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Precision analysis of electron energy spectrum and angular distribution of neutron β− decay
with polarized neutron and electron
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We give a precision analysis of the correlation coefficients of the electron energy spectrum and angular
distribution of the β− decay and radiative β− decay of the neutron with polarized neutron and electron to order
10−3. The calculation of correlation coefficients is carried out within the standard model, with contributions of
order 10−3 caused by the weak magnetism and proton recoil taken to next-to-leading order in the large proton
mass expansion, and with radiative corrections of order α/π ∼ 10−3 calculated to leading order in the large
proton mass expansion. The obtained results can be used for the planning of experiments on the search for
contributions of order 10−4 of interactions beyond the standard model.
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I. INTRODUCTION

It is well known that the neutron β− decay is a good
laboratory for tests of the standard model (SM) [1–8]. As
has been pointed out in [7,8] by example of the neutron β−
decay with a polarized neutron and unpolarized proton and
electron, the weak magnetism and proton recoil corrections of
order Ee/mp, where Ee and mp are the electron energy and
proton mass, and radiative corrections of order α/π , where
α is the fine-structure constant [9], define a complete set
of corrections to the correlation coefficients of order 10−3.
These corrections provide a robust background for a search of
contributions of order 10−4, induced by interactions beyond the
standard model (SM) [7,8]. This paper addresses a precision
analysis of the neutron β− decay with polarized neutron and
electron. The aim of this paper is to give a robust background
to order 10−3 for the experimental search for contributions of
order 10−4, caused by interactions beyond the SM. According
to [7,8], for the realization of this aim we have to calculate
in the SM the correlation coefficients of the electron energy
spectrum and angular distribution of the neutron β− decay
with polarized neutron and electron by taking into account
the contributions of the weak magnetism and proton recoil
to next-to-leading order in the large proton mass expansion
and radiative corrections of order α/π to leading order in the
large proton mass expansion. These corrections make possible
a meaningful search for contributions of order 10−4, caused
by interactions beyond the SM for most of the correlation
coefficients presented here. Of course, these corrections should
be meaningful if the theoretical uncertainties of the correlation
coefficients, calculated to leading order in the large proton
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mass expansion and without radiative corrections, should be
small compared to 10−3. The correlation coefficients G(Ee),
N (Ee), Qe(Ee), and R(Ee) [see Eq. (3)], calculated to leading
order in the large proton mass expansion and without radiative
corrections, are equal to [see Eq. (8)]

G0(Ee) = −1, N0(Ee) = −me

Ee

A0, Qe0(Ee) = −A0,

R0(Ee) = −α
me

ke

A0, A0 = −2
λ(1 + λ)

1 + 3λ2
, (1)

where me and ke = √
E2

e − m2
e are the electron mass and its

momentum, α = 1/137.036 is the fine-structure constant [9],
and λ is the axial coupling constant [1,2]. The dependence of
the correlation coefficient R0(Ee) on the fine-structure constant
is caused by the Coulomb distortion of the electron wave func-
tion in the Coulomb field of the proton [10,11]. The most pre-
cise, published values for the electron asymmetry from a single
experiment provide values for A

(exp)
0 = −0.11933(34) [1]

and A
(exp)
0 = −0.11996(58) [12] (see also [13]), giving λ =

−1.2750(9) and λ = −1.2767(16), respectively, and averaging
over the electron energy spectrum (see Eq. (D-59) of Ref. [7])
we obtain the following numerical values for the correlation
coefficients in Eq. (1):

G0 = 〈G0(Ee)〉 = −1,

N0 = 〈N0(Ee)〉 = 0.07825(22),

Qe0 = 〈Qe0(Ee)〉 = 0.11933(34),

R0 = 〈R0(Ee)〉 = 0.000891(3) [1],

G0 = 〈G0(Ee)〉 = −1,

N0 = 〈N0(Ee)〉 = 0.07866(37),

Qe0 = 〈Qe0(Ee)〉 = 0.11996(58),

R0 = 〈R0(Ee)〉 = 0.000896(5) [12]. (2)
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One may see that the relative theoretical uncertainties of the
correlation coefficients in Eq. (2) are of order (3–5) × 10−3.
They are practically defined by the experimental uncertainties
of the axial coupling constant. An improvement of the
theoretical uncertainties of the correlation coefficients in
Eq. (2) may only result through an improvement of the
experimental uncertainty of the axial coupling constant λ.
Hence, currently, because of the theoretical uncertainties of
order (3–5) × 10−3, a precision analysis of the correlation
coefficients G(Ee), N (Ee), Qe(Ee), and R(Ee) to order 10−3

seems to be meaningful only for the correlation coefficient
G(Ee). Nevertheless, we calculate below the corrections,
caused by the weak magnetism and proton recoil of order
1/mp and radiative corrections of order α/π , to all correlation
coefficients. In order to push meaningful tests of the SM to the
10−4 level for the correlation coefficients N (Ee), Qe(Ee), and
R(Ee), an improvement of experimental uncertainties for the
axial coupling constant is required in addition to the theoretical
predictions we present in this work. We see this as an important
challenge for the experimental characterization of the charged
weak interaction.

The first experimental analysis of the neutron β− decay
n → p + e− + ν̄e with polarized neutron and electron has
been undertaken by Kozela et al. [14,15], where the correlation
coefficients R(Ee) and N (Ee) of the electron energy spectrum
and angular distribution of the neutron β− decay, with
polarized neutron and with the electron polarized transverse
to its three-momentum, were measured. The correlation co-
efficient R(Ee) describes the correlation between the neutron
polarization and the polarization and three-momentum of the
electron �ξn · (�ke × �ξe), where �ξn and �ξe are unit polarization
vectors of the neutron and electron, respectively, and �ke

is the electron three-momentum. The correlation coefficient
R characterizes quantitatively a T -odd and a P -odd effect,
caused by violation of time reversal invariance and invariance
under parity transformation. The correlation coefficient N (Ee)
is a quantitative characteristic of the correlation between the
neutron and electron polarization �ξn · �ξe. One may see that
the experimental values Rexp = 0.004 ± 0.012 ± 0.005 and

Nexp = 0.067 ± 0.011 ± 0.004, measured by Kozela
et al. [15], do not contradict the predictions of the SM,
given by Eq. (2), within the experimental uncertainties.
The primary goal of the nTRV Collaboration through these
measurements of R(E) and N (E) was to make a useful
probe for contributions from interactions beyond the SM (see
Eqs. (7)–(11) of Ref. [15]). Such tests require a search for
deviations from the expected SM values for these correlations.
If the precision level is to be greatly improved, the theoretical
predictions for the SM values must also be refined to include
contributions from the weak magnetism, proton recoil, and
radiative corrections. In this way, one can produce corrections
to order 10−3 in the correlation coefficients, and open a path
to a search for traces of interactions beyond the SM to 10−4.

The paper is organized as follows. In Sec. II we give the
electron energy spectrum and angular distribution of the β−
decay of the neutron with polarized neutron and electron.
The correlation coefficients G(Ee), N (Ee), Qe(Ee), and R(Ee)
are calculated in the SM with the contributions of the weak
magnetism and proton recoil to next-to-leading order in the
large proton mass expansion and with radiative corrections of
order α/π , calculated to leading order in the large proton mass
expansion [7]. In Sec. III we discuss some corrections of order
10−5 to the correlation coefficients beyond those, which are
calculated in Sec. II and which have been analyzed and dis-
cussed by Wilkinson [16]. In Sec. IV we discuss the obtained
results and the experimental observables. In the Appendix we
calculate the photon-electron energy spectrum, the electron
energy spectrum, and angular distributions of the radiative β−
decay of the neutron with polarized neutron and electron.

II. ELECTRON ENERGY SPECTRUM AND
ANGULAR DISTRIBUTION

The electron energy spectrum and angular distribution of
the neutron β− decay with polarized neutron and electron takes
the form [17] (see also [18] and [7])

d3λn(Ee)

dEed�e

= (1 + 3λ2)
G2

F |Vud|2
8π4

(E0 − Ee)2
√

E2
e − m2

e Ee F (Ee,Z = 1) ζ (Ee)

{
1 + AW (Ee)

�ξn · �ke

Ee

+G(Ee)
�ξe · �ke

Ee

+ N (Ee) �ξn · �ξe + Qe(Ee)
(�ξn · �ke)(�ke · �ξe)

Ee(Ee + me)
+ R(Ee)

�ξn · (�ke × �ξe)

Ee

}
, (3)

where GF = 1.1664 × 10−11 MeV−2 is the Fermi weak con-
stant, Vud = 0.97428(15) is the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element [9], λ is a real axial coupling
constant, E0 = (m2

n − m2
p + m2

e)/2mn = 1.2927 MeV is the
endpoint energy of the electron spectrum, calculated for
mn = 939.5654 MeV, and mp = 938.2720 MeV, and me =
0.5110 MeV [9], �ξn and �ξe are unit polarization vectors of
the neutron and electron, respectively, F (Ee,Z = 1) is the

relativistic Fermi function [7,11]

F (Ee,Z = 1) =
(

1 + 1

2
γ

)
4(2rpmeβ)2γ

�2(3 + 2γ )

e πα/β

(1 − β2)γ

×
∣∣∣∣�

(
1 + γ + i

α

β

)∣∣∣∣
2

, (4)
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where β = ke/Ee = √
E2

e − m2
e/Ee is the electron velocity,

γ = √
1 − α2 − 1, and rp is the electric radius of the proton.

In the numerical calculations we will use rp = 0.875 fm [19].
The Fermi function (4) describes the contribution of the
electron-proton final-state Coulomb interaction. Since it is
defined by the exact solution of the Dirac equation for the
electron, moving in the Coulomb field of the proton [11], it
cannot introduce additional uncertainties to the approximate
contributions, caused by the weak magnetism, proton recoil,
and radiative corrections. We would like to emphasize that

the Fermi function (4) gives a contribution to the phase
space factor of the neutron of about 3.32%. The use of
the approximate expression F (Ee,Z = 1) = 1 + α π/β [16]
diminishes the contribution of the Coulomb electron-proton
final-state interaction at the level of 8.75 × 10−4. This justifies
the use of the exact Fermi function (4) for the precision analysis
of the neutron β− decay.

The correlation coefficients of the electron energy spec-
trum and angular distribution, Eq. (3), we calculate with
the Hamiltonian of V -A weak interactions and the weak
magnetism [7]

HW (x) = GF√
2

Vud

{
[ψ̄p(x)γμ(1 + λγ 5)ψn(x)] + κ

2M
∂ν[ψ̄p(x)σμνψn(x)]

}[
ψ̄e(x)γ μ(1 − γ 5)ψνe

(x)
]
, (5)

where ψp(x), ψn(x), ψe(x), and ψνe
(x) are the field operators of the proton, neutron, electron, and antineutrino, respectively, γ μ,

σμν = i
2 (γ μγ ν − γ νγ μ), and γ 5 are the Dirac matrices, κ = κp − κn = 3.7058 is the isovector anomalous magnetic moment

of the nucleon, defined by the anomalous magnetic moments of the proton κp = 1.7928 and the neutron κn = −1.9130 and
measured in nuclear magneton units [9], and 2M = mn + mp is the average nucleon mass.

The coefficients ζ (Ee) and AW (Ee) have been calculated in [3,7]. They read

ζ (Ee) =
(

1 + α

π
gn(Ee)

)
+ 1

M

1

1 + 3λ2

[
−2(λ2 − (κ + 1) λ) E0 + (10λ2 − 4(κ + 1) λ + 2) Ee

− 2(λ2 − (κ + 1) λ)
m2

e

Ee

]
,

ζ (Ee) AW (Ee) = ζ (Ee)
(

A(Ee) + 1

3
Qn(Ee)

)

= A0

(
1 + α

π
gn(Ee) + α

π
fn(Ee)

)
+ 1

M

1

1 + 3λ2

[{
4

3
λ2 −

(
4

3
κ + 2

3

)
λ − 2

3
(κ + 1)

}
E0

−
{

22

3
λ2 −

(
10

3
κ − 4

3

)
λ − 2

3
(κ + 1)

}
Ee

]
, (6)

where the correlation coefficients A(Ee) and Qn(Ee) are given in [3,7]. The correlation coefficient AW (Ee) without the contribution
of the radiative corrections, defined by the function fn(Ee), has been calculated by Wilkinson [16]. The radiative corrections
gn(Ee) and fn(Ee) (see [7]) are in analytical agreement with the radiative corrections obtained by Sirlin et al. [20] and Gudkov
et al. [3], respectively (where the function fn(Ee) was calculated for the first time by Shann [21]).

Using the results obtained in [7] (see Appendix A of Ref. [7]), for other correlation coefficients in Eq. (3) we get the expressions

ζ (Ee)G(Ee) = −
(

1 + α

π
gn(Ee) + α

π
fn(Ee)

)
+ 1

M

1

1 + 3λ2

[
−(10λ2 − 4(κ + 1) λ + 2)Ee + (2λ2 − 2(κ + 1) λ) E0

]
,

ζ (Ee)N (Ee) = +me

Ee

{
−A0

(
1 + α

π
gn(Ee) + α

π
h(1)

n (Ee)
)

+ 1

M

1

1 + 3λ2

[(
16

3
λ2 −

(
4

3
κ − 16

3

)
λ − 2

3
(κ + 1)

)
Ee

−
(

4

3
λ2 −

(
4

3
κ − 1

3

)
λ − 2

3
(κ + 1)

)
E0

]}
,

ζ (Ee)Qe(Ee) = −A0

(
1 + α

π
gn(Ee) + α

π
h(2)

n (Ee)

)
+ 1

M

1

1 + 3λ2

[{
22

3
λ2 −

(
10

3
κ − 10

3

)
λ − 2

3
(κ + 1)

}
Ee

−
{

4

3
λ2 −

(
4

3
κ − 1

3

)
λ − 2

3
(κ + 1)

}
E0 +

(
2 λ2 − (2κ + 1) λ

)
me

]
,

ζ (Ee)R(Ee) = −α
me

ke

A0. (7)

The functions fn(Ee), h(�)
n (Ee) for � = 1,2 describe the radiative corrections of order α/π . They are calculated in the Appendix

[see Eq. (A9)] and plotted in Fig. 1. In the electron energy region me � Ee � E0 they vary over the regions 2.81 × 10−3 �
(α/π ) fn(Ee) � 6.24 × 10−4, −6.04 × 10−4 � (α/π ) h(1)

n (Ee) � −3.37 × 10−3 and 5.07 × 10−3 � (α/π ) h(2)
n (Ee) � 2.20 ×

10−3, respectively.
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FIG. 1. Radiative corrections (α/π ) fn(Ee), (α/π ) h(1)
n (Ee), and (α/π ) h(2)

n (Ee) to the correlation coefficients G(Ee), N (Ee), and Qe(Ee) of
the electron energy spectrum and angular distribution, Eq. (3).

The term proportional to the fine-structure constant α in the correlation coefficient ζ (Ee)R(Ee) is induced by the Coulomb
distortion of the Dirac bispinor wave function of the electron [10,11].

Keeping the contributions of the terms of order of 1/M inclusively, the correlation coefficients under consideration take
the form

G(Ee) = −
(

1 + α

π
fn(Ee)

)(
1 + 1

M

1

1 + 3λ2
(2λ2 − 2(κ + 1) λ)

m2
e

Ee

)
,

N (Ee) = +
(

1 + α

π
h(1)

n (Ee)

)
me

Ee

{
−A0 + 1

M

1

1 + 3λ2

[(
16

3
λ2 −

(
4

3
κ − 16

3

)
λ − 2

3
(κ + 1)

)
Ee

−
(

4

3
λ2 −

(
4

3
κ − 1

3

)
λ − 2

3
(κ + 1)

)
E0

]

− 1

M

A0

1 + 3λ2

[
−(10λ2 − 4(κ + 1) λ + 2) Ee + (2λ2 − 2(κ + 1) λ)

(
E0 + m2

e

Ee

)]}
,

Qe(Ee) =
(

1 + α

π
h(2)

n (Ee)

) {
−A0 + 1

M

1

1 + 3λ2

[(
22

3
λ2 −

(
10

3
κ − 10

3

)
λ − 2

3
(κ + 1)

)
Ee

−
(

4

3
λ2 −

(
4

3
κ − 1

3

)
λ − 2

3
(κ + 1)

)
E0 + (2λ2 − 2(κ + 1) λ)me

]

− 1

M

A0

1 + 3λ2

[
−(10λ2 − 4(κ + 1) λ + 2) Ee + (2λ2 − 2(κ + 1) λ)

(
E0 + m2

e

Ee

)]}
,

R(Ee) = −α
me

ke

A0, (8)

where we have neglected the terms of order (α/π )(Ee/M) < 3 × 10−6. The correlation coefficients in Eq. (8) are defined by
a complete set of contributions to order 10−3, caused by the weak magnetism and proton recoil corrections of order 1/M and
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radiative corrections of order α/π . For example, at λ = −1,2750(9) and E0 = 1.2927 MeV we get

G(Ee) = −
(

1 + α

π
fn(Ee)

)(
1 + 1.41 × 10−3 me

Ee

)
,

N (Ee) = −
(

1 + α

π
h(1)

n (Ee)

)
me

Ee

A0

{
1 +

(
−6.06 × 10−3 + 1.41 × 10−3 me

Ee

− 1.85 × 10−5 Ee

E0

)}
, (9)

Qe(Ee) = −
(

1 + α

π
h(2)

n (Ee)

)
A0

{
1 +

(
−6.06 × 10−3 + 1.41 × 10−3 me

Ee

+ 2.99 × 10−2 Ee

E0

)}
,

where the correlation coefficient A0 is factorized out of the
brackets of the correlation coefficients N (Ee) and Qe(Ee).
The obtained results provide a robust theoretical background
to order 10−3 for planning experiments on the search for
contributions of order 10−4 of interactions beyond the SM.
The appearance of the term of order 10−5 is caused by an
occasional cancellation of different contributions.

III. WILKINSON’S ANALYSIS OF HIGHER
ORDER CORRECTIONS

In this section we discuss the contibutions of higher order
corrections, which are not calculated in Sec. II. These correc-
tions were calculated by Wilkinson [16] and we apply them
to the analysis of the correlations coefficients G(Ee), N (E),

Qe(Ee), and R(Ee), respectively. According to Wilkinson [16],
the higher order corrections with respect to those calculated
in Sec. II should be caused by (i) the proton recoil in the
Coulomb electron-proton final-state interaction, (ii) the finite
proton radius, (iii) the proton-lepton convolution, and (iv) the
higher order outer radiative corrections.

A. Proton recoil corrections, caused by the Coulomb
electron-proton final-state interaction

As has been found by Ivanov et al. [7], proton recoil, caused
by the Coulomb electron-proton final-state interaction, leads
to the following change of the Fermi function F (Ee,Z = 1)
(see Appendix H of Ref. [7]):

F (Ee,Z = 1) → F (Ee,Z = 1)

(
1 − πα

β

Ee

M
− πα

β3

E0 − Ee

M

�ke · �kν

EeEν

)
, (10)

where we have taken only the leading order α/M contributions. Then, Eν = E0 − Ee and �kν are the energy and three-momentum
of the electron antineutrino. As has been shown in [7], the contribution of the proton recoil, caused by the final-state Coulomb
electron-proton interaction(10), to the function ζ (Ee) agrees well with the result obtained by Wilkinson [16]. The corrections to
the correlation coefficients G(Ee), N (Ee), and Qe(Ee), caused by the change of the Fermi function Eq. (10), are given by

δG(Ee)

G(Ee)
= −πα

β

Ee

M
− 1

3

1 − λ2

1 + 3λ2

πα

β3

E0 − Ee

M
,

δN (Ee)

N (Ee)
= −πα

β

Ee

M
,

δQe(Ee)

Qe(Ee)
= − πα

β

Ee

M
− 1

3

1 − λ

1 + λ

πα

β3

E0 − Ee

M

(
1 + me

Ee

)
. (11)

In the experimental electron energy region 0.761 �
Ee � 0.966 MeV the corrections to the correlation
coefficients are plotted in Fig. 2. They vary in the following
limits: −2.394 × 10−5 � δG(Ee)/G(Ee) � −2.733 × 10−5,
−2.508 × 10−5 � δN (Ee)/N(Ee) � −2.779 × 10−5, and
1.220×10−4�δQe(Ee)/Qe(Ee)�2.724×10−5, respectively.

B. Corrections caused by finite proton radius

According to Wilkinson [16], the finite proton-radius
correction to the phase-space factor of the neutron β− decay
takes the form

L(Ee,Z = 1) = 1 + 13

60
α2 − α rp Ee

(
1 − 1

2

m2
e

E2
e

)

= 1 + 1.154 × 10−5 − 4.183 × 10−5 Ee

E0

+ 0.827 × 10−5 me

Ee

. (12)

The contribution of the function L(Ee,Z = 1) can be absorbed
by the function ζ (Ee), and through the expansions (8) may
provide equal corrections to the correlation coefficients G(Ee),
N (Ee), and Qe(Ee):

δG(Ee)

G(Ee)
= δN (Ee)

N (Ee)
= δQe(Ee)

Qe(Ee)
= 1 − L(Ee,Z = 1). (13)

The contribution of the finite proton-radius corrections to the
neutron lifetime is at the level of 10−5.

C. Corrections caused by lepton-nucleon convolution

As has been pointed out by Wilkinson [16], the wave
functions of the electron and electron antineutrino, calculated
at the center of the nucleon, are not constant and may undergo a
distortion in the nucleon volume that may lead to a convolution
of the decay rate. Wilkinson has described such an effect by the
function C(Ee,Z = 1). Following Wilkinson [16] we obtain
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FIG. 2. Relative corrections to the correlation coefficients G(Ee), N (Ee), and Qe(Ee) induced by the proton recoil on the Fermi function,
caused by the Coulomb electron-proton final-state interaction and calculated for the experimentally observable electron energy region 0.761 �
Ee � 0.966 MeV [7].

the function C(Ee,Z = 1) in the form

C(Ee,Z = 1) = 1 +
[(

− 9

20
α2 + 1

5
m2

er
2
p − 1

5
E2

0r
2
p

)
+

(
−1

5
α rp E0 − 2

15
E2

0r
2
p

)
1 − λ2

1 + 3λ2

]

+
[(

− 3

5
α rp E0 + 2

5
E2

0 r2
p

)
+

(
1

5
α rp E0 − 2

15
E2

0 r2
p

)
1 − λ2

1 + 3λ2

]
Ee

E0
+ 2

15
me E0 r2

p

1 − λ2

1 + 3λ2

me

Ee

+ 2

5

(
− 1 + 1

3

1 − λ2

1 + 3λ2

)
E2

0r
2
p

E2
e

E2
0

= 1 − 2.854 × 10−5 − 1.238 × 10−5 Ee

E0
− 0.018 × 10−5 me

Ee

− 1.361 × 10−5 E2
e

E2
0

. (14)

Because of the expansion (8) the corrections, caused by the
lepton-nucleon convolution, to the correlation coefficients
G(Ee), N (Ee), and Qe(Ee) are equal and are given by

δG(Ee)

G(Ee)
= δN (Ee)

N (Ee)
= δQe(Ee)

Qe(Ee)
= 1 − C(Ee,Z = 1). (15)

The contribution of the function C(Ee,Z = 1) to the neutron
lifetime is at the level of 10−5.

D. Higher order outer radiative corrections

The energy-independent radiative corrections of order
O(α2) and O(α3) have been calculated by Wilkinson [16]. The
contribution of these corrections to the phase-space factor was
defined by Wilkinson as J (Z = 1). Using the results, obtained
by Wilkinson [16], we get J (Z = 1) = 1 + 3.917 × 10−4.
Of course, such corrections give equal contributions to the
correlation coefficients δG(Ee)/G(Ee) = δN(Ee)/N (Ee) =
δQe(Ee)/Qe(Ee) = −3.917 × 10−4. In principle, they should

be taken into account for an experimental search of contribu-
tions of order 10−4 of interactions beyond the SM. The factor
J (Z = 1) changes the neutron lifetime by 0.3 s, which is, of
course, small compared to the current experimental accuracy
of the neutron lifetime τn = 880.2(1.2) s [22] (see also the
world averaged value τn = 880.2(1.2) s [23]).

IV. CONCLUSION

We have calculated the correlation coefficients of the
electron energy spectrum and angular distribution of the β−
decay of the neutron with polarized neutron and electron. We
have performed the calculation within the SM with V -A weak
interactions by taking into account the contributions of the
weak magnetism and proton recoil to next-to-leading order in
the large proton mass expansion and the radiative corrections
of order α/π , calculated to leading order in the large proton
mass expansion. Such an approximation provides a theoretical
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background for the analysis of contributions of order 10−4 of
interactions beyond the SM [7,8].

The correlation coefficients N (Ee) and R(Ee), given by
Eq. (8), averaged over the electron energy spectrum (see Eq.
(D-59) of Ref. [7]) and calculated at λ = −1.2750(9), are equal
to

〈N (Ee)〉 = 0.07767(22), 〈R(Ee)〉 = 0.000891(3). (16)

The recent experimental data Nexp = 0.067 ± 0.011 ± 0.004
and Rexp = 0.004 ± 0.012 ± 0.005 [15] do not contradict the
predictions of the SM within the experimental uncertainties.

Using the electron energy spectrum and angular distribu-
tion (3), we can define the rate of the β− decay of the neutron
via dependence on the neutron and electron polarizations,

λn(�ξn,�ξe) = λn (1 + 〈N̄ (Ee)〉 �ξn · �ξe), (17)

where λn is the β−-decay rate of the neutron, defining the
lifetime of the neutron τn = 1/λn, and is equal to [7]

λn = (1 + 3λ2)
G2

F |Vud|2
2π3

fn(E0,Z = 1). (18)

The Fermi integral fn(E0,Z = 1) is given by [7]

fn(E0,Z = 1) =
∫ E0

me

(E0 − Ee)2
√

E2
e − m2

e Ee F (Ee,Z = 1)

{(
1 + α

π
gn(Ee)

)
+ 1

M

× 1

1 + 3λ2

[
(10λ2 − 4(κ + 1) λ + 2) Ee − (2λ2 − 2(κ + 1) λ)

(
E0 + m2

e

Ee

)]}
dEe. (19)

The correlation coefficient N̄ (Ee) is defined by the expression

N̄ (Ee) = N (Ee) + 1

3

(
1 − me

Ee

)
Qe(Ee). (20)

For the experimental observation of the correlation coefficient
N̄ (Ee) we propose to analyze the asymmetry

P (�ξn,�ξe) = λn(�ξn,�ξe) − λn(−�ξn,�ξe)

λn(�ξn,�ξe) + λn(−�ξn,�ξe)
= 〈N̄ (Ee)〉PnPe, (21)

where Pn and Pe are the neutron and electron polarizations. The
asymmetry P (�ξn,�ξe) can be measured for the polarized neutron
and electron with parallel and antiparallel spins. Averaging
N̄ (Ee) over the electron energy spectrum (see Eq. (D-59) in
Appendix D of Ref. [7]) we get 〈N̄ (Ee)〉 = 0.0911. Thus, the
theoretical prediction for asymmetry P (�ξn,�ξe), obtained in the
SM with the weak magnetism, proton recoil, and radiative
corrections, is

P (�ξn,�ξe) = 0.0911 PnPe. (22)

Our results should provide a necessary background for the
measurement of the contributions of order 10−4 to the β−
decay of a polarized neutron with polarized electron, caused
by interactions beyond the SM [7,24].

The radiative corrections to the correlation coefficients
G(Ee), N (Ee), and Qe(Ee) are given by the functions fn(Ee),
h(1)

n (Ee), and h(2)
n (Ee), calculated in the Appendix. The photon-

electron and electron energy spectra and angular distributions
of the radiative β− decay of the neutron with polarized neutron
and electron, obtained in the Appendix, may be used for future
experiments on the radiative β− decay of the neutron [25].

We would like to emphasize that the radiative corrections,
described by the functions h(1)

n (Ee) and h(2)
n (Ee), and the

photon-electron and electron energy spectra and angular
distributions of the radiative β− decay of a neutron with

polarized neutron and electron have been never calculated in
the literature before.

Completing our discussion of these corrections, we would
like to make two comments: (i) for predictions of 10−4

precision, it is apparent that the higher order outer radiative
corrections, discussed in Sec. III, should be included, and (ii)
for an experimental search for interactions beyond the SM, a
“discovery” experiment with the required 5σ sensitivity will
require experimental uncertainties of a few parts in 10−5.
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APPENDIX: PHOTON-ELECTRON AND ELECTRON
ENERGY SPECTRA AND ANGULAR DISTRIBUTIONS OF
RADIATIVE β− DECAY OF NEUTRON WITH POLARIZED

NEUTRON AND ELECTRON

Using the results, obtained in [7], the photon-electron
spectrum and angular distribution of the radiative β− decay
of the neutron with polarized neutron and electron takes the
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form

d5λβ−
c γ (Ee,ω,�ke,�n )

dω dEed�ed�γ

= (1 + 3λ2)
α

π

G2
F |Vud|2
(2π )5

√
E2

e − m2
e Ee F (Ee,Z = 1) (E0 − Ee − ω)2 1

ω

([
β2 − (�n · �β )2

(1 − �n · �β )2

(
1 + ω

Ee

)
+ 1

1 − �n · �β
ω2

E2
e

]

+A0 �ξn ·
{(

β2 − (�n · �β )2

(1 − �n · �β )2
+ 1

1 − �n · �β
ω

Ee

)
�β +

[
− 1 − β2

(1 − �n · �β )2

ω

Ee

+ 1

1 − �n · �β
ω

Ee

(
1 + ω

Ee

)]
�n
}

+
{
−me

Ee

[
β2 − (�n · �β )2

(1 − �n · �β )2
ζ 0
e + ( �β · �ζe) − (�n · �β )(�n · �ζe)

(1 − �n · �β )2

ω

Ee

+ ζ 0
e − �n · �ζe

(1 − �n · �β )2

ω2

E2
e

]

− me

Ee

A0

[
β2 − (�n · �β )2

(1 − �n · �β )2
(�ξn · �ζe) + ( �β · �ζe) − (�n · �β )(�n · �ζe)

(1 − �n · �β )2
(�ξn · �n )

ω

Ee

+ ζ 0
e − �n · �ζe

(1 − �n · �β )2
(�ξn · �n )

ω2

E2
e

]})
, (A1)

where β = √
E2

e − m2
e/Ee is the electron velocity and ω is the photon energy, the vector �n is directed along the photon

three-momentum, and d�e and d�γ are the elements of the solid angles of the electron and the photon, respectively. The
four-vector of the electron polarization, ζ

μ
e = (ζ 0

e ,�ζe), is defined by

ζμ
e = (

ζ 0
e ,�ζe

) =
( �ke · �ξe

me

,�ξe +
�ke(�ke · �ξe)

me(Ee + me)

)
. (A2)

It obeys the constraints ζ 2
e = −1 and ke · ζe = 0. For the derivation of the electron energy spectrum and angular distribution, it

is convenient to rewrite Eq. (A1) as follows:

d5λβ−
c γ (Ee,ω,�ke,�n )

dω dEed�ed�γ

= (1 + 3λ2)
α

π

G2
F |Vud|2
(2π )5

√
E2

e − m2
e Ee F (Ee,Z = 1) (E0 − Ee − ω)2 1

ω

{[
β2 − (�n · �β )2

(1 − �n · �β )2

(
1 + ω

Ee

)
+ 1

1 − �n · �β
ω2

E2
e

]

+A0

{[
β2 − (�n · �β )2

(1 − �n · �β )2
+ 1

1 − �n · �β
ω

Ee

]
�ξn · �β +

[
− 1 − β2

(1 − �n · �β )2

ω

Ee

+ 1

1 − �n · �β
ω

Ee

(
1 + ω

Ee

)]
�ξn · �n

}

− me

Ee

{
β2 − (�n · �β )2

(1 − �n · �β )2

�ke · �ξe

me

+ 1

(1 − �n · �β )2

ω

Ee

�ke · �ξe

me

+
[ �n · �ζe

1 − �n · �β − �n · �ζe

(1 − �n · �β )2

]
ω

Ee

+ 1

(1 − �n · �β )2

ω2

E2
e

�ke · �ξe

me

− �n · �ζe

(1 − �n · �β )2

ω2

E2
e

}
− me

Ee

A0

{
β2 − (�n · �β )2

(1 − �n · �β )2
�ξn · �ζe + �n · �ξn

(1 − �n · �β )2

ω

Ee

�ke · �ξe

me

+
[

(�n · �ξn)(�n · �ζe)

1 − �n · �β − (�n · �ξn)(�n · �ζe)

(1 − �n · �β )2

]
ω

Ee

+ �n · �ξn

(1 − �n · �β )2

ω2

E2
e

�ke · �ξe

me

− (�n · �ξn)(�n · �ζe)

(1 − �n · �β )2

ω2

E2
e

}}
. (A3)

The integration over the directions of �n we carry out with the following auxiliary integrals:

∫
β2 − (�n · �β )2

(1 − �n · �β )2

d�γ

4π
= 1

β
ln

(
1 + β

1 − β

)
− 2,

∫
1

(1 − �n · �β )2

d�γ

4π
= 1

1 − β2
,

∫
1

1 − �n · �β
d�γ

4π
= 1

2β
ln

(
1 + β

1 − β

)
,

∫ �a · �n
(1 − �n · �β )2

d�γ

4π
= − 1

2β2

[
1

β
ln

(
1 + β

1 − β

)
− 2

1 − β2

]
(�a · �β ),

∫ �a · �n
1 − �n · �β

d�γ

4π
= 1

2β2

[
1

β
ln

(
1 + β

1 − β

)
− 2

]
(�a · �β ),

∫
(�a · �n )(�b · �n )

(1 − �n · �β )2

d�γ

4π
= 1

2

1

β2

[
1

β
ln

(
1 + β

1 − β

)
− 2

]
(�a · �b ) − 1

2

1

β4

[
3

β
ln

(
1 + β

1 − β

)
− 4 − 2

1 − β2

]
(�a · �β )(�b · �β ),

∫
(�a · �n )(�b · �n )

1 − �n · �β
d�γ

4π
= −1

4

1

β2

[
1 − β2

β
ln

(
1 + β

1 − β

)
− 2

]
(�a · �b ) + 1

4

1

β4

[
3 − β2

β
ln

(
1 + β

1 − β

)
− 6

]
(�a · �β )(�b · �β ). (A4)
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As a result the photon-electron energy spectrum and angular distribution takes the form

d4λβ−
c γ (Ee,ω)

dω dEed�e

= (1 + 3λ2)
α

π

G2
F |Vud|2
8π4

√
E2

e − m2
e Ee F (Ee,Z = 1) (E0 − Ee − ω)2

× 1

ω

{{(
1 + ω

Ee

+ 1

2

ω2

E2
e

)[
1

β
ln

(
1 + β

1 − β

)
− 2

]
+ ω2

E2
e

}
+

�ke · �ξn

Ee

A0

(
1 + 1

β2

ω

Ee

+ 1

2β2

ω2

E2
e

) [
1

β
ln

(
1 + β

1 − β

)
− 2

]

−
�ke · �ξe

Ee

(
1 + 1

β2

ω

Ee

+ 1

2β2

ω2

E2
e

)[
1

β
ln

(
1 + β

1 − β

)
− 2

]
− (�ξn · �ζe)

me

Ee

A0

{(
1 − 3 − β2

4β2

ω

Ee

− 1

2β2

ω2

E2
e

)

×
[

1

β
ln

(
1 + β

1 − β

)
− 2

]
+ 1

2

ω

Ee

}
− (�ξn · �ke)(�ke · �ξe)

E2
e

A0
3

4

1

β2

ω

Ee

(
1 + 2

3

ω

Ee

){
3 − β2

β2

[
1

β
ln

(
1 + β

1 − β

)
− 2

]
− 2

}}
.

(A5)

In terms of the irreducible scalar products, the photon-electron energy spectrum and angular distribution of the radiative β−
decay of the neutron reads

d4λβ−
c γ (Ee,ω)

dω dEed�e

= (1 + 3λ2)
α

π

G2
F |Vud|2
8π4

√
E2

e − m2
e Ee F (Ee,Z = 1) (E0 − Ee − ω)2

× 1

ω

{{(
1 + ω

Ee

+ 1

2

ω2

E2
e

)[
1

β
ln

(
1 + β

1 − β

)
− 2

]
+ ω2

E2
e

}
+

�ke · �ξn

Ee

A0

(
1 + 1

β2

ω

Ee

+ 1

2β2

ω2

E2
e

)[
1

β
ln

(
1 + β

1 − β

)
− 2

]

−
�ke · �ξe

Ee

(
1 + 1

β2

ω

Ee

+ 1

2β2

ω2

E2
e

)[
1

β
ln

(
1 + β

1 − β

)
− 2

]
− (�ξn · �ξe)

me

Ee

A0

((
1 − 3 − β2

4β2

ω

Ee

− 1

2β2

ω2

E2
e

)

×
[

1

β
ln

(
1 + β

1 − β

)
− 2

]
+ 1

2

ω

Ee

)
− (�ξn · �ke)(�ke · �ξe)

Ee(Ee + me)
A0

({(
1 − 3 − β2

4β2

ω

Ee

− 1

2β2

ω2

E2
e

)[
1

β
ln

(
1 + β

1 − β

)
− 2

]
+ 1

2

ω

Ee

}

+ (1 +
√

1 − β2)
3

4

1

β2

ω

Ee

(
1 + 2

3

ω

Ee

){
3 − β2

β2

[
1

β
ln

(
1 + β

1 − β

)
− 2

]
− 2

})}
. (A6)

Integrating over the photon energy over the region ωmin � ω � E0 − Ee we obtain the electron energy spectrum and angular
distribution

d3λβ−
c γ (Ee)

dEed�e

= (1 + 3λ2)
α

π

G2
F |Vud|2
8π4

√
E2

e − m2
e Ee F (Ee,Z = 1) (E0 − Ee)2

{
g

(1)
β−

c γ
(Ee,ωmin) +

�ke · �ξn

Ee

A0 g
(2)
β−

c γ
(Ee,ωmin)

−
�ke · �ξe

Ee

g
(2)
β−

c γ
(Ee,ωmin) − �ξn · �ξe

me

Ee

A0 g
(3)
β−

c γ
(Ee,ωmin) − (�ξn · �ke)(�ke · �ξe)

Ee(Ee + me)
A0 g

(4)
β−

c γ
(Ee,ωmin)

}
, (A7)

where the functions g
(i)
β−

c γ
(Ee,ωmin) for i = 1,2,3,4 are defined by the integrals

g
(1)
β−

c γ
(Ee,ωmin) =

∫ E0−Ee

ωmin

dω

ω

(E0 − Ee − ω)2

(E0 − Ee)2

{(
1 + ω

Ee

+ 1

2

ω2

E2
e

) [
1

β
ln

(
1 + β

1 − β

)
− 2

]
+ ω2

E2
e

}
,

g
(2)
β−

c γ
(Ee,ωmin) =

∫ E0−Ee

ωmin

dω

ω

(E0 − Ee − ω)2

(E0 − Ee)2

(
1 + 1

β2

ω

Ee

+ 1

2β2

ω2

E2
e

) [
1

β
ln

(
1 + β

1 − β

)
− 2

]
,

g
(3)
β−

c γ
(Ee,ωmin) =

∫ E0−Ee

ωmin

dω

ω

(E0 − Ee − ω)2

(E0 − Ee)2

{(
1 − 3 − β2

4β2

ω

Ee

− 1

2β2

ω2

E2
e

)[
1

β
ln

(
1 + β

1 − β

)
− 2

]
+ 1

2

ω

Ee

}
,

g
(4)
β−

c γ
(Ee,ωmin) =

∫ E0−Ee

ωmin

dω

ω

(E0 − Ee − ω)2

(E0 − Ee)2

({(
1 − 3 − β2

4β2

ω

Ee

− 1

2β2

ω2

E2
e

)[
1

β
ln

(
1 + β

1 − β

)
− 2

]
+ 1

2

ω

Ee

}

+ (1 +
√

1 − β2)
3

4

1

β2

ω

Ee

(
1 + 2

3

ω

Ee

) {
3 − β2

β2

[
1

β
ln

(
1 + β

1 − β

)
− 2

]
− 2

})
.

(A8)
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In terms of the functions g
(i)
β−

c γ
(Ee,ωmin), depending on the infrared cutoff ωmin, for i = 1,2,3,4 we determine the functions

fn(Ee) and h(�)
n (Ee) for � = 1,2, which do not depend on the infrared cutoff ωmin. They are

fn(Ee) = lim
ωmin→0

[
g

(2)
β−

c γ
(Ee,ωmin) − g

(1)
β−

c γ
(Ee,ωmin)

] + gF (Ee)
me

Ee

= 1

3

1 − β2

β2

E0 − Ee

Ee

(
1 + 1

8

E0 − Ee

Ee

)

×
[

1

β
ln

(
1 + β

1 − β

)
− 2

]
− 1

12

(E0 − Ee)2

E2
e

+ 1 − β2

2β
ln

(
1 + β

1 − β

)
,

h(1)
n (Ee) = lim

ωmin→0

[
g

(3)
β−

c γ
(Ee,ωmin) − g

(1)
β−

c γ
(Ee,ωmin)

] + gF (Ee)
me

Ee

− gF (Ee)
Ee

me

= −1

4

1 + β2

β2

E0 − Ee

Ee

×
(

1 + 1

6

E0 − Ee

Ee

)[
1

β
ln

(
1 + β

1 − β

)
− 2

]
+ 1

6

E0 − Ee

Ee

(
1 − 1

2

E0 − Ee

Ee

)
− β

2
ln

(
1 + β

1 − β

)
,

h(2)
n (Ee) = lim

ωmin→0

[
g

(4)
β−

c γ
(Ee,ωmin) − g

(1)
β−

c γ
(Ee,ωmin)

] + gF (Ee)
me

Ee

+ gF (Ee) = −1

4

1 + β2

β2

E0 − Ee

Ee

×
(

1 + 1

6

E0 − Ee

Ee

)[
1

β
ln

(
1 + β

1 − β

)
− 2

]
+ 1

6

E0 − Ee

Ee

(
1 − 1

2

E0 − Ee

Ee

)
+ (1 +

√
1 − β2)

×
{

1

4β2

E0 − Ee

Ee

(
1 + 1

18

E0 − Ee

Ee

)(
3 − β2

β2

[
1

β
ln

(
1 + β

1 − β

)
− 2

]
− 2

)
+

√
1 − β2

2β
ln

(
1 + β

1 − β

)}
.

(A9)

For the calculation of the functions fn(Ee) and h(�)
n (Ee) for � = 1,2, defining the radiative corrections to the correlation coefficients

AW (Ee), G(Ee), N (Ee), and Qe(Ee), respectively, we have to take into account the contribution of the virtual photon exchanges,
inducing the scalar and tensor weak nucleon-lepton coupling constant (see Appendix B of Ref. [7] ).

Finally we would like to note that for the calculation of the radiative corrections, defined by the functions fn(Ee) and h(�)
n (Ee)

for � = 1,2, the final result does not depend on the regularization procedure. Indeed, one may use the infrared cutoff ωmin, which
may be identified with the experimental threshold energy of photons, and the finite photon mass regularization (FPM) [20] (see
also [3,7]). In turn the function gn(Ee) has to be calculated with the FPM regularization in order to satisfy gauge invariance and
the Kinoshita-Lee-Nauenberg theorem [20] (see also [7]).
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