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Decay angular distributions of K ∗ and D∗ vector mesons in pion-nucleon scattering
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The production mechanisms of open strangeness (K∗) and open charm (D∗) vector mesons in π−p scattering,
namely, π− + p → K∗0 + � and π− + p → D∗− + �+

c , are investigated within the modified quark-gluon
string model. To identify the major reaction mechanisms, we consider the subsequent decays of the produced
vector mesons into two pseudoscalar mesons, i.e., K∗ → K + π and D∗ → D + π . We found that the decay
distributions and density matrix elements are sensitive to the production mechanisms and can be used to
disentangle the vector trajectory and pseudoscalar trajectory exchange models. Our results for K∗ production
are compared with the currently available experimental data and the predictions for D∗ production process are
presented as well. Our predictions can be tested at the present or planned experimental facilities.
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I. INTRODUCTION

Investigation of open charm and open strangeness produc-
tion processes is one of the major hadron physics programs
at current or planned accelerator facilities that are supposed
to provide pion beams [1] or antiproton beams [2].1 These
facilities are expected to produce high-quality beams at
energies high enough to produce strange or charm hadrons.
Understanding the dynamics of charm and strange quarks is an
interesting topic because their mass scale is between the light-
quark sector, which is dominated by chiral symmetry, and the
heavy-quark sector, where heavy-quark spin symmetry takes a
crucial role. Therefore, they are interpolating the two extreme
regions and the deviations or corrections to chiral symmetry
and heavy-quark symmetry are crucial to understanding the
underlying dynamics of the strong interaction.

The heavy mass of the charm quark, in particular, leads
to a very rich hadron spectrum with open or hidden charm
flavor, which includes exotic states that were not observed in
the light-quark sector. Therefore, charm hadron spectroscopy
is expected to open a new opportunity for unraveling the
strong interaction. Besides, many interesting ideas using charm
flavor have been suggested, which include the utilization of
charm particles as a probe of nuclear medium at maximum
compression, the study of the properties of exotic XYZ
mesons, and so on [5,6].

One of the important issues that is not fully resolved at
present is the charm and strangeness production mechanisms
near threshold in hadron reactions. Because the reaction energy
is not high enough to be treated asymptotically, the widely
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1The details of the physics programs using these beams can be

found, for example, at the websites of the Japan Proton Accelerator
Research Complex (J-PARC) [3] and the Facility for Antiproton and
Ion Research in Europe (FAIR) [4].

used models for heavy-quark production based on perturba-
tive quantum chromodynamics (pQCD) (see, for example,
Refs. [7–9]) are not applicable, and an essential improvement
by including high-order corrections is required [10]. Another
crucial problem is related to the dynamics of heavy-quark
production. In pQCD approaches, charm quarks are produced
through gluon fragmentations. To produce charm quarks in
peripheral collisions, however, such gluons must have a large
momentum (x ∼ 1), which is much larger than its average
magnitude (x � 0.2) inside a nucleon. As a result, this
mechanism is strongly suppressed in pQCD and can hardly be
the major production mechanism for heavy flavor production
at relatively low energies.

Therefore, it is legitimate to rely on the approaches based on
a nonperturbative QCD background for describing peripheral
reactions. In the present work, we adopt the quark-gluon
string model (QGSM) developed by Kaı̆dalov and Piskunova
in Refs. [11–13], which has been applied for the evaluation
of cross sections of the exclusive �c production in pp and
p̄p collisions [14–16] and in πp collisions [17–19]. A novel
feature of this model is that the invariant amplitude of the
binary reaction has a form of the Regge amplitude, where
the parameters of effective “Reggeons” are determined by a
unitary condition and additivity of intercepts and of inverse
slopes of the Regge trajectories.

For such effective Reggeons or effective meson-trajectory
exchanges, usually only the vector meson exchange is consid-
ered. Since the intercept of the vector meson trajectory is larger
than that of the corresponding pseudoscalar trajectory with the
same flavor quantum number, the exchange of the pseudoscalar
meson trajectory is expected to be suppressed. Therefore, this
model would be justified at large center-of-momentum energy
squared s and small magnitude of the squared momentum
transfer |t |. However, to fully understand the production
mechanisms, more physical quantities should be examined
other than cross sections. In particular, such physical quantities
should be sensitive to the production mechanisms whose
contribution to cross sections is relatively small. In fact, as
we see below, the available data for K∗ production suggest
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that the vector meson trajectory exchange model needs to be
modified to some extent.

In the present work, we elaborate on the angular distribu-
tions of pseudoscalar mesons originated from the decays of
vector mesons produced in πN collisions. More specifically,
we consider the production of K∗ and D∗ vector mesons, which
decay into Kπ and Dπ , respectively. Therefore, the processes
under consideration in the present work are the two-step
reactions of πN → K∗� → (Kπ )� and πN → D∗�c →
(Dπ )�c, where we specifically work on π−p collisions.
In particular, we focus on the angular distributions of K
and D mesons produced by these reactions, which bear the
information on the production mechanisms of K∗ and D∗
vector mesons.

This paper is organized as follows. In Sec. II we describe
the QGSM, which is used to describe K∗ and D∗ vector
meson productions. All the theoretical tools to investigate the
angular distributions of K and D mesons produced by the
decays of the corresponding vector mesons are detailed as
well. Then, in Sec. III, we show the results on cross sections,
spin-density matrix elements, and decay angular distributions
of vector mesons produced in π−p collisions. We summarize
and conclude in Sec. IV.

II. THE MODEL

The reactions under consideration in the present work
are π− + p → V + Y → (P + π ) + Y , where Y , V , and P
are flavored baryon, vector meson, and pseudoscalar meson,
respectively. In the strangeness sector, Y = �(1116,1/2+),
V = K∗(892,1−), and P = K(494,0−), while, in charm
sector, Y = �c(2286,1/2+), V = D∗(2010,1−), and P =
D(1870,0−) [20].

The corresponding cross section for (two-body → three-
body) reactions reads

dσ =
(

1

16πλi

|Tf i |2dt

)(
kf d�f dMV

16π3

)
, (1)

where Tf i is the invariant amplitude for the production
process and λi ≡ λ(M2

π ,M2
N,s) is the Källén function defined

as λ(x,y,z) ≡ x2 + y2 + z2 − 2xy − 2yz − 2zx. Here, Mπ

and MN stand for the pion mass and the nucleon mass,
respectively, and we use MV for the vector meson mass. The
Mandelstam variables for the production process are defined as
s = (pπ + pp)2 = (pV + pY )2 and t = (pp − pY )2 = (pπ −
pV )2, where pπ , pp, pV , and pY are the four momenta of the
pion, the proton, the produced (virtual) vector meson, and the
hyperon, respectively. The solid angle and the magnitude of
the three-momentum of the outgoing pseudoscalar meson in
the rest frame of the vector meson are represented by �f and
kf , respectively. The averaging over the initial spin states and
the sum over the final spin states are understood as well.

The invariant amplitude can be expressed as

Tf i = Amf ,λV ; mi

1

p2
V − M2

0 + iM0�tot
DλV

(�f ), (2)

where mi and mf denote the spin projections of incoming
and outgoing baryons, respectively, and λV represents the
spin projection of the produced virtual vector meson. M0

and �tot are the pole mass and the total decay width of the
produced vector meson, respectively. The amplitudes of the
π− + p → V + Y and V → P + π reactions are denoted by
A and D, respectively. The decay process of the vector meson
is considered in its rest frame. In this case, the amplitude of
the vector meson decay into two pseudoscalar mesons has the
simple form of

Dλ = 2c

√
4π

3
Y1λ(�f ), (3)

where the constant c is related to the V → P + π decay width
�f as

c2 = 6πM2
V �f

kf

, (4)

with kf being the magnitude of the three-momentum of the
final-state particles in the rest frame of the vector meson.
Integration of dσ in Eq. (1) over dMV and d�f leads to
the well-known result for the corresponding unpolarized cross
section,

dσ

dt
= Br

16πλi

|Af i |2, (5)

with Br = �f /�tot when �tot � MV .
Recent studies of strangeness and charm production at a

few dozen GeV show that this cross section can be success-
fully evaluated in the framework of the QGSM suggested
by Kaidalov [11,12] and later developed and refined in
a number of theoretical works developed, for example, in
Refs. [13–19]. The QGSM is based on the planar quark
diagram decomposition and unitary conditions [12], and it
allows one to represent the amplitude of the binary a + b →
c + d reaction in terms of an effective Regge amplitude, where
the effective trajectory αR(t) and the energy scale parameter
sab;cd are determined by the well-established parameters of
the elastic a + b → a + b and c + d → c + d reactions using
the so-called planar diagram decomposition. An example of
the planar diagram decomposition is depicted in Fig. 1 for
the reaction of π− + p → D∗− + �+

c , where it is assumed
that the amplitude is dominated by the effective D∗ trajectory
with parameters completely determined by the nonlinear ρ and
J/ψ meson trajectories as found from the meson spectroscopy
studies [12,21,22]. Similarly, one can write the planar diagram
decomposition for the K∗� production with substitution of
the J/ψ trajectory by the φ meson trajectory. The details can
be found in Ref. [15].

Diagrammatic representations of the effective π− + p →
K∗0 + � and π− + p → D∗− + �+

c reactions are shown in
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FIG. 1. Planar diagram decomposition for the reaction of π− +
p → D∗− + �+

c .
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FIG. 2. Diagrammatic representation of the effective π− + p →
K∗0 + � and π− + p → D∗− + �+

c reactions.

Fig. 2. The corresponding spin-independent amplitudes read

AV
f i = g2

0
s

s̄
�

(
1 − αV

R(t)
)
(

s

sV
0R

)αV
R(t)−1

, (6)

with αV
Rp�

(t) = 0.414 + 0.707 t , sV
0Rp�

= 1.66 GeV2, and

s̄p� = 1 GeV2 for π− + p → K∗0 + �, and αV
Rp�c

(t) =
−1.02 + 0.467 t , sV

0Rp�c
= 4.75 GeV2, and s̄p�c

= 1 GeV2 for
π− + p → D∗− + �+

c . The trajectories of ρ, φ, and J/ψ ,
as well as the energy-scale parameters sV

0R, are determined
following the prescription described in Ref. [15]. The residual
factor g0 is determined in the next section by comparison with
the available experimental data for the π− + p → K∗0 + �
reaction, which leads to g2

0/4π � 0.796.
Because the angular distributions of pseudoscalar mesons

produced through the decays of K∗ → K + π and D∗ →
D + π strongly depend on the spin of the participating
particles, the spin structure of the reaction amplitudes of Eq. (6)
should be specified. This, in fact, is the key component that can
distinguish different production mechanisms. It can be done by
“dressing” the spin-independent amplitude by the spin factor
Sf i that carries the symmetry of the exchanged Reggeon [15],
i.e.,

Af i → Amf ,λV ; mi
= Af i

1

N Smf ,λV ; mi
, (7)

with the normalization factor

N 2 =
∑

mf ,mi ,λV

∣∣Smf ,λV ;mi

∣∣2
. (8)

The K∗-meson coupling in the spin factor Sf i reads

Smf ,λV ;mi
= εμναβqμpV αε∗

β(λV ) × ūmf
(�)

×
[

(1 + κK∗p�)γν − κK∗p�

(pp + p�)ν
Mp + M�

]
umi

(p),

(9)

where q = pV − pπ = pp − p� is the momentum transfer
and κK∗p� = 2.79 is the tensor coupling constant obtained
from the average value of the Nijmegen soft-core poten-
tial [23,24]. The Dirac spinors of the initial baryon and
the final baryon are denoted by umi

and umf
, respectively,

and ε(λV ) is the polarization vector of the produced vector
meson. Generalization to the case of charm production may
be achieved by the substitutions M� → M�c

, MK∗ → MD∗ ,
and so on. Because of the lack of information, we assume
κK∗p� = κD∗p�c

as in Ref. [25]. The normalization factor N
in Eq. (7) is introduced to compensate for the artificial s and t
dependence generated by Sf i .

The differential cross section is then written as
dσ

dt d�f

= dσ

dt
W (�f ), (10)

where

W (�f ) =
∑

mi,mf ,λV ,λ′
V

Mmf ,λV ;mi
M∗

mf ,λ′
V ;mi

×Y1λV
(�f ) Y ∗

1λ′
V
(�f ), (11)

with

Mmf ,λV ;mi
= 1

N Smf ,λV ;mi
. (12)

For definiteness with the isospin quantum number we consider
K∗0 → K+π− and D∗− → D−π0 decays. As is well known,
since the decay angular distribution of outgoing K+ is
analyzed in the virtual vector meson’s rest frame, there is an
ambiguity in choosing the quantization axis. One may choose
the quantization axis antiparallel to the outgoing hyperon Y
in the center-of-momentum frame of the production process
or the quantization axis may be defined to be parallel to the
incoming pion, i.e., the initial beam direction. Following the
convention of Ref. [26], the former is called the s frame and
the latter the t frame.2

The decay probabilities are expressed in terms of the
spin-density matrix elements ρλλ′ , where λV is abbreviated
as λ, which are determined by the amplitudes of Eq. (12).
Depending on the polarization state of the initial and final
states, we are interested in the following two cases:

(i) the unpolarized case, where the spin-density matrix is
given by

ρ0
λλ′ =

∑
mi=± 1

2 ,mf =± 1
2

Mmf ,λ; mi
M∗

mf ,λ′; mi
, (13)

(ii) the recoil polarization case, when the spin of the
outgoing hyperon (�) is determined by their decay
distribution using that it is self-analyzing. Then, de-
pending on the spin state of the hyperon, we have two
kinds of spin-density matrices defined as

ρ±
λλ′ =

∑
mi=± 1

2

Mmf ,λ;mi
M∗

mf ,λ′;mi
. (14)

Here, ρ+ and ρ− correspond to the cases when the spin
or helicity of the produced hyperon is mf = + 1

2 and

− 1
2 , respectively.

Denoting the polar and the azimuthal angles of the outgoing
pseudoscalar K (or D) mesons by � and �, respectively, the
decay angular distributions can be expressed in terms of the
spin-density matrix elements as

W 0(�f ) = 3

4π

[
ρ0

00 cos2 � + ρ0
11 sin2 � − ρ0

1−1 sin2 � cos 2�

−
√

2 Re
(
ρ0

10

)
sin 2� cos �

]
, (15)

2In the case of vector meson photoproduction, the former is called
the helicity frame, while the latter corresponds to the Gottfried-
Jackson frame [27].
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for the unpolarized case, and

W±(�f ) = 3

4π

[
ρ±

00 cos2 � + 1

2
(ρ±

11 + ρ±
−1−1) sin2 �

− ρ±
1−1 sin2 � cos 2�

− 1√
2

Re(ρ±
10 − ρ±

−10) sin 2� cos �

]
, (16)

for the case of recoil polarization. Here, we made use of the
following Hermitian conditions: ρ−11 = ρ1−1, ρ01 = ρ10, and
ρ0−1 = ρ−10. In addition, for unpolarized reactions, we also
have the sum rule ρ0

00 + ρ0
11 + ρ0

−1−1 = 1 and the symmetry
conditions ρ0

11 = ρ0
−1−1 and ρ0

01 = −ρ0
0−1. In the case of recoil

polarization, however, these additional relations do not hold.
As was mentioned earlier, the purpose of the present work is

to test the validity of the dominance of vector meson trajectory
exchange. This assumption is based on the observation that
the intercept of the K∗ (D∗) vector meson, for instance, is
larger than that of the corresponding pseudoscalar K (D)
meson trajectory [21]. However, other mechanisms cannot
be excluded, and the contribution from such mechanisms
should be verified by physical quantities related to the spin
structure of the production mechanisms. In fact, as we see
later, the available data for density matrix elements suggest
that there exist contributions from mechanisms other than
vector trajectory exchange. Therefore, in addition to vector
trajectory exchanges, we consider the exchanges of effective
pseudoscalar K and D trajectories. In this case, the spin-
independent amplitude reads

APS
f i � g2

0 �
( − αPS

R (t)
)
(

s

sPS
0R

)αPS
R (t)

, (17)

with αPS
Rp�

(t) = −0.151 + 0.617 t and αPS
Rp�c

(t) = −1.611 +
0.439 t [22]. The energy scale parameters determined by the
flavor content of the vertices are assumed to be the same as
those in the vector meson exchange case so that sPS

0Rp�
= sV

0Rp�

and sPS
0Rp�c

= sV
0Rp�c

. The spin factor Sf i now reads

SPS
mf ,λV ;mi

= ε∗
μ(λV ) qμūmf

(�)γ5umi
(p). (18)

III. RESULTS AND DISCUSSION

In this section, we present numerical results on differen-
tial cross sections, spin-density matrix elements, and decay
angular distributions of K and D mesons in πN scattering.

A. Unpolarized cross sections

By collecting all information, the unpolarized differential
cross sections of the π− + p → K∗0 + � and π− + p →
D∗− + �c reactions for the vector (V) and pseudoscalar (PS)
effective Reggeon exchanges are written as

dσ (V )

dt
= π

λi

( s

s̄

)2
[(

gV
0

)2

4π

]2

[�(1 − αV (t))]2

×
(

s

s0RV

)2(αV (t)−1)

,

dσ (PS)

dt
= π

λi

[(
gPS

0

)2

4π

]2

[�( − αPS(t))]2

(
s

s0RPS

)2αPS(t)

.

(19)

The residual factor g2
0 is, in general, a function of t and

should be determined by the comparison with experimental
data. We use (gV

0 )2/4π = 0.796 for the vector meson trajectory
exchange, which is found from comparison with the available
experimental data for K∗0 production. We use this value for
both the strangeness and charm production processes as we do
not have any data for charm vector meson production. Since we
are interested in identifying the major production mechanisms,
we need to be able to distinguish between the pseudoscalar
meson trajectory exchange and the vector meson trajectory
exchange through measurable physical quantities. Because the
pseudoscalar exchange mechanism is expected to be small,
we consider two extreme cases, namely, vector-exchange
dominance and pseudoscalar-exchange dominance. For this
purpose, we adjust the value of gPS

0 to achieve the condition
that dσ (PS)/dt = dσ (V)/dt at zero vector meson production
angle, i.e., at t = tmax. This leads to (gPS

0 )2/4π = 1.1 and 13.5
for the production of K∗ and D∗ mesons, respectively. Of
course, the realistic case is between these two extreme cases,
and the relative strength of the two mechanisms should be
determined by experimental data.

The obtained differential cross sections for K∗ and D∗
production are exhibited in Figs. 3(a) and 3(b), respectively.
Throughout the present study, the initial pion momentum in the
laboratory frame is chosen to be pπ = 6 GeV/c for strangeness
production and 15 GeV/c for charm production. The V and
PS Reggeon exchanges are shown by the solid and dashed
curves, respectively, together with available experimental data
of Ref. [26] for K∗ production. Although the energy scale is
different, it turns out that the cross section of charm production
is suppressed compared with that of strangeness production,
which is consistent with the observation made in Ref. [18].
One can see that both the vector-type Reggeon exchange and
the pseudoscalar-type Reggeon exchange exhibit a similar t
dependence in differential cross sections. This resemblance
is clearly seen in the case of charm production, although the
available data seem to prefer the vector-type exchange in the
case of strangeness production. Therefore, the t dependence of
cross sections cannot clearly distinguish the two exchanges. As
we see in the next subsections, however, the situation changes
for spin-density matrix elements and the angular distributions
of K∗ → Kπ and D∗ → Dπ decay, where the difference
between the two types of exchanges is revealed even at the
qualitative level.

B. Spin-density matrix elements

The results for the spin-density matrix elements ρ0
λλ′ defined

in Eq. (13) are presented in Fig. 4 for K∗0 and D∗− production
as functions of (tmax − t). We also limit our consideration to
relatively small values of |t | such that |tmax − t | � 2GeV2,
where the applicability of the QGSM can be justified. Shown
in Fig. 4 are the results for the vector-type Reggeon exchange
model and for the pseudoscalar-type Reggeon exchange
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FIG. 3. Unpolarized differential cross sections of (a) π− + p → K∗0 + � and (b) π− + p → D∗− + �+
c for the vector (solid curves) and

pseudoscalar (dashed curves) Reggeon exchanges. The experimental data for π− + p → K∗0 + � are from Ref. [26].

model, which are calculated in the s and t frames. Our results
numerically confirm the symmetry properties, ρ0

11 = ρ0
−1−1,

ρ0
±10 = ρ0

0±1, ρ0
±10 = −ρ0

0∓1, and ρ0
1−1 = ρ0

−11.
In the case of vector-type Reggeon exchange, the matrix

elements ρ0
λλ′ with |λ| = |λ′| = 1 are enhanced. This ascribes

to the spin structure εμναβqμpV αε∗
β(λV ) of the amplitude

in Eq. (9). In the vector meson rest frame, where pV =
(MV ,0,0,0) and q = − pπ , this factor is proportional to the
vector product of ε∗(λV ) × pπ . In the s frame and small-
momentum transfers, pπ has a large z component and a small
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FIG. 4. The spin-density matrix elements ρ0
λλ′ defined in Eq. (13) as functions of (tmax − t) for K∗− production at pπ = 6 GeV/c [panels

(a)–(d)] and for D∗− production at pπ = 15 GeV/c panels (e)–(h). The results for vector meson (V) and pseudoscalar (PS) Reggeon exchanges
are in panels (a), (b), (e), and (f) and panels (c), (d), (g), and (h), respectively. The results in panels (a), (c), (e), and (g) were obtained in the s

frame, while those in panels (b), (d), (f), and (h) were obtained in the t frame.
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FIG. 5. The same as in Fig. 4 but for ρ+
λλ′ .

x component, which leads to ε∗(λV ) × pπ � iλV ε∗(λV )| pπ |
and thus causes the large enhancement of ρ0

|λ|=1, |λ′|=1. In the
t frame, pπ is parallel to the quantization axis, and this leads

to ρ0
λλ′ with either λ = 0 or λ′ = 0 vanishing. We also note

that ρ0
1−1 = 0 at t = tmax. This is because of the relation

ρ0
1−1 ∝ sin2 θ , where θ is the scattering angle of the vector
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FIG. 6. Spin-density matrix elements for K∗0 production in the s frame. Panels (a), (b), and (c) correspond to ρ0
00, Reρ0

10, and ρ0
1−1 matrix

elements, respectively. The vector and pseudoscalar Reggeon exchange models are depicted by the solid and dashed curves, respectively. The
experimental data are from Ref. [26].
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FIG. 7. The same as in Fig. 6 but in the t frame.

meson in the center-of-mass frame for the scattering process.
All these observations hold also for the matrix element ρ+

1−1
as seen in Fig. 5.

In the case of pseudoscalar-type Reggeon exchange,
however, the situation is quite different. The production
amplitude of this mechanism is proportional to the scalar

product, ε∗(λV ) · pπ , which leads to a strong enhancement
of ρ0

00 in the t frame, so that ρ0
00 = 1 and all the other ρ0

λλ′
vanish.

Shown in Fig. 5 are the results for ρ+
λλ′ defined in Eq. (14).

In this case, the spin alignment of the outgoing hyperon is fixed
to be mf = + 1

2 . The absolute values of ρ± are smaller than

0 0.5 1
Θ/π

0

0.2

0.4

0.6

0.8

1

(2
/3

)W
 0

(Θ
)

s-frame

0.5 1
Θ/π

0

0.2

0.4

0.6

0.8

1

t-frame

0 0.5 1
Θ/π

0

0.2

0.4

0.6

0.8

1

(2
/3

)W
 +

(Θ
)

s-frame

0.5 1
Θ/π

0

0.2

0.4

0.6

0.8

1

t-frame

0 0.5 1
Θ/π

0

0.2

0.4

0.6

0.8

1

(2
/3

)W
 0

(Θ
)

s-frame

0.5 1
Θ/π

0

0.2

0.4

0.6

0.8

1

t-frame

0 0.5 1
Θ/π

0

0.2

0.4

0.6

0.8

1

(2
/3

)W
 +

(Θ
)

s-frame

0.5 1
Θ/π

0

0.2

0.4

0.6

0.8

1

t-frame

π −p → K∗0 πΛ  −p → K∗0Λ

π −p → D∗−Λc
+ π −p → D∗−Λc

+

PS

V

(a) (b) (c) (d)

(h)(g)(f)(e)

FIG. 8. Angular distributions 2
3 W (�) of Eq. (20) for K∗ and D∗ excitations are shown in the upper and lower panels, respectively. Panels

(a), (b), (e), and (f) are for 2
3 W 0(�) and panels (c), (d), (g), and (h) are for 2

3 W+(�). The results are given in both the s and t frames.
The vector and pseudoscalar Reggeon exchange cases are depicted by the solid and dashed curves, respectively. Calculation is done for
|tmax − t | = 0.1 GeV2 at pπ = 6 GeV/c for K∗ production and p = 15 GeV/c for D∗ production.
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FIG. 9. The same as in Fig. 8 but for the azimuthal angle distributions 4π
3 W (� = π/2,�) of Eq. (21).

those of ρ0 by about a factor of 2 because of the difference
in the numerators in Eqs. (13) and (14). The spin-density
matrix elements ρ−

λλ′ can be obtained from ρ+
λλ′ using the

following symmetry relations [27]: ρ−
11 = ρ+

−1−1, ρ−
00 = ρ+

00,
ρ−

−11 = ρ+
−11, ρ−

10 = −ρ+
0−1, and so on.

In Figs. 6 and 7, we compare our results with the
available experimental data of Ref. [26] for K∗0 production
in the s and t frames, respectively. Although the vector-
exchange mechanism leads to a better agreement with the data
than the pseudoscalar-exchange model, we can see that the
vector-exchange model alone cannot successfully explain the
data.3 New experimental data for K∗ production with higher
precision are, therefore, strongly desired. In D∗ production, the
difference is also large enough to be verified by experiments
and the analyses can be done at current or future experimental
facilities.

C. Angular distributions of vector meson decays

The polar angle distributions of outgoing K and D mesons
are obtained by integrating W (�,�) of Eqs. (15) and (16)
over the azimuthal angle �, which gives

2
3 W 0(�) = ρ0

00 cos2 � + ρ0
11 sin2 �,

2
3 W±(�) = ρ±

00 cos2 � + 1
2 (ρ±

11 + ρ±
−1−1) sin2 �. (20)

3We could confirm this conclusion through the comparison with the
data obtained at pπ = 4.5 GeV/c [26] as well.

These distributions are presented in Fig. 8 for the production
and decays of K∗ and D∗ mesons at |tmax − t | = 0.1 GeV2

with pπ = 6 and 15 GeV/c, respectively.
In all cases, one can observe maxima at � = π

2 for the
vector trajectory exchange while minima are observed at the
same angle for the pseudoscalar trajectory exchange. In other
words, the distribution functions for the vector trajectory
exchange display a cosine function shape, while those of
the pseudoscalar trajectory exchange show a sine function
shape. This is a direct consequence of the spin-density matrix
elements ρ0

00 and ρ0
11 shown in Figs. 4 and 5.

The azimuthal angle distributions at a fixed polar angle �
can also be obtained from Eqs. (15) and (16). At � = π

2 , we
have

4π

3
W 0

(
� = π

2
,�

)
= ρ0

11 − ρ0
1−1 cos 2�,

4π

3
W±

(
� = π

2
,�

)
= 1

2
(ρ±

11 + ρ±
−1−1) − ρ±

1−1 cos 2�.

(21)

The corresponding distributions are shown in Fig. 9 at
|tmax − t | = 0.1 GeV2. In the s frame, the matrix element ρ0

1−1
takes a positive value for vector-type exchange and a negative
value for pseudoscalar-type exchange. This difference means
that W (π

2 ,�) of vector-type exchange and pseudoscalar-type
exchange are out of phase. The amplitudes of the oscillations
in W 0 are found to be larger than those of W±, which reflects
the differences in ρ0

1−1 as shown in Figs. 4 and 5. For the
pseudoscalar-Reggeon exchange in the t frame, ρ

0,+
λ,λ′ = 0 for
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|λ| = |λ′| = 1, and, therefore, the corresponding distributions
W (π

2 ,�) vanish identically.

IV. SUMMARY AND CONCLUSION

In summary, we investigated the reactions of open
strangeness K∗ and open charm D∗ vector mesons in πN
scattering based on the quark-gluon string model. We found
that unpolarized cross sections of K∗ meson production are
satisfactorily described by the QGSM with vector trajectory
exchange. Although the contribution from pseudoscalar tra-
jectory exchange is expected to be small, it also gives a similar
t dependence of differential cross sections as the vector-type
exchange model. Therefore, differential cross sections cannot
be used to disentangle the two production mechanisms.

To verify the mechanisms of vector meson production, we
then studied the angular distributions of vector meson decays.
Unlike the cross sections, the spin-density matrix elements are
sensitive to the spin structure of the production amplitude and,
as a result, they show very different t-dependence and can
be used to distinguish the vector and pseudoscalar exchanges.
Furthermore, the density distribution functions are found to
have completely different angle-dependence depending on the
production mechanisms and can be used to probe the spin
structure of the reaction amplitudes. In fact, the available data
for spin-density matrix elements of K∗ production show that
the major production mechanism would be the vector-type
exchange but it requires noticeable contributions from the

pseudoscalar-type exchange. Because of the limited experi-
mental data, we cannot estimate the relative strength between
the vector and pseudoscalar exchanges, and, therefore, new
data are strongly called for to investigate strangeness and
charm production mechanisms.

We also presented our predictions for charm production.
In this case, the t dependencies of differential cross sections
of the vector and pseudoscalar exchanges are even closer to
each other because of the similarity in the slope of vector
and pseudoscalar trajectories, and thus the measurements of
differential cross sections do not help pin down the production
mechanisms. However, spin-density matrix elements and
decay angular distributions are very sensitive to the production
mechanisms as in the case of K∗ production, and more detailed
studies on these quantities are expected to shed light on
our understanding of the strong interaction. In particular, the
measurements for K∗ and D∗ productions are complementary
to each other and are important to understand the dependence
of the production mechanisms on the quark mass scale.
All these predictions can be tested and verified in future
experimental programs with pion beams, for instance, at the
J-PARC facility.
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