [18], but with the use of appropriate quantities
at finite T . The method outlined in Ref. [18] for T 
= 0 was
flawed in that Eq. (E18) there defining the chemical potential
lacked a term involving T S, that is, μ was taken to be
∂ε/∂n|S,N instead of the correct ∂ε/∂n|S,V where n = N/V .
Equation (34) in this work corrects that error. Moreover, the
assumption that CP /CV = constant was made, which is only
true in the degenerate limit (S � 1) where CP /CV � 1.
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B. Density-dependent β f (n,S)

We emphasize that βf need not be a constant. Consider, for
the purposes of illustration, the function

βf (n,S) = a1 + a2n
a3

1 + a4na3
, (50)

where the ai are real numbers; a1 and a3 are unitless while
a2 and a4 have units fm3a3 . For this βf to approach 1 from
below they must all be positive and a1 + a2/a4 = 1; a1 > 0
also ensures that Eq. (35) always has a solution. Moreover,
if the fraction a2/(a3a4) is an integer, then ξ , ε, and P are
relatively simple functions of the density.

For example, if we choose a1 = 1/2, a2 = 2, a3 = 1, and
a4 = 4 then

βf = 1

2
+ 2n

1 + 4n
, (51)

ξ = −m + c1n
1/2(1 + 4n)1/2, (52)

ε = −mn + c1

16

[
n1/2(1 + 4n)1/2(1 + 8n)

− 1

2
sinh−1(2n1/2)

]
+ c2, (53)

P = − c1

16

[
n1/2(1 + 4n)1/2(1 − 8n)

−1

2
sinh−1(2n1/2)

]
− c2. (54)

For the choice a1 = 4/5, a2 = 2, a3 = 1/5, and a4 = 10, we
get

βf = 4

5
+ 2n1/5

1 + 10n1/5
, (55)

ξ = −m + c1(n4/5 + 10n), (56)

ε = −mn + 5

9
c1(n9/5 + 9n2) + c2, (57)

P = c1

(
4

9
n9/5 + 5n2

)
− c2. (58)

Of course, many other possibilities exist for the ai above, as
well as for the generic functional form of βf .

IV. NUMERICAL NOTES

Here we describe the procedure to calculate (cs/c)2 for
the Hamiltonian density in Eq. (5) for conditions of arbitrary
degeneracy. The analytical results obtained in Sec. II for the
degenerate and nondegenerate cases serve as a check for the
results obtained in this section. To calculate the finite-entropy
properties corresponding to Eq. (5), we employ the Johns,
Ellis, and Lattimer (JEL) [55] scheme in which the Fermi–
Dirac integrals

Fα =
∫ ∞

0

xα

ex−ψ + 1
dx (59)

are expressed as algebraic functions of a single parameter f
related to the entropy via

S = 5

3

F3/2(f )

F1/2(f )
− ψ(f ), (60)

where [18]

F3/2(f ) = 3f (1 + f )1/4−M

2
√

2

M∑
m=0

pmf m (61)

F1/2(f ) = f (1 + f )1/4−M

√
2(1 + f/a)

M∑
m=0

pmf m

×
[

1 + m −
(

M − 1

4

)
f

1 + f

]
, (62)

ψ(f ) = μ(n,S) − V (n)

T (n,S)

= 2(1 + f/a)1/2 + ln

[
(1 + f/a)1/2 − 1

(1 + f/a)1/2 + 1

]
. (63)

The values of the coefficients appearing in Eqs. (61)–(63)
are a = 0.433, M = 3, p0 = 5.34689, p1 = 16.8441, p2 =
17.4708, and p3 = 6.07364. We note that the Fα are connected
via their derivatives with respect to ψ according to ∂Fα/∂ψ =
αF(α−1). The JEL scheme enables a rapid and an accurate
evaluation of the thermodynamic quantities preserving ther-
modynamic consistency.

The kinetic-energy density τ and the number density n are
related to F3/2 and F1/2, respectively:

τ (n,S) = γ

2π2

[
2m∗(n)T (n,S)

h̄2

]5/2

F3/2[f (S)], (64)

n = γ

2π2

[
2m∗(n)T (n,S)

h̄2

]3/2

F1/2[f (S)], (65)

where γ = 1 (2) for PNM (SNM) and f (S) is the solution of
Eq. (60). From Eq. (65), it follows that

T (n,S) =
(

π2h̄3

γ
√

2

)2/3
n2/3

m∗(n)

1

F
2/3
1/2 [f (S)]

(66)

and

∂T (n,S)

∂n

∣∣∣∣
S

= 2Q(n)

3n
T (n,S), (67)

with Q(n) given by Eq. (7). The total energy density is given
by

ε(n,S) = H(n,S) + mn, (68)

and thus

∂ε

∂n

∣∣∣∣
S

= 5

3n

h̄2

2

τ (n,S)

m∗(n)

[
1 − 3n

5m∗
dm∗

dn

]
+ dV

dn
+ m. (69)
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FIG. 1. Squared speed of sound vs density in PNM for the models of (a) APR, (b) LS, and (c) SLy4 at fixed entropy.

The pressure is obtained from

P (n,S) = n
∂ε

∂n

∣∣∣∣
S

− ε(n,S) (70)

= 2

3

h̄2

2

Q(n)

m∗(n)
τ (n,S) + n

dV

dn
− V (n), (71)

and therefore

∂P

∂n

∣∣∣∣
S

= n
d2V

dn2
+ 10

9n

h̄2

2

Q(n)

m∗(n)
τ (n,S)

×
[

1 − 3n

5m∗(n)

dm∗

dn
+ 3n

5Q(n)

dQ

dn

]
. (72)

In the causality-fixing regime [n � nf (S)], Eqs. (45) and
(46) imply

∂ε

∂n

∣∣∣∣
S

= ∂ε

∂n

∣∣∣∣
S

+ m = (εf + mnf + Pf )

nf

(
n

nf

)βf

, (73)

∂P

∂n

∣∣∣∣
S

= βf

nf

(εf + mnf + Pf )

(
n

nf

)βf

. (74)

Correspondingly, (cs/c)2 = βf as indicated earlier.
For the conversion of ε, P , and cs to the (n,T ) variables,

we must first express the entropy in terms of n and T . This is
accomplished by solving

n = γ

2π2

[
2m∗(n)T

h̄2

]3/2

F1/2(f ) (75)

for f (n,T ), which is then used as input in the functions that
appear in Eq. (60).

V. RESULTS

In this section, we present results pertaining to the speed
of sound for the PNM models of APR [18,47], LS [45],
and SLy4 [46] and the alterations caused by our causality-
enforcing scheme to the properties of the neutron stars in their
maximum-mass configuration. This configuration reaches the
largest central density and therefore it is the setting where the
effects of causality implementation will be most apparent. Our
results also illustrate how various thermodynamic functions

are modified by this approach in the case of PNM for the EOS
of APR.

Figure 1 shows the squared speed of sound of the three
models for PNM for different values of the entropy. Results
for APR and LS are qualitatively similar in that for densities
lower than a certain density nX, the higher-entropy curves lie
higher whereas the situation is reversed for densities n > nX.
Consequently, causality for finite entropies (temperatures)
is violated at densities that are higher than those at zero
temperature for these two models. The intersection point at
intermediate densities is common to all curves (for each model)
and thus independent of the entropy. Its value is obtained by
solving (cs

c

)2

S=0
−

(cs

c

)2

S�1
= 0, (76)

where the first term refers to the squared speed of sound in
cold matter and the second term is given by Eq. (21).

The speed of sound of SLy4, on the other hand, is a
monotonically increasing function of the entropy and hence
the causality-violating density na decreases with increasing
entropy. The na for the three models at S = 0, 3, and 5 as well
as the fixed points nX of APR and LS are given in Table I.

The differences in the results of c2
s for the three models

are related to the behavior of the effective masses and their
derivatives with respect to density as reflected in the function
Q(n) and its derivative with respect to density. Figure 2 shows
results of m∗/m and Q(n) vs density. For the LS model here,
Q(n) = 1 because m∗(n) = m, the vacuum nucleon mass. For
the APR and SLy4 models, m∗/m decreases monotonically
with density, the variation in the latter case being substantially
more than for the former. These variations are in turn reflected

TABLE I. Densities at which causality is violated at S = 0, 3,
and 5 for APR, LS, and SLy4 in their PNM (SNM) configuration and
intersection density (where applicable).

Property APR LS SLy4

na,0 (fm−3) 0.870 (0.841) 1.112 (1.092) 1.181 (1.298)
na,3 (fm−3) 0.914 (0.849) 1.232 (1.165) 0.608 (0.814)
na,5 (fm−3) 2.710 (0.994) 1.774 (1.478) 0.307 (0.454)
nX (fm−3) 0.809 (0.830) 0.671 (0.708) N/A

055802-7



CONSTANTINOS CONSTANTINOU AND MADAPPA PRAKASH PHYSICAL REVIEW C 95, 055802 (2017)

0.3 0.6 0.9 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

m
m

a

SLy4

APR

LS

0.3 0.6 0.9 1.2
0.0

0.5

1.0

1.5

2.0

2.5

Q

b

APR

SLy4

LS

n fm 3

FIG. 2. The effective mass ratio m∗/m and the quantity
Q = 1 − (3n/2m∗)dm∗/dn vs density in PNM for the APR, LS,
and SLy4 models.

in the behavior of Q(n) with n for these two models.
These results clearly indicate the crucial role of the density
dependence of the effective mass on the speed of sound in hot,
dense matter.

The physical reason why the (cs/c)2 curves for different
entropies intersect at an apparently unique density nX for
the APR and LS models, but not for the SLy4 model
may be understood as follows: As shown in Eq. (21), the
speed of sound of nonrelativistic models with only contact
interactions is independent of S or T not only for cold matter
(S, T /TF �1), but also in the extreme nondegenerate case
(S, T /TF �1). The curves of (cs/c)2 corresponding to these
two limits establish the boundaries for the values that (cs/c)2

can attain as a function of (n,S) and (n,T ). Thus, if this area
is reduced to a point (i.e., when cs(n,0) and cs(n,S � 1)
intersect) then all other curves must also pass through this
point (no curve of intermediate T or S is allowed to exist
above or below the two limits).

Models with finite-range interactions appear to have a
fixed point as well (see our discussion later) but this is not
necessarily the case; it is just that the range of intersection
densities is rather narrow, especially in the (n,S) variables.
Nevertheless, such an intersection point does not have to
exist; that is, Eq. (76) does not necessarily admit a solution.
Whether or not this is the case is a question of how the
model-specific parametrization affects the density dependence
of m∗/m and Q. If these quantities decrease relatively slowly
as a function of density, as in the APR and LS models,
then a fixed point is likely to exist. Such is not the case
for the SLy4 model in which a rapid variation of m∗/m and
Q occurs.

Tables II–IV list the maximum mass and the corresponding
radius and central number density nc, total energy density
εc, and pressure Pc for different values of βf at T = 0.
The last column in each table displays these quantities as
obtained by using the original causality-violating EOS. As
βf is increased toward 1, Mmax, nc, εc, and Pc approach

TABLE II. PNM neutron star properties for the APR model for
different values of βf at T = 0.

�������Prop.
βf

0.5 0.7 0.9 Not fixed

nf (fm−3) 0.547 0.667 0.796 N/A
Mmax (M�) 2.00 2.13 2.18 2.20
Rmax (km) 10.61 10.46 10.31 10.16
nc (fm−3) 1.107 1.096 1.101 1.111
εc (MeV fm−3) 1398.6 1433.3 1472.0 1507.0
Pc (MeV fm−3) 516.0 691.9 851.1 1005.1

their pre-implementation values from below whereas Rmax

does so from above. Changes to these quantities (com-
pared to pre-implementation) are small; about 10% even
for βf = 0.5, with the notable exception of the central
pressure Pc which nearly halves. For LS, the βf = 0.9 star
is identical to the original because nf (βf = 0.9) exceeds
the central density of the star. A similar consideration
applies for SLy4 for which nf (βf = 0.9) is relatively close
to nc.

Figure 3 shows how the squared speed of sound of APR
(PNM) is altered by our method as a function of the density
for fixed entropy (left panel) and for fixed temperature (right
panel) for a fixed βf = 0.9. That the different curves appear
to be causally fixed at the same density is a consequence
of the (accidental) fact that, for APR, nf (βf = 0.9) � nX.
As a caution we point out that the problematic imple-
mentation of Ref. [18] will appear correct if one chooses
βf = βf (nX).

A notable feature of the results in Fig. 3 is that (cs/c)2 = 0.9
for all n � na , the density at which acausality sets in for
the APR model. With a density-dependent βf , a gradual
approach of (cs/c)2 to 1 may be achieved. Figure 4 shows
results with the density-dependent βf given by Eq. (51). As
noted earlier, many other possibilities also exist as long as
one can find a tractable, preferably analytical, solution to
Eq. (33).

The implementation of causality introduces modifications
to the total energy density ε, pressure P , chemical potential
μ, specific heats CV and CP , and adiabatic index �S ,
which are exhibited in Figs. 5–10, respectively. All of these
results correspond to βf = 0.9. These modifications occur
at high densities and are more pronounced for quantities
(P, μ, �S , and CP ) that involve density derivatives of the

TABLE III. Same as Table II, but for the LS model.

�������Prop.
βf

0.5 0.7 0.9 Not fixed

nf (fm−3) 0.515 0.705 0.951 N/A
Mmax (M�) 2.23 2.29 2.30 2.30
Rmax (km) 12.03 11.70 11.58 11.58
nc (fm−3) 0.875 0.906 0.915 0.915
εc (MeV fm−3) 1101.6 1175.9 1197.7 1197.7
Pc (MeV fm−3) 398.0 534.0 584.1 584.1
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TABLE IV. Same as Table II, but for the SLy4 model.

�������Prop.
βf

0.5 0.7 0.9 Not fixed

nf (fm−3) 0.634 0.825 1.048 N/A
Mmax (M�) 1.95 2.03 2.05 2.05
Rmax (km) 10.46 10.20 10.03 10.00
nc (fm−3) 1.150 1.173 1.195 1.196
εc (MeV fm−3) 1454.2 1534.4 1590.7 1594.0
Pc (MeV fm−3) 530.0 717.1 852.6 872.1

energy. This observation is in accordance with that made
earlier regarding the central pressure of neutron stars. Results
corresponding to Eq. (51) are nearly identical and are not
shown here.

A. Comparison with finite-range force models

Here we contrast the above results for (cs/c)2 with those
of a nonrelativistic potential model with finite-range forces at
finite temperature studied in detail in Ref. [5], where results
for (cs/c)2 were, however, not shown. For PNM, the energy
density in this model is

ε = 2
∫

d3k

(2π )3

h̄2k2

2m
f + Au2 + Buσ

1 + B ′uσ−1

+u
∑
i=1,2

Ci2
∫

d3k

(2π )3

1[
1 + (k/�i)2

]f, (77)

where u = n/ns , f is the usual Fermi–Dirac distribution
function at finite T , and the parameters A, B, σ, Ci, B ′,
and �i are determined from constraints provided by the
empirical properties of nuclear matter at ns . Referred
to as BPAL33 in Ref. [5], their numerical values are
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FIG. 3. Squared speed of sound in PNM for the APR model with
(solid curves) and without (dotted curves) causality enforced with
βF = 0.9 for (a) fixed entropy and (b) temperature vs density.
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FIG. 4. Same as Fig. 3, but with the density-dependent βf given
by Eq. (51).

A=1.627, B =8.908, B ′ =0.422, C1 =−106.7 MeV, C2 =
6.544 MeV, �1 = 1.5h̄k

(0)
F , and �2 = 3.0h̄k

(0)
F with k

(0)
F =

(3π2ns/2)1/3. Note the redefinition of parameters here from
those in the original reference. The energy density in Eq. (77)
differs from that of zero-range Skyrme-like models including
the APR model in two respects. First, the term encapsulating
the influence of higher-than-two-body forces is such that it
does not lead to an acausal behavior at T = 0. Second, the
finite-range terms lead to an effective mass

m∗

m
=

[
1 +

∑
i=1,2

αiu

(
1 + (2u)2/3

R2
i

)]−1

, (78)

where Ri = �i/(h̄k
(0)
F ), which saturates for n � ns as

shown in Fig. 11. As a result, Q < 1.2 and dQ/dn <
0 for n > ns which implies that cs < c in the limit
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FIG. 5. Total energy density of PNM for the APR model with
(solid curves) and without (dotted curves) causality enforced with
βf = 0.9 for (a) fixed entropy and (b) temperature vs density.
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FIG. 6. Pressure of PNM for the APR model with (solid curves)
and without (dotted curves) causality enforced with βf = 0.9 for
(a) fixed entropy and (b) temperature vs density.

T → ∞ [Eq. (21)]. This means that cs < c for all T (see
Fig. 12) being that the possible paths that cs can traverse in
(n,T ) are bounded by cs(T = 0) and cs(T → ∞). In closing
this section we note that, for BPAL33, the intersection density
nX = 0.853 fm−3.

To preserve causality, two lessons, of much value to
first-principle microscopic calculations hot and dense matter,
are learned from the results above. First, contributions from
higher-than-two-body forces must be screened at high density
at the T = 0 level. Second, the nucleon effective mass, which
controls thermal effects, must not rapidly decrease with density
as in some Skyrme-like models that employ only contact
interactions. The use of finite-range forces (as in first-principle
calculations of dense matter), which tends to saturate the
nucleon effective mass, mitigates the influence of thermal
effects in making EOSs acausal.
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FIG. 7. Chemical potential in PNM for the APR model with (solid
curves) and without (dotted curves) causality enforced with βf = 0.9
for fixed (a) entropy and (b) temperature vs density.
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FIG. 8. Specific heat at constant volume in PNM for the APR
model with (solid curves) and without (dotted curves) causality
enforced with βf = 0.9 for fixed (a) entropy and (b) temperature
vs density.

VI. SUMMARY AND CONCLUSIONS

Treatments of hot, dense matter starting from a nonrelativis-
tic Hamiltonian or Lagrangian density lead to superluminal
behavior at high density as reflected in the adiabatic speed
of sound exceeding that of light. This behavior will likely
persist for applications in astrophysical phenomena even if the
many-body problem can be solved exactly at the nonrelativistic
level because Lorentz invariance is absent in such a treatment.

In this work, we propose a method by which nonrelativistic
EOSs that become acausal at high densities can be modified
so that they remain causal at all densities and entropies
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FIG. 9. Specific heat at constant pressure in PNM for the APR
model with (solid curves) and without (dotted curves) causality
enforced with βf = 0.9 for fixed (a) entropy and (b) temperature
vs density.
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FIG. 10. Adiabatic index in PNM for the APR model with (solid
curves) and without (dotted curves) causality enforced with βf = 0.9
for fixed (a) entropy and (b) temperature vs density.

or temperatures. This approach is easily implemented and
computationally straightforward; its most important feature
is thermodynamic consistency. Illustrative calculations are
presented both for a fixed value of the speed of sound cs in
the “causality-enforcement” region as well as for continuous
functions of density and entropy per baryon (n,S) which
approach c asymptotically from below (Figs. 3 and 4).

As examples, we explore consequences of enforcing
causality to the attributes of maximum-mass neutron star
configurations in pure neutron matter for the APR, LS, and
SLy4 models. The EOS functions of the APR model are
presented for entropies per baryon of relevance to astrophysical
simulations before and after enforcing causality. Our principal
findings are summarized below.
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FIG. 11. The effective mass ratio m∗/m and the quantity
Q = 1 − (3n/2m∗)dm∗/dn vs density in PNM for the BPAL33
model.
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FIG. 12. Squared speed of sound in PNM for the BPAL33 model
for fixed (a) entropy and (b) temperature vs density.

Insofar as our choice for the “new” speed of sound cs is
close to c, we find that both cold and finite-T properties
associated with the energy density ε and the specific heat
at constant volume, CV , are relatively weakly affected after
enforcing causality. However, properties such as the pressure
P , the chemical potential μ, and the specific heat at constant
pressure, CP , which are related to density derivatives of the
energy, exhibit larger variations compared to ε and CV . At
T = 0, the basic characteristics of PNM-NS configurations
such as their central density nc, maximum mass Mmax, and
radius of the maximum configuration Rmax, are not greatly
affected by enforcing causality. However, for models (such
as SLy4) in which the effective nucleon mass drops rapidly
with density thermal effects cause cs to exceed c at densities
significantly lower than at T = 0. An interesting finding is
that, in the extreme nondegenerate limit, cs for models with
contact interactions such as those considered here decouples
from entropy or temperature and is instead determined by
the Landau effective mass and its derivatives with respect to
density.

Finally, our study of a schematic potential model illustrates
that, in first-principle calculations of hot and dense matter,
repulsive contributions from higher-than-two-body interac-
tions must be screened and effective masses determined by
finite-range forces must saturate at high density to preserve
causality.
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