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Radiative corrections to elastic proton-electron scattering measured in coincidence
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The differential cross section for elastic scattering of protons on electrons at rest is calculated, taking into
account the QED radiative corrections to the leptonic part of interaction. These model-independent radiative
corrections arise due to emission of the virtual and real soft and hard photons as well as to vacuum polarization.
We analyze an experimental setup when both the final particles are recorded in coincidence and their energies
are determined within some uncertainties. The kinematics, the cross section, and the radiative corrections are
calculated and numerical results are presented.
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I. INTRODUCTION

The polarized and unpolarized scattering of electrons off
protons has been widely studied, as it is considered the simpler
way to access information on the proton structure, assuming
that the interaction occurs through the exchange of a virtual
photon of four-momentum q. The experimental determination
of the elastic proton electromagnetic form factors in the region
of small and large momentum transfer squared is one of the
major field of research in hadron physics (see the review in
Ref. [1]). New experimental possibilities have allowed us to
reach better precision and to perform polarization experiments
as earlier suggested in Refs. [2,3].

The determination of the proton electromagnetic form fac-
tors, at Q2 = −q2 � 1 GeV2, from polarization observables
showed a surprising result: the polarized and unpolarized
experiments, although based on the same theoretical back-
ground (same formalism and same assumptions), ended up
with inconsistent values of the form factor ratio (see Ref.
[4] and references therein). A possible explanation of this
discrepancy is to take into account higher-order radiative
corrections [5,6] including the interference between one- and
two-photon exchange [7], correlations among parameters [8],
and normalization of data [9]. This puzzle has given rise to
many speculations and different interpretations, suggesting
further experiments (for a review, see Ref. [10]).

In the region of small Q2 one can determine the proton
charge radius (rE), which is one of the fundamental quantities
in physics. Precise knowledge of its value is important for the
understanding of the structure of the nucleon in the theory of
strong interactions (QCD) as well as in the spectroscopy of
atomic hydrogen.

Recently, the determination of the rE with muonic atoms
lead to the so-called proton radius puzzle. Experiments on
muonic hydrogen by laser spectroscopy measurement of the
μp (2S−2P ) transition frequency, in particular the latest result
on the proton charge radius [11,12] rE = 0.84087(39) fm, is
one order of magnitude more precise but smaller by seven
standard deviations compared to the average value rE =
0.8775(51) fm, which is recommended by the 2010-CODATA

review [13]. The CODATA value is obtained coherently from
hydrogen atom spectroscopy and electron-proton elastic scat-
tering measurements. The latest experiments with electrons at
Jlab [14] and MAMI [15] confirm this value, and, therefore, do
not agree with the results on the proton radius from the laser
spectroscopy of the muonic hydrogen.

While the corrections to the laser spectroscopy experiments
seem well under control in the frame of QED and may be
estimated with a precision better than 0.1%, in the case of
electron-proton elastic scattering the best achieved precision
is of the order of few percentages. Different sources of
possible systematic errors of the muonic experiment have been
discussed; however, no definite explanation of this difference
has been given yet (see Ref. [16] and references therein).

The proton radius puzzle lead to a large number of theoreti-
cal papers suggesting solutions based on different approaches,
as new physics beyond the Standard Model [17,18]. Other
approaches analyze the extraction of the proton radius from
the electron-proton scattering data. In Ref. [19], it is argued that
a proper Lorentz transformation of the form factors accounts
for the discrepancy. The authors of Ref. [20] stated that radius
extraction with Taylor series expansions cannot be trusted to
be reliable. A fit function based on a conformal mapping was
used in Refs. [21,22]. The extracted value of the proton radius
agrees with the one obtained from muonic hydrogen. A similar
result was obtained in Ref. [23] using the approach based on
the chiral perturbation theory [24].

In Ref. [25], the authors argued that the proton radius puzzle
can be explained by truncating the electron scattering data to
low momentum transfer. But the authors of Ref. [26] showed
that the procedure is inconsistent and violates the Fourier
theorem. The authors of the paper [27] inspected several recent
refits of the Mainz data that result in small radii and found flaws
of various kinds in all of them.

A recent review summarizes the current state of the problem
and gives an overview over upcoming experiments [28].

More experiments in the region of small Q2 are expected
to shed some light on this intriguing problem. The PRad
collaboration [29] is currently preparing a new magnetic-
spectrometer-free electron-proton scattering experiment in
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Hall B at the Jefferson Lab for a new independent measurement
of rE . This will allow us to reach an extremely low Q2 range
(10−4–10−2) (GeV/c)2 with an incident electron beams with
energy of few GeV. The lowest Q2 range measured until now
is in the recent Mainz experiment [15] where the minimum
value of Q2 was 3 × 10−3 (GeV/c)2. Reaching a low Q2

range is critically important since the charge radius of the
proton is extracted as the slope of the measured electric form
factor GE

p (Q2) for Q2 → 0, requiring an extrapolation. The
MUSE experiment [30] (PSI, Switzerland) will simultaneously
measure elastic electron and muon scattering on the proton in
both charge states. The expected precision on cross-section
measurements for the elastic scattering of μ+/− and e+/− is
better than the percentage over a Q2 range from 0.002 to
0.07 GeV2. Low-energy ep scattering experiments are also
planned at the PRAE platform [31], making use of a high-
intensity low-energy electron beam and with a very precise
measurement of the electron angle and energy. At the Mainz
Microtron, the simultaneous detection of the proton and the
electron is proposed [32] in the measurement of the absolute
cross section at per-mille absolute precision.

Recently, we suggested that proton elastic scattering on
atomic electrons may allow a precise measurement of the
proton charge radius [33]. The main advantage of this proposal
is that inverse kinematics allows one to access very small
values of the transferred momenta, up to four orders of
magnitude smaller than the ones presently achieved, where
the cross section is huge. Moreover, the applied radiative
corrections differ essentially, as the electron mass should be
taken explicitly into account. The unpolarized and polarized
observables for the elastic scattering of a proton projectile on
an electron target were derived in Ref. [34] and references
therein. Although we are aware that an experiment measuring
the elastic cross section at very small Q2 cannot, by itself,
produce a constraint on the slope of form factors, and therefore
a precise extraction of the radius, a combined series of low
Q2 very precise measurements, combined with a physical
parametrization of form factors, will help for a meaningful
extrapolation to the static point.

The inverse kinematics was previously used in a number
of the experiments to measure the pion or kaon radius from
the elastic scattering of negative pions (kaons) from electrons
in a liquid-hydrogen target. The first experiment was done at
Serpukhov [35] with pion beam energy of 50 GeV. Later, a few
experiments were done at Fermilab with a pion beam energy
of 100 GeV [36] and 250 GeV [37]. At this laboratory, the
electromagnetic form factors of negative kaons were measured
by direct scattering of 250 GeV kaons on stationary electrons
[38]. The typical values of the radiative corrections in this case
are of the order of 7–10% [39,40]. Later, a measurement of
the pion electromagnetic form factor was done at the CERN
SPS [41,42] by measuring the interaction of 300 GeV pions
with the electrons in a liquid hydrogen target. This experiment
measured only the angles of the final particles to select the
pion-electron elastic events, whereas, in previous experiments,
both three-momenta were measured.

The use of the inverse kinematics is proposed in a
new experiment at CERN [43] to measure the running
of the fine-structure constant in the spacelike region by
scattering high-energy muons (with energy 150 GeV) on
atomic electrons, μe → μe. The aim of the experiment is
the extraction of the hadron vacuum polarization contribution.
The proposed technique will be similar to the one described in
Refs. [41,42] for the measurement of the pion form factor: a
precise measurement of the scattering angles of both outgoing
particles.

For the analysis of the results of the possible experiment
on the elastic proton-electron scattering, it is necessary to
take into account radiative corrections. In this paper we
calculate the model-independent QED radiative corrections
to the differential cross section of the elastic scattering of the
protons on electrons at rest. The radiative corrections due to
the emission of virtual and real (soft and hard) photons in the
electron vertex as well the vacuum polarization are taken into
account. The corresponding Feynmann diagrams are shown
in Fig. 1. We consider an experimental setup where the final
particles are detected in coincidence and their energies are
measured within some uncertainty. Numerical estimations of
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FIG. 1. Feynman’s diagrams corresponding to the Born approximation and first-order virtual radiative corrections (top), and to initial and
final real photon emission, Ms (soft) and Mh (hard), from the lepton vertex (bottom).
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these corrections in the considered case are given and their
dependence on the kinematical variables is illustrated.

II. FORMALISM

Let us consider the reaction

p(p1) + e(k1) → p(p2) + e(k2), (1)

where the particle momenta are indicated in parenthesis and
q = k1 − k2 = p2 − p1 is the four-momentum of the virtual
photon.

A. Inverse kinematics

A general characteristic of all reactions of elastic and
inelastic hadron scattering by atomic electrons (which can be
considered at rest) is the small value of the momentum transfer
squared, even for relatively large energies of the colliding
particles. Let us give details of the order of magnitude and
the dependence of the kinematic variables, as they are very
specific for these reactions. In particular, the electron mass
cannot be neglected in the kinematics and dynamics of the
reaction, even when the beam energy is of the order of GeV.

One can show that, for a given energy of the proton beam,
the maximum value of the four-momentum transfer squared,
in the scattering on electrons at rest, is

(Q2)max = 4m2 �p2

M2 + 2mE + m2
, (2)

where m(M) is the electron (proton) mass and E( �p) is the
energy (momentum) of the proton beam. Being proportional
to the electron mass squared, the four-momentum transfer
squared is restricted to very small values, where the proton
can be considered structureless.

The four-momentum transfer squared is expressed as a
function of the energy of the scattered electron, ε2, as q2 =
(k1 − k2)2 = 2m(m − ε2), where

ε2 = m
(E + m)2 + �p2 cos2 θe

(E + m)2 − �p2 cos2 θe

, (3)

where θe is the angle between the proton beam and the scattered
electron momenta.

From energy and momentum conservation, one finds the
following relation between the angle and the energy of the
scattered electron:

cos θe = (E + m)(ε2 − m)

| �p|
√

ε2
2 − m2

, (4)

which shows that cos θe � 0 (the electron can never be
scattered backward). One can see from Eq. (3) that, in inverse
kinematics, the available kinematical region is reduced to small
values of ε2:

ε2,max = m
2E(E + m) + m2 − M2

M2 + 2mE + m2
, (5)

which is proportional to the electron mass. From the momen-
tum conservation, one can find the following relation between

the energy and the angle of the scattered proton E2 and θp:

E±
2 =

(E + m)(M2 + mE) ± M �p2 cos θp

√
m2

M2 − sin2 θp

(E + m)2 − �p2 cos2 θp

,

(6)

showing that, for one proton angle, there may be two values
of the proton energies (and two corresponding values for the
recoil-electron energy and angle as well as for the transferred
momentum q2). This is a typical situation when the center-of-
mass velocity is larger than the velocity of the projectile in the
center of mass, where all the angles are allowed for the recoil
electron. The two solutions coincide when the angle between
the initial and final hadron takes its maximum value, which is
determined by the ratio of the electron and scattered hadron
masses Mh, sin θh,max = m/Mh. One concludes that hadrons
are scattered on atomic electrons at very small angles and that
the larger the hadron mass, the smaller the available angular
range for the scattered hadron.

B. Differential cross section

In the one-photon exchange (Born) approximation, the
matrix element M(B) of the reaction (1) can be written as

M(B) = e2

q2
jμJμ, (7)

where jμ(Jμ) is the leptonic (hadronic) electromagnetic
current:

jμ = ū(k2)γμu(k1),

Jμ = ū(p2)

[
F1(q2)γμ − 1

2M
F2(q2)σμνqν

]
u(p1)

= ū(p2)
[
GM (q2)γμ − F2(q2)Pμ

]
u(p1), (8)

where Pμ = (p1 + p2)μ/(2M). F1(q2) and F2(q2) are the
Dirac and Pauli proton electromagnetic form factors, and
GM (q2) = F1(q2) + F2(q2) is the Sachs proton magnetic form
factor. The matrix element squared is written as

|M(B)|2 = 16π2 α2

q4
LμνWμν, with Lμν = jμj ∗

ν ,Wμν = JμJ ∗
ν ,

(9)

where α = e2/(4π ) = 1/137 is the electromagnetic fine struc-
ture constant. The leptonic tensor, Lμν , for unpolarized initial
and final electrons (averaging over the initial electron spin)
has the form:

Lμν = q2gμν + 2(k1μk2ν + k1νk2μ). (10)

The hadronic tensor Wμν , for unpolarized initial and final
protons can be written in the standard form, through two
unpolarized structure functions:

Wμν =
(

−gμν + qμqν

q2

)
W1(q2) + PμPνW2(q2). (11)

Averaging over the initial proton spin, the structure functions
Wi , i = 1,2, are expressed in terms of the nucleon electromag-
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netic form factors:

W1(q2) = −q2G2
M (q2), W2(q2) = 4M2 G2

E(q2) + τG2
M (q2)

1 + τ
,

(12)

where GE(q2) = F1(q2) − τF2(q2) is the proton electric form
factor and τ = −q2/4M2.

The expression of the differential cross section, as a
function of the recoil-electron energy ε2, for unpolarized
proton-electron scattering can be written as

dσ (B)

dε2
= πα2

m �p2

D
q4

, (13)

with

D = q2(q2 + 2m2)G2
M (q2)

+ 2

[
q2M2 + 1

1 + τ

(
2mE + q2

2

)2
]

× [
G2

E(q2) + τG2
M (q2)

]
. (14)

This expression is valid in the one-photon exchange (Born)
approximation in the reference system where the target
electron is at rest.

The expression of the differential cross section, as a function
of the four-momentum transfer squared, is

dσ (B)

dq2
= πα2

2m2 �p2

D
q4

. (15)

Last, the differential cross section over the scattered-electron
solid angle has the following expression:

dσ (B)

d
e

= α2

8m4| �p|
(

1 − 4m2

q2

)3/2 D
E + m

. (16)

III. RADIATIVE CORRECTIONS

Let us consider the model-independent QED radiative correc-
tions which are due to the vacuum polarization and emission
of the virtual and real (soft and hard) photons in the electron
vertex. The corresponding diagrams are shown in Fig. 1.

A. Soft photon emission

In this section we calculate the contribution to the radiative
corrections of the soft photon emission when the photons are
emitted by the initial and final electrons,

p(p1) + e(k1) → p(p2) + e(k2) + γ (k). (17)

The matrix element in this case (the photon emitted from the
electron vertex) is given by

M(γ ) = 1

q2
(4πα)3/2j (γ )

μ Jμ, (18)

where the electron current corresponding to the photon
emission is

j (γ )
μ = ū(k2)

[
1

d1
γμ(k̂1 − k̂ + m)γρ + 1

d2
γρ(k̂2 + k̂ + m)γμ

]
× u(k1)A∗

ρ, (19)

where Aρ is the polarization vector of the emitted photon and
d1 = −2k · k1,d2 = 2k · k2.

The differential cross section of reaction (17) can be
written as

dσ (γ ) = (2π )−5

32m| �p| |M
(γ )|2 d3�k2

ε2

d3 �p2

E2

d3�k
ω

× δ4(k1 + p1 − k2 − p2 − k). (20)

It is necessary to integrate over the photon phase space. Since
the photons are assumed to be soft, then the integration over
the photon energy is restricted to ω � ω̄. The quantity ω̄ is
determined by particular experimental conditions and it is
assumed that ω̄ is sufficiently small to neglect the momentum
k in the δ function and in the numerators of the matrix element
M(γ ). In order to avoid the infrared divergence, which occurs
in the soft photon cross section, a small fictitious photon mass
λ is introduced.

In the soft photon approximation, the matrix element
(18) is

M(soft) =
√

4πα

(
k2 · A∗

k · k2
− k1 · A∗

k · k1

)
M(B). (21)

The differential cross section (20), integrated over the soft
photon phase space, can be written as

dσ (soft) = δ(s)dσ (B), (22)

where the radiative correction due to the soft photon emission
is

δ(s) = − α

4π2

∫ ω̄

λ

√
ω2 − λ2dω

∫
d
k

×
[

m2

(k · k1)2
+ m2

(k · k2)2
− 2

k1 · k2

k · k1k · k1

]
. (23)

Assuming ω̄ � m and using the results of the paper [44], we
can do the integration and the expression for δ(s) has the form

δ(s) = α

π

{
1 − 2 ln

2ω̄

λ
+ ε2

k2

[
ln

ε2 + k2

m

×
(

1 + 2 ln
2ω̄

λ
+ ln

ε2 + k2

m
+ 2 ln

m

2k2

)
−π2

6
+ Li2

(
ε2 − k2

ε2 + k2

)]}
, (24)

where k2 ≡ |�k2| (�k2 is the momentum of the recoil electron)
and Li2(x) is the Spence (dilogarithm) function defined as

Li2(x) = −
∫ x

0

ln (1 − t)

t
dt.

B. Virtual photon emission

In this section, we calculate the contribution to the radiative
corrections of the virtual photon emission in the electron vertex
(the electron vertex correction) and the vacuum polarization
term.
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The matrix element corresponding to this process can be written as

M(virt) = 1

q2
4παJμū(k2)�μ(k1,k2)u(k1), (25)

where we introduce

�μ(k1,k2) = 2iα

(2π )3

∫
d4k

k2 − λ2

Ôμ

(k2 − 2k · k1)(k2 − 2k · k2)
(26)

and the matrix Ôμ is

Ôμ = 4k1 · k2γμ − 2(k̂1k̂γμ + γμk̂k̂2) − 2k̂γμk̂. (27)

The integration over the virtual-photon four-momentum k leads to the following expression for the function �μ(k1,k2):

�μ(k1,k2) = α

4π

({
ln

�2

m2
+ 1

2
+

∫ 1

0

dx

P 2
x

[
4m2 − 3

2
q2 + (q2 − 2m2)

(
ln

P 2
x

m2
+ ln

m2

λ2

)]}
γμ + m

∫ 1

0

dx

P 2
x

σμνqν

)
, (28)

where P 2
x = m2 − x(1 − x)q2 and � is the cut parameter which defines the region of infinite momenta of the virtual photon.

Thus we avoid the ultraviolet divergence. The regularized vertex function can be obtained subtracting the contribution

�μ(k1,k1) = α

4π
γμ

(
ln

�2

m2
+ 9

2
− 2 ln

m2

λ2

)
from the expression (28). As a result, we have

�R
μ(k1,k2) = �μ(k1,k2) − �μ(k1,k1) = α

4π
(Aγμ + Bσμνqν), (29)

where

A = −4 + 2 ln
m2

λ2
+

∫ 1

0

dx

P 2
x

[
4m2 − 3

2
q2 + (q2 − 2m2)

(
ln

P 2
x

m2
+ ln

m2

λ2

)]
, B = m

∫ 1

0

dx

P 2
x

. (30)

As we limit ourselves to the calculation of the radiative corrections at the order of α in comparison with the Born term, it is
sufficient to calculate the interference of the Born matrix element with M(virt),

|M|2 = |M(B)|2 + 2Re[M(virt)M(B)∗] = (1 + δ1 + δ2)|M(B)|2, (31)

where the term δ1 is due to the modification of the γμ term in the electron vertex, and the term δ2 is due to the presence of the
σμνqν structure in the electron vertex.

The integration over the x variable in the expression (30) gives the following results for the radiative corrections due to the
emission of the virtual photon in the electron vertex

δ1 = α

π

(
−2 + 2 ln

m

λ

[
1 − ε2

k2
ln

(
ε2 + k2

m

)]
+ m + 3ε2

2k2
ln

(
ε2 + k2

m

)
− 1

2

ε2

k2
ln

(
Q2

m2

)
ln

(
ε2 + k2

m

)
+ ε2

k2

{
− ln

(
m + ε2

k2

)
ln

(
ε2 + k2

m

)
+ Li2

[
ε2 + k2 + m

2(m + ε2)

]
− Li2

[
ε2 − k2 + m

2(m + ε2)

}])
,

δ2 = 4
α

π

mM2q2

k2D ln

(
ε2 + k2

m

)(
G2

E − 2τG2
M

)
. (32)

The radiative correction due to the vacuum polarization is (the electron loop has been taken into account):

δ(vac) = 2α

3π

⎧⎨⎩−5

3
+ 4

m2

Q2
+

(
1 − 2

m2

Q2

)√
1 + 4

m2

Q2
ln

√
1 + 4 m2

Q2 + 1√
1 + 4 m2

Q2 − 1

⎫⎬⎭. (33)

For small and large values of the Q2 variable, we have

If Q2 � m2, δ(vac) = 2α

15π

Q2

m2
, If Q2 � m2, δ(vac) = 2α

3π

(
−5

3
+ ln

Q2

m2

)
.

Taking into account the radiative corrections given by Eqs. (24), (32), and (33), we obtain the following expression for the
differential cross section:

dσ (RC) = [1 + δ1 + δ2 + δ(s) + δ(vac)]dσ (B) = [1 + δ0 + δ̄ + δ(vac)]dσ (B), (34)
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where the radiative corrections δ0 and δ̄ are given by

δ0 = 2α

π
ln

ω̄

m

[
ε2

k2
ln

(
ε2 + k2

m

)
− 1

]
,

δ̄ = α

π

(
−1 − 2 ln 2 + ε2

k2

{
ln

(
ε2 + k2

m

)[
1 + ln

(
ε2 + k2

m

)
+ 2 ln

(
m

k2

)
+ m + 3ε2

2ε2
− ln

(
ε2 + m

k2

)
− 1

2
ln

(
Q2

m2

)]
+4m

M2q2

ε2D ln

(
ε2 + k2

m

)(
G2

E − 2τG2
M

) −π2

6
+ Li2

(
ε2 − k2

ε2 + k2

)
+ Li2

[
ε2 + k2 + m

2(ε2 + m)

]
− Li2

[
ε2 − k2 + m

2(ε2 + m)

]})
. (35)

We separate the contribution δ0 since it can be summed up in all orders of the perturbation theory using the exponential form of
the electron structure functions [45]. To do this it is sufficient to keep only the exponential contributions in the electron structure
functions. The final result can be obtained by the substitution of the term (1 + δ0) by the following term:(

ω̄

m

)β
β

2

∫ 1

0
x

β
2 −1(1 − x)

β
2 dx, (36)

where

β = 2α

π

[
ε2

k2
ln

(
ε2 + k2

m

)
− 1

]
.

C. Hard photon emission

In this section we calculate the radiative correction due to the hard photon emission by the initial and recoil electrons only
(the model-independent part). The contribution due to radiation from the initial and scattered protons (the model-dependent
part) requires a special consideration and we leave it for other investigations. We consider the experimental setup when only the
energies of the scattered proton and final electron are measured.

The differential cross section of the reaction (17), averaged over the initial particle spins, can be written as

d σ (h) = α3

32 π2

1

m p

L
(γ )
μν Wμν

q4
1

d3k2

ε2

d3p2

E2

d3k

ω
δ4(p1 + k1 − p2 − k2 − k), (37)

where q1 = k1 − k2 − k and the leptonic tensor has the following form:

L(γ )
μν = A0g̃μν + A1k̃1μk̃1ν + A2k̃2μk̃2ν + A12(k̃1μk̃2ν + k̃1ν k̃2μ) ,

A0 = 4

[
d1

d2
+ d2

d1
− 2q2

1

(
m2

d2
1

+ m2

d2
2

+ 2
k1 · k2

d1d2

)]
, A1 = 16

q2
1

d1d2
− 32

m2

d2
2

,

A2 = 16
q2

1

d1d2
− 32

m2

d2
1

, A12 = −32
m2

d1d2
. (38)

The hadronic tensor is defined by Eqs. (11) and (12) with the substitution q → q1.
The contraction of leptonic and hadronic tensors reads

L(γ )
μν Wμν = −W1

(
q2

1

)
S1 + W2

(
q2

1

)
M2

S2 , (39)

where the functions S1,2 have the following expressions:

S1 = 8

(
d1

d2
+ d2

d1

)
− 16

d1d2

(
2m2 + q2

1

)[
2k1 · k2 + m2

(
d1

d2
+ d2

d1

)]
, (40)

S2 = 4M2

[
d1

d2
+ d2

d1
− 2q2

1

(
m2

d2
1

+ m2

d2
2

+ 2
k1 · k2

d1d2

)]
+ 32

m2

d1d2
(k · p1)2 + 16

(k1 · p1)2

d1
+ 16

(k2 · p1)2

d2
+ 16k1 · p1k2 · p1

×
[

1

d1
+ 1

d2
− 2

(
m2

d2
1

+ m2

d2
2

+ 2
k1 · k2

d1d2

)]
+ 16k · p1

[
k1 · p1

d2
2

(d2 − 2m2) − k2 · p1

d2
1

(d1 − 2m2) + 2
k1 · k2

d1d2
(k2 · p1 − k1 · p1)

]
. (41)

Integrating over the scattered proton variables we obtain the following expression for the differential cross section:

dσ (h) = α3

32π2

1

mp

∫
d3k

ω

∫
d3k2

ε2 E2

1

q4
1

L(γ )
μν Wμν δ(m + E − ε2 − E2 − ω) . (42)
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x

y

ϕ

−→p

−→
k2

−→p −−→
k

η θ

z

φ−→
k

FIG. 2. Coordinate system and definition of the angles used for
the integration over the variables of the final state.

To integrate further we have to define the coordinate system.
Following Ref. [39], where the π − e− scattering has been
analyzed, let us take the z axis along the vector �p − �k and the
momenta of the initial proton and emitted photon lie in the xz
plane. The momentum of the scattered electron is defined by
the polar θ and azimuthal ϕ angles as it is shown in Fig. 2. The
angle η(φ) is the angle between the beam direction and z axis
(emitted photon momentum).

Integrating over the polar angle of the scattered electron we
obtain:

dσ (h)

dε2
= α3

32π2

1

mp

∫
d3 k

ω

∫
dϕ

| �p − �k|
1

q4
1

L(γ )
μν Wμν. (43)

The region of allowed photon momenta should be determined.
The experiment counts those events which, within the accuracy
of the detectors, are considered “elastic.” We refer to the
experimental situation where the energies of the scatted proton
and recoil electron are measured. Because of the uncertainties
in determination of the recoil electron (�ε2) and scattered
proton (�E2) energies, which usually are proportional to ε2

and E2, respectively, the elastic proton-electron is always
accompanied by hard photon emission with energies up to
�ε2 + �E2. At the proton beam energies of the order of
100 GeV this value can reach a few GeV. The events for
which the scattered proton energy is E2 ± �E2 and the
recoil electron energy is ε2 ± �ε2 (they satisfy the condition
E + m = E2 + ε2) are considered as true elastic events. Here,
�E2 and �ε2 are the errors in the measurement of the final
proton and recoil electron energies. The plot of the variable
E2 versus the variable ε2 is shown in Fig. 3. The shaded
area in this figure represents those events allowed by the
experimental limitations. The relation between the energies
E2 and ε2, as it is shown in Fig. 3, has to be transformed
into a limit on the possible photon momentum �k. We consider
the experimental setup where no angles are measured and,
therefore, the orientation of the photon momentum �k is not

FIG. 3. Plane of the E2 and ε2 variables where the shaded area
represents the kinematically allowed region within the experimental
setup.

limited. In our calculation we restrict ourselves with the
region ε2 < ε2max − �E, where �E = �E2 + �ε2 and ε2max

is defined by Eq. (5). In this case we get for the experimental
restriction the isotropic condition

ω � �E.

In the other case, ε2 > ε2max − �E, the restriction for the
photon energy is

ω � ε2max − ε2.

FIG. 4. Integration region over the variables ω and
y. Here y± = E ± p,ȳ = [(m − ε2)(E − ε2 − ω) +

√
ε2

2 − m2√
(E + m − ε2 − ω)2 − M2]/ω. The quantity ωs is defined by

positive solution of the equation ȳ = y+ and given by Eq. (45).
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In the chosen coordinate system the element of solid angle becomes d3k → 2π ω2 dω d cos φ. Now we introduce a new
variable y = E − p cos φ > 0 and rewrite Eq. (43) as

dσ (h)

dε2
= α3

16 π

1

mp2

∫
ω dω

∫
d y

∫ 2π

0

1

q4
1 | �p − �k|

[
− W1

(
q2

1

)
S1 + W2

(
q2

1

)
M2

S2

]
d ϕ , (44)

where the integration region over the variables ω and y is shown in Fig. 4, and

ωs = (|�k2| − | �p| + x)
M2|�k2|(|�k2| + | �p|) + (m − ε2)[M2(x − m) + 2m(2Ex + m2 − mε2)]

4(m − ε2)[x(M2 + m2 + 2mE) − m(M2 + mE)] + M4
, (45)

where x = E + m − ε2. The quantity ωs represents the max-
imal energy, when the photon can be emitted in the whole
angular phase space. The dependence of this quantity on the
recoil electron energy, at different values of the proton beam
energy, is shown in Fig. 5. We see that it is of the order of
the electron mass m in a wide range of the energies ε2 and
E. Because our analytical calculations for the soft photon
correction were performed under the condition ω̄ � m, where
ω̄ is the maximal energy of the soft photon, we cannot identify
ωs with ω̄ � m, as it has been done in Ref. [39].

Following the Ref. [39], we include in the integral (44) the
weight function g(ω) given by

g(ω) = 1 for ω̄ < ω < �E2 − �ε2,

g(ω) = �E2 + �ε2 − ω

2�ε2

for �E2 − �ε2 < ω < �E2 + �ε2 .

In fact, the function g(ω) is the ratio of the straight line
segments cut by the lines E2 + ε2 + ω = E + m and E2 +
ε2 = E + m in the shaded region in Fig. 3.

So, the expression for the cross section given by Eq. (44)
can be written as a sum of two terms,

dσ (h)

dε2
= α3

16 π

1

m p2

[∫ �E

ωs

g(ω) C1(ω) dω +
∫ ωs

ω̄

C2(ω) dω

]
,

(46)

FIG. 5. Maximum energy of the photon when emitted in the
whole angular phase space.

where

C1(ω) =
∫ ȳ

y−

∫ 2π

0

{
ω

q4
1 | �p − �k|

[
−W1

(
q2

1

)
S1 + W2

(
q2

1

)
M2

S2

]}
× dϕdy,

C2(ω) =
∫ y+

y−

∫ 2π

0

{
ω

q4
1 | �p − �k|

[
−W1

(
q2

1

)
S1 + W2

(
q2

1

)
M2

S2

]}
× dϕdy. (47)

The scalar products of various four-momenta, which enter
in the expressions for S1,S2, and q2

1 , are expressed, in terms of
the angles, as illustrated in Fig. 2, and the photon energy, as
follows:

d1 = −2m ω , k1 · k2 = m ε2 , k1 · p1 = m E ,

k · p1 = ω(E − p cos φ) ,

d2 = 2 ω{ε2 − |�k2|[cos θ cos (η + φ)

+ cos ϕ sin θ sin (η + φ)]} ,

k2 · p1 = ε2 E − p|�k2|(cos η cos θ + cos ϕ sin η sin θ ) . (48)

In turn, the respective trigonometric functions of angles are
expressed through the photon energy and the variable y, as:

cos η = p2 − ω(E − y)

p| �p − �k| , cos (η + φ) = E − ω − y

| �p − �k| ,

cos θ = (ε2 − m)(E + m) + ω(y + m − ε2)

| �p − �k| ,

sin θ , sin η , sin (η + φ) � 0 ,

| �p − �k| =
√

p2 + ω(2y − 2E + ω) . (49)

The functions W1 and W2 depend on the azimuthal angle ϕ,
and, in order to perform the integration over this variable in
the right-hand side of Eq. (46), one needs to use a specific
expressions for the form factors entering these functions.
Further, we concentrate on small values of the squared
momentum transfer as compared with the proton mass, where
the form factors can be expanded in a series in term of powers
of q2

1 . In the calculations we keep the terms of the order of 1 ,
q2

1 , and q4
1 in the quantity

−W1
(
q2

1

)
S1 + W2

(
q2

1

)
M2

S2,

which enters the differential cross section.
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The integration in the right-hand side of Eq. (46) over
the ϕ and y variables is performed analytically. The result
for both C1(ω) and C2(ω) is very cumbersome, and it was
published in the Appendix of our preprint [46]. In the limit
ω → 0 the function C1(ω) is regular, and the function C2(ω)
has an infrared behavior. We extract the regular part C2R(ω)
and the infrared contribution C2I (ω) by a simple subtraction
procedure by writing

C2(ω) = [
C2(ω) − C2(ω → 0)

] + C2(ω → 0)

= C2R(ω) + C2I (ω) ,

C2I (ω) ∼ 1

ω

[
ε2

k2
ln

ε2 + k2

m
− 1

]
. (50)

The infrared contribution is combined with the correction due
to soft and virtual photon emission and this results in changing
ω̄ → ωs in the expression for δ0 [see Eq. (35)]. The integration
of the regular part C2R(ω) over ω (as the lower limit we can
chose an arbitrary small value) as well the whole contribution
of the region 1, C1(ω), is performed numerically.

IV. NUMERICAL ESTIMATIONS AND DISCUSSION

In the following section, the conditions for the experimental
uncertainties are set to �E2 = 0.02E and �ε2 = 0.03ε2 if
other choice is not specified.

Since the four-momentum transfer squared is very small in
this reaction, the proton charge and magnetic form factors are
approximated by Taylor series expansions. We use the expan-
sion over the variable q2 of three form-factor parametrizations.

By means of the radii [labeled as (r)]. In this approach, we
use the expansion taking into account only the mean-square
radii that are determined from Ref. [47]. These radii have
been obtained as a result of a comprehensive analysis of
the electron-proton scattering data (high statistics Mainz data
set) using model-independent constraints from the form factor
analyticity. The expansion is defined as follows:

GE,M (q2)

GE,M (0)
= 1 + 1

6
q2r2

E,M + O(q4), (51)

where rE,M is proton electromagnetic charge (magnetic)
radius and their values are [47] rE = 0.904(15) fm = 4.58
GeV−1, rM = 0.851(26) fm = 4.32 GeV−1. Thus, electric and
magnetic form factors are (q2 in GeV−2):

GE = 1 + 3.496q2, GM = 2.793 + 8.65q2.

The dipole fits. In this approach, we use two different dipole
fits. The well-known standard one, labeled as (sd), uses both
the small- and large-Q2 data,

GE(q2) = G, GM (q2) = μpG, G = (1 − 1.41q2)−2 , (52)

and leads to the following expansions of the form factors, up
to the terms q4,

GE = 1 + 2.82q2 + 5.96q4,

GM = 2.793 + 7.88q2 + 16.65q4.

TABLE I. Parameters for the proton form factor fits in Eq. (54)
used in this work, with ni, mi, di , and gi in units of GeV2.

n1 0.38676 m1 1.01650

n2 0.53222 m2 − 19.0246
d1 3.29899 g1 0.40886
d2 0.45614 g2 2.94311
d3 3.32682 g3 3.12550

Another dipole fit [48], labeled as (d), uses only the lower-
Q2 data by MAMI Collaboration

GE(q2) = (1 − 1.517 q2)−2, GM (q2) = μp(1 − 1.37q2)−2 ,

(53)

and gives

GE = 1 + 3.034q2 + 6.91q4,

GM = 2.793 + 7.65q2 + 15.72q4.

The sum of monopole terms [labeled as (m)]. In this
approach, we use the five-parameter fit for both Dirac and
Pauli form factors as a sum of three monopoles [49],

F1(q2) =
3∑
1

ni

di − q2
, F2(q2) =

3∑
1

mi

gi − q2
, (54)

where ni, mi, di and gi are free parameters, and the parameters
n3 and m3 are determined from the normalization conditions

F1(0) =
∑

i

ni

di

, F2(0) =
∑

i

mi

gi

.

The parameters ni,mi,di , and gi for the F1 and F2 proton
form factors are given in Table I. The normalization conditions
are F1(0) = 1 and F2(0) = μp − 1, where μp = 2.793 is the
proton total magnetic moment.

Thus, we have for the parameters n3 and m3

n3 = d3 − d3

(
n1

d1
+ n2

d2

)
,

m3 = g3(μp − 1) − g3

(
m1

g1
+ m2

g2

)
.

The expansions for the form factors GE,M are

GE = 1 +
[∑ ni

d2
i

+ μp − 1

4M2

]
q2

+
[∑ ni

d3
i

+ 1

4M2

∑ mi

g2
i

]
q4 ,

GM = μp +
[∑ ni

d2
i

+
∑ mi

g2
i

]
q2

+
[∑ ni

d3
i

+
∑ mi

g3
i

]
q4 . (55)

The expansion of the form factors is as follows:

GE = 1 + 3.017 q2 + 7.22 q4 ,

GM = 2.793 + 8.239 q2 + 20.31 q4 .
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FIG. 6. Born differential cross section, defined by Eq. (13), is
calculated with the standard dipole fit of the form factors at different
beam energies.

The d- and m-parameterizations give very close distribu-
tions, and therefore, we use only m-parametrization in our
numerical calculations.

One-parameter linear model in conformal mapping vari-
able [labeled as (z)]. This approach is to use an expansion
in q2 of the approximation to the form factors given by
one-parameter formulas,

G2
E = 1 − CE z , G2

M = μ2
p(1 − CM z) ,

z =
√

4m2
π − q2 − √

4m2
π√

4m2
π − q2 + √

4m2
π

, (56)

with [48],

CE = 2.105 , CM = 2.04 .

In this case, the expansion for the form factors reads

GE = 1 + 3.018 q2 + 7.221 q4 ,

GM = 2.793 + 9.133 q2 + 43.65 q4 .

To understand better the small-Q2 distribution and its
dependence on r2

E , we expand the parametrizations of the
function D defined by Eq. (14) for radii (r) (when the electric
form factor is smallest) and monopole (when the electric form
factor is middle) at two values of the proton beam energy: 100

and 500 GeV

D(r,E = 100 GeV)

= 0.0209 + (
1.92 + 0.00582 r2

E

)
q2

+ (
3.71 + 0.657 r2

E + 0.00058 r4
E

)
q4 ,

D(m,E = 100 GeV)

= 0.0209 + (
1.92 + 0.00696 r2

E

)
q2

+ (
3.74 + 0.657 r2

E + 0.00145 r4
E

)
q4 ,

D(r,E = 500 GeV)

= 0.5222 + (
1.772 + 0.174 r2

E

)
q2

+ ( − 5.031 + 0.977r2
E + 0.014 r4

E

)
q4 ,

D(m,E = 500 GeV)

= 0.5222 + (
1.772 + 0.174 r2

E

)
q2

+ ( − 4.203 + 0.977r2
E + 0.036 r4

E

)
q4 , (57)

where r2
E must be taken in GeV−2.

There is a compensation of the first two terms of these
expansions when |q2| increases, and since the coefficient in
front of q4 is large, it has to be taken into account even at
small-enough values of |q2|. The coefficient in front of r2

E in
the second term increases rapidly with the growth of the beam
energy.

To illustrate the dependence of the recoil electron distri-
bution on the proton beam energy, the Born cross section is
shown in Fig. 6 for the standard dipole fit at E = 20 GeV,
100 GeV, and 500 GeV. Here and further for the beam energy
500 GeV we restrict the recoil electron energy by 50 GeV,
because for larger values the above expansions of the form
factors are incorrect.

The sensitivity of this cross section to different form-factor
parametrizations is shown in Fig. 7, in terms of the quantities
(in percentages)

Rr = 1 − d σ r

d σ sd
, Rm = 1 − d σm

d σ sd
, Rz = 1 − d σ z

d σ sd
, (58)

where d σ i is the differential cross section (13), and the
indices i = r ,z ,m ,d correspond to the above-mentioned
parametrizations of the proton form factors.

The hard photon correction depends on the parameters �E2

and �ε2, due to the contribution of the region 1 in Fig. 4. To
illustrate this dependence, we show in Fig. 8 the quantities (in

FIG. 7. The difference of the recoil electron distributions [Eq. (58)] in percentages for various parametrizations of the form factors at proton
energies 20 GeV, 100 GeV, and 500 GeV.
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FIG. 8. The sensitivity, as the function of the recoil electron
energy (in percentage) of the hard photon correction to the parameter
�E2 (above) and �ε2 (bottom) Eq. (59) at proton energy of 100 GeV
(left) and 500 GeV (right).

which the contribution of the region 2 is removed)

�hE = d σ (h)(�E2 = 0.05 E ,�ε2 = 0.03 ε2)

d σ (B)

−d σ (h)(�E2 = 0.02 E ,�ε2 = 0.03 ε2)

d σ (B)
,

�hε = d σ (h)(�E2 = 0.02 E ,�ε2 = 0.06 ε2)

d σ (B)

−d σ (h)(�E2 = 0.02 E ,�ε2 = 0.03 ε2)

d σ (B)
, (59)

as a function of the recoil electron energy for the sd
parametrization. The cross section increases with the growth of
�E2 at fixed value �ε2 but even decreases with the growth of
�ε2 at fixed �E2. Such unusual dependence on the energy-cut
parameters is due to the weight function g(ω) in the integrand
over the region 1 in Fig. 4. If �E2 increases, then the region
where g(ω) = 1 is enlarged. Meanwhile, the region where
g(ω) < 1 is only shifted but the function g(ω) grows, and these
effects lead to the enhancement of the cross section. With the
increase of �ε2 the region where g(ω) = 1 is reduced, and
the region where g(ω) < 1 is enlarged and g(ω) decreases.
The change of the cross section in the last case depends on
interplay of these factors as well as on the integrand.

Qualitatively, it can be understood if we replace C1(ω) in
the right-hand side of Eq. (46) by its small-ω behavior ∼ 1/ω
and perform analytical integration,∫ �E

ωs

g(ω)
dω

ω
= ln

�E2

ωs

− 1

6

(
�ε2

�E2

)2

,
� ε2

�E2
� 1. (60)

Thus, when parameters �E2 and �ε2 grow, the logarithmic
increase with �E2 and a very weak decrease with �ε2 take
place.

Note that our choice of parameters �E2 and �ε2 is taken
only for illustration. Really, they have to be specific for every

FIG. 9. (Top) The modified soft and virtual (̃δ) (dashed line)
and hard [δ(h)] (solid line) corrections (in percentage) as defined
by Eq. (61). (Bottom) The total radiative correction (in percentage)
calculated for the standard dipole fit at �E2 = 0.02 E, at 100 GeV
(left) and 500 GeV (right) incident proton energy.

experiment, but our approach allows us to calculate with any
ones.

In Fig. 9 we present the quantities δ(h) and δ̃, defined as

δ(h) = d σ (h)

d σ (B)
− 2 α

π
ln

ωs

ω̄

[
ε2

k2
ln

(
ε2 + k2

m

)
− 1

]
,

δ̃ = δ̄ + δ(vac) + 2 α

π
ln

ωs

m

[
ε2

k2
ln

(
ε2 + k2

m

)
− 1

]
, (61)

which we call “modified hard and soft and virtual corrections,”
respectively, as well as their sum δtot = δ(h) + δ̃ that is the
total model-independent first-order radiative correction [the
last term in δ̃ is δ0(ω̄ → ωs)]. In fact,

δtot = δ(h) + δ̃ = δ0 + δ̄ + δ(vac) + dσ (h)

dσ (B)
.

Note that both modified corrections in Eq. (61) are independent
on the auxiliary parameter ω̄ but depend on the physical
parameter ωs and, therefore, have a physical sense.

To calculate σtot, we can write the quantity [1 + δ0(ω̄ →
ωs)] using the expression (35) or its exponential form defined
by (36) (with substitution ω̄ → ωs). But numerical estimations
show that they differ very insignificantly, by a few tenths of a
percentage, and, further, we do not use the exponential form.

We see that at small values of the squared momentum
transfer (small recoil-electron energy ε2) the total model-
independent radiative correction is positive and it decreases
(with increase of ε2), reaching zero and becoming negative.
The absolute value of the radiative correction does not exceed
6%, although the strong compensation of the large (up to
40%) positive “modified hard” and negative “modified soft
and virtual” corrections takes place. Such behavior of the pure
QED correction is similar to one derived in Ref. [39].

If the proton form factors are determined independently
with high accuracy from other experiments, the measurement
of the cross section d σ/d ε2 can be used, in principle, to
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FIG. 10. The sensitivity of the total model-independent radia-
tive correction (in percentage) to the choice of the form-factor
parametrization [Eq. (62)].

measure the model-dependent part of the radiative correction in
the considered conditions. This possibility is similar to the one
described in Ref. [43] where the authors proposed to determine
the hadronic (model-dependent) contribution to the running
electromagnetic coupling α(q2) by a precise measurement of
the μ− − e− differential cross section, assuming that QED
model-independent radiative corrections are under control.

In Fig. 10 we illustrate the sensitivity of the total radiative
correction to the parametrization of the form factors in terms
of the ratios

P i = 1 + δi
tot

1 + δtot
− 1 , i = r,m , (62)

where δtot is the total correction for standard dipole fit.
We see that, in the considered conditions, the deviation
of these quantities from unity is very small and conclude
that the influence of the parametrizations of the form factors on
the radiative correction is much smaller than this influence on
the Born cross section. Moreover, the r and m parametrizations
decrease the Born cross section relative to the d one, as it
follows from Fig. 7, whereas for the radiative correction we
have just the opposite effect.

V. CONCLUSION

In present paper we investigated the recoil-electron energy
distribution in elastic proton-electron scattering in coincidence
experimental setup, taking the model-independent QED ra-
diative corrections into account. The detection of the recoil
electron in this process, with energies from a few MeV up
to a few tens of GeV, will allow us to receive the small-Q2

data, at 10−5 GeV2 � Q2 � 3 × 10−2 GeV2. Such data, being
combined with the existing experiments and planned future
experiments with the electron beams, will help to perform
more precise analysis of the small-Q2 behavior of the proton
electromagnetic form factors. It allows us to obtain meaningful
extrapolation to the static point and to extract the proton charge
radius. As noted in the recent review [50], it is interesting to
extract the proton charge radius entirely from low-Q2 data.
High-precision measurements, in the inverse kinematics, allow
us to accumulate a lot of such data.

To cover the above-mentioned interval of the Q2 values,
it is desirable to use the proton beams with large-enough
energies of the order of a few hundred GeV. At very small
Q2, the sensitivity of the differential cross section to the
form-factor parametrizations is practically absent, but at Q2 ≈
2 × 10−3 GeV2 it has become noticeable and reaches several

percentages at Q2 ≈ 3 × 10−2 GeV2 (see Fig. 7). As follows
from the relations (57), the sensitivity to the value of the proton
charge radius also increases essentially with the growth of the
proton beam energy.

The effect, caused by the changing of the form-factor
parametrization in the small-Q2 region, is rather small.
Therefore, the accuracy of the measurement has to be high
enough. In Ref. [32], it is noted that in planning an experiment
at the Mainz Microtron, with detection of the recoil proton,
the measurement precision has to be at the level of 0.2%. To
discriminate between different form-factor parametrizations,
the accuracy, in the inverse kinematics experiments, must
be the same, possibly somewhat less with growth of Q2 and
the proton beam energy. At such conditions, the radiative
corrections have to be under control.

We account for the first-order QED corrections caused
by the vacuum polarization and the radiation of the real
and virtual photons by the initial and final electrons, paying
special attention to the calculation of the hard photon emission
contribution when the final proton and electron energies
are determined. This hard radiation takes place due to the
imprecision in the measurement of the proton (electron)
energy, �E2 (�ε2). In our calculations, we follow Ref. [39]
in choosing the coordinate system and the angular integration
method. We derive analytical (although very cumbersome)
expressions for the functions C1(ω) and C2(ω), defined by
Eqs. (47). The cancelation of the auxiliary infrared parameter
ω̄ in the sum of the soft and hard corrections is performed
analytically and the remaining ω integration in (46) is done
numerically.

The increase of the parameter �ε2 leads to the small
decrease of the hard photon correction. The magnitude of
this decrease is about 0.01 (0.025)% at E = 100 (500) GeV.
In contrast, the increase of the parameter �E2 increases the
hard photon correction by ≈ 0.2 (1)% at E = 100 (500) GeV
(see Fig. 8). Such different behavior of this correction can be
explained, on the qualitative level, by Eq. (60).

As usual, there is a strong cancellation between the positive
hard correction and negative virtual and soft ones, as seen
in Fig. 9. Despite the fact that the absolute values of these
corrections separately reach 20–40%, their sum |δtot| does not
exceed 6% at E = 100 GeV and 4% at E = 500 GeV for
the values �E2 = 0.02 E , �ε2 = 0.3 ε2 used in calculations.
The total correction shows the very weak dependence on the
form-factor parametrization (see Fig. 10) in the considered
region. At the lower values of Q2, which correspond to
the lower values of the recoil electron energy ε2, the total
correction δtot is positive and changes sign when Q2 increases.
Such behavior of δtot is similar to the one found in Ref. [39]
and confirmed in Ref. [40] for the case of the pion electron
scattering.

In Refs. [39,40], the authors calculated also the model-
dependent part of the radiative corrections, using the pointlike
scalar electrodynamics to describe the interaction of the
charged pion with a photon.

In our case, the effect of the model-dependent corrections,
when virtual and real photons are emitted by the initial and
final protons, can be roughly evaluated in the approximation
of the structureless proton with the minimal proton-photon
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interaction [F1(q2) = 1 , F2(q2) = 0] under the condition
Q2/M2 � 1. The account for the proton structure cannot
change estimation essentially. To derive the virtual and soft
corrections in this approximation, it is enough to write, in
the expression (δ0 + δ̄) defined in Eq. (35) (where δ̄ is taken
without the term proportional to M2), ε2 and k2 in terms of Q2

and m and after that to change m → M and then to use the
condition Q2/M2 � 1. Such a procedure gives their sum as

α

π

Q2

M2

(
85

36
+ 4

3
ln

M2

Q2
+ 2

3
ln

ω̄

M
− 2 ln 2

)
. (63)

The largest negative term with the unphysical parameter ω̄
has to be canceled by the hard photon contribution. The
remaining terms, in (63) at Q2 = 3 × 10−2 GeV2, do not
exceed 0.5 × 10−3, which is a few times smaller than the
required measurement accuracy. In this approximation, the
vertex correction modifies also the Born value of the proton
anomalous magnetic moment and that leads to

GM (q2) → GM (q2) + α

2 π

(
1 + q2

6 M2

)
.

Taking μp = 2.793, we evaluate that the correction to the
Born value of G2

M is no more than 0.8 × 10−3. The up-
down interference, that is, part of the model-dependent QED

corrections, which include the two-photon exchange and the
interference of the proton and electron radiation, has to be
suppressed in the considered kinematics at least by the factor

α

π

Q2

2m E
ln

2m E

Q2
,

that is, by no more than 0.1%. The analysis of the two-
photon-exchange in the elastic e−−p scattering at small-Q2,
performed in Ref. [51] in frame of a model, confirms such
suppression.

Thus, we conclude that the model-independent radiative
corrections are under control and, if necessary, can be calcu-
lated with higher accuracy. We believe that the uncertainty due
to the model-dependent part in the region Q2 � M2 is small
and cannot affect the experimental cross sections measured
even with 0.2% accuracy.
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