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In hydrodynamical modeling of ultrarelativistic heavy-ion collisions, the freeze-out is typically assumed to
take place at a surface of constant temperature or energy density. A more physical approach is to assume that
freeze-out takes place at a surface of constant Knudsen number. We evaluate the Knudsen number as a ratio of
the expansion rate of the system to the pion-scattering rate and apply the constant Knudsen number freeze-out
criterion to the ideal hydrodynamical description of heavy-ion collisions at the Relativistic Heavy Ion Collider
at BNL (

√
sNN = 200 GeV) and the Large Hadron Collider (

√
sNN = 2760 GeV) energies. We see that once the

numerical values of freeze-out temperature and freeze-out Knudsen number are chosen to produce similar pT

distributions, the elliptic and triangular anisotropies are similar too, in both event-by-event and averaged initial
state calculations.

DOI: 10.1103/PhysRevC.95.054911

I. INTRODUCTION

The fluid-dynamical description of heavy-ion collisions
at the BNL Relativistic Heavy Ion Collider (RHIC) and the
CERN Large Hadron Collider (LHC) has been very successful
in reproducing the observed particle distributions and their
anisotropies at low values of transverse momentum [1–3].
However, since what is experimentally observed is not a
particle fluid, but individual particles, the fluid-dynamical
description must break down at some point during the evo-
lution, the interactions must cease, and the particles must start
behaving instead like free-streaming particles. The particles
decouple from the fluid, and their momentum distributions
freeze-out—a process appropriately known as decoupling or
freeze-out.

When the freeze-out happens is not described by fluid
dynamics but has to be decided by using some other model or
theory. Fluid dynamics is considered to be valid when the ratio
of the microscopic to macroscopic scales of the system—its
Knudsen number—is much smaller than one. In the context
of heavy-ion collisions, fluid dynamics has traditionally been
considered to be valid until either the mean free path of
particles exceeds the size of the system, or the expansion rate
exceeds the collision rate of the particles [4,5]. The Knudsen
number can be defined in several ways [6], and thus both of
these dynamical criteria are equivalent to the requirement that
the Knudsen number is less than one. The idea of using the
scattering and expansion rates as the limit for the validity of
fluid dynamics, and thus as a decoupling criterion, is an old
one [7], but it has been used in fluid-dynamical calculations
only a couple of times [8–12]. Instead, the freeze-out is
assumed to take place on a surface of constant temperature
(or density). It has been argued that, since the scattering
rate depends strongly on temperature (∝T 3 for a constant
cross section), the freeze-out is a very fast process, and thus
a constant-temperature surface is a good approximation to
the constant-Knudsen-number surface [5,13,14]. It is worth

noticing that the well-known Gamow criterion in cosmology—
that the time when interaction ceases to be effective is
determined by the condition tint � texpan, where tint and texpan

are the relevant interaction and expansion timescales [15]—is
equivalent to freeze-out at constant Knudsen number and
leads to decoupling at a certain temperature only because the
expansion of the universe is taken to be uniform.

It was seen in earlier studies with optical Glauber initial
profiles that, while the constant-Knudsen-number surface
differs significantly from the constant-temperature surface, the
effect on observable particle pT distributions is small [11]
and that elliptic flow of charged hadrons shows sensitivity
to the freeze-out criterion only at large values of transverse
momentum or rapidity, or in peripheral collisions [12].
However, in contemporary event-by-event hydrodynamical
calculations, the flow develops more violently and more
unevenly than when an averaged initial state is used [16].
Thus it is not obvious whether the two freeze-out conditions
lead to similar particle distributions when the initial density
fluctuates event by event. Furthermore, the evaluation of
the Knudsen number in Refs. [11,12] was based either on
pion-pion scattering ignoring all other scattering processes and
the chemical nonequilibrium during the hadronic stage [11],
or on assumed temperature dependence of the shear viscosity
coefficient [12]. Thus it is unknown how more sophisticated
calculations of the microscopic scale would affect the results.

In this work we further study whether the freeze-out
criterion has any observable effects. We evaluate the pT

differential elliptic flow v2(pT ) of identified particles (pions
and protons) in

√
sNN = 200 GeV Au + Au (RHIC) and√

sNN = 2760 GeV Pb + Pb collisions (LHC) by using both
constant-temperature and constant-Knudsen-number freeze-
out criteria. To test our assumption that the large gradients
in event-by-event calculations would make the system more
sensitive to the freeze-out criterion, we model the collisions
at RHIC both event by event and by using the averaged initial
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state. We use the pion-scattering rate as the microscopic scale
and calculate the rate in a chemically frozen hadron gas from
scattering cross sections, including scatterings with all hadron
species. Since our aim is not a faithful reproduction of the data,
we simplify the description by using a simple boost-invariant
ideal fluid model.

Note that, in this work, we use the conventional Cooper–
Frye description (see Sec. III B) to evaluate the particle
distributions at freeze-out. We do not address the negative
contributions,1 but our approach differs from the conventional
freeze-out procedure only by the choice of the decoupling
surface.

To some extent the freeze-out problem has been solved in
so-called hybrid models, where the late stage of the evolution
is described by using a Boltzmann transport model [19,20].
Nevertheless, the results in these models depend on when the
switch from fluid to cascade is made [19,21], and therefore it
is interesting to study how different criteria for particlization
surface affect the particle distributions even in the context of
hybrid models.

II. DYNAMICAL FREEZE-OUT CRITERION
AND SCATTERING RATE

To maintain kinetic equilibrium in an expanding system the
scattering rate must be much larger than the expansion rate.
We express this condition as

Kn = θ

�
� 1, (1)

where � is the scattering rate and θ is the hydrodynamical
expansion rate. When Kn approaches one, there are not enough
collisions to maintain the kinetic equilibrium, and the system
freezes out. Since Kn is a ratio between (an inverse of) a
macroscopic length scale and (an inverse of) a microscopic
length, it can be identified as a Knudsen number, which
should be much smaller than one for fluid dynamics to be
valid. Based on these considerations we define a dynamical
freeze-out criterion as a surface of constant Knudsen number
Kn = Knf , where Knf ∼ 1.

Before one can apply this criterion, the scattering rate must
be known. We evaluate the pion-scattering rate in hadron
resonance gas and use it in our freeze-out criterion for all par-
ticles. One could argue that we should calculate the scattering
rate individually for each particle species and decouple them
separately at the corresponding Knudsen number. However, in
order to be consistent, one should also remove the decoupled
particles from the fluid and model the interaction between the
fluid and the decoupled particles,2 which are not in equilibrium
anymore. This cannot be consistently implemented (at least not
easily) in the hydrodynamical framework and thus we make
the simplifying assumption that the whole system decouples
when the most abundant particles (i.e., pions) do.

1For a recent discussion, see Refs. [17,18].
2See the discussion about “pion wind” in Ref. [9].

Scattering rate of pions

Here we calculate the average scattering rate of pions
in hadron resonance gas in kinetic equilibrium. The rate is
obtained from [22–25]

� = 1

nπ (T ,μπ )

∑
i

∫
d3pπd3pifπ (T ,μπ )fi(T ,μi)

×
√

(s − sa)(s − sb)

2EπEi

σπi(s), (2)

where nπ is the density of pions, fπ (T ,μπ ) [fi(T ,μi)] is the
thermal distribution function of pions (particle i), with T being
the temperature and μπ (μi) being the chemical potential of
pions (particle i).

√
(s − sa)(s − sb)/(2EπEi) is the relative

velocity when s is the square of the center-of-mass energy,
sa = (mπ + mi)2, sb = (mπ − mi)2, and Eπ (Ei ) and mπ (mπ )
are the energy and mass of pions (particle i). The pion-particle
i scattering cross section is labeled σπi and the sum runs over
all particle species included in the equation of state (EoS) [26].

One can perform most of the integrals analytically and, after
some algebra (see Appendix A), one arrives at

� = T

nπ (T ,μπ )

∑
i

gi

32π4

∞∑
k=1

ekμπ/T

∞∑
n=1

(∓1)n+1

n
enμi/T

×
∫ ∞

sa

ds
σπi(s)(s − sa)(s − sb)√
rs − (r − 1)

(
m2

i − rm2
π

)
×K1

(
n

T

√
rs − (r − 1)

(
m2

i − rm2
π

))
, (3)

where gi is the degeneracy of particle i and r = k/n.
Cross sections are evaluated as in the UrQMD model [27,28].

Thus the largest contribution comes from resonance formation,
which is evaluated by using the Breit–Wigner formula,

σπi→R(s) = 2gR + 1

(2gπ + 1)(2gi + 1)

π

[pcms(
√

s)]2

× �R→πi(
√

s)�tot(
√

s)

(mR − √
s)2 + �2

tot(
√

s)/4
, (4)

where gR , gπ , and gi are the degeneracies of the resonance,
pion, and particle i, and pcms is the center-of-mass momentum
of the scattering partners (see Appendix B). �tot(M) is the full
decay width obtained as a sum of all mass-dependent partial
decay widths �i,j (M) (see Appendix C) given by

�R→πi(M) = �πi
R

mR

M

(
pcms(M)

pcms(mR)

)2l+1 1.2

1 + 0.2
(

pcms(M)
pcms(mR )

)2l
,

(5)

where �πi
R is the partial decay width of the resonance into the

πi channel at the pole, l is the decay angular momentum of
the exit channel, and mR is the pole mass of the resonance.
The pole masses and the decay widths are taken from the
Particle Data Book [29] as implemented in the calculation of
the EoS [26].

In addition we assume elastic meson-meson scatterings
with cross section σmm = 5 mb and elastic ππ scatterings with
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FIG. 1. The scattering rate of pions in both chemically equili-
brated (CE, red solid line) and chemically frozen (PCE, blue dashed
line) hadron resonance gas compared with the parametrization [30]
of the rate evaluated in Ref. [24] (PPVW, black dotted line).

σππ = σ0 exp[−(
√

s − m0)2/w] where σ0 = 15 mb, m0 =
0.65 GeV, and w = 0.1 GeV2. With these choices we are
able to reproduce the measured pion-pion, pion-kaon, and
pion-nucleon scattering cross sections reasonably well.

In Fig. 1 we compare the evaluated scattering rates with the
rates calculated in Ref. [24]. At low temperatures our simple
approach agrees with the more sophisticated calculation of
Ref. [24], but above the temperature T ≈ 120 MeV our rate is
larger simply because we include more states in the calculation,
and thus the density of scattering partners is larger at large
temperatures. Moreover, the scattering rate in a chemically
frozen hadron gas is larger than the rate in a chemically
equilibrated hadron gas due to larger particle densities.

III. HYDRODYNAMICAL FRAMEWORK

We use an updated version of the event-by-event ideal
hydrodynamical framework developed in Ref. [16].

A. Ideal hydrodynamics

We solve the ideal hydrodynamical equations

∂μT μν = 0,

∂μjμ = 0,
(6)

where T μν = (ε + P )uμuν − Pgμν is the ideal energy-
momentum tensor, jμ = nBuμ the net-baryon current, ε is the
energy density, P is the pressure, uμ is the fluid four-velocity,
and nB is the net-baryon density. We use two different
equations of state (EoS): (i) s95p-v1, which is always in
chemical equilibrium, and (ii) s95p-PCE-v1, which has a
chemical freeze-out at temperature Tchem = 150 MeV [26].
Both of these EoSs assume zero net-baryon density.

We concentrate on the midrapidity region, where boost-
invariance is a reasonable assumption at the LHC and full
RHIC energies. This assumption reduces the number of
dimensions in evolution equations to 2 + 1. We use the sharp
and smooth transport algorithm (SHASTA) [31] to solve the
equations in hyperbolic coordinates, where one uses τ =√

t2 − z2 and ηs = 1
2 log t+z

t−z
instead of time t and longitudinal

coordinate z. At the antidiffusion stage of SHASTA we use
DeVore limiter [32], which is a modified version of the Zalesak
multidimensional limiter [33].

B. Freeze-out

We employ two different freeze-out criteria. One is the
conventional constant-temperature criterion, and the other
is the dynamical criterion, where we assume freeze-out at
constant Knudsen number Kn. The hydrodynamical expansion
rate is needed to obtain the Knudsen number, and in the
boost-invariant case it is calculated as [34]

θ = ∂μuμ = ∂τu
τ + ∂xu

x + ∂yu
y + uτ/τ. (7)

In both cases the freeze-out surface elements d�μ are obtained
using CORNELIUS++ subroutine [21]. After the surface ele-
ments are found, we calculate the thermal spectrum of hadron
species i by using Cooper–Frye prescription:

E
d3Ni

d3p
=

∫
�

d�μpμfi(x,p), (8)

where fi(x,p) is the thermal distribution function of hadron
i and pμ is the four-momentum of the hadron. At this
stage we use the hadron gas EoS at nonzero net-baryon
densities to convert the energy and net-baryon density to
temperature and chemical potentials. Since the EoS during
the fluid-dynamical evolution does not allow finite net-baryon
density, this procedure is not fully consistent, but the violation
of conservation laws is very small at RHIC and even smaller
at the LHC.

After the thermal distributions of all hadron species have
been evaluated, we sample individual hadrons as described
in Ref. [16]. All strong and electromagnetic two- and three-
particle decays are then calculated, and the daughter particles
added to the respective thermal ensembles. Note that, unlike
in Ref. [16], we no longer use PYTHIA to handle the decays,
but evaluate the decays of all the resonances included in the
EoS. When evaluating the charged-particle multiplicities we
sample hadrons within an interval |y| < 3 to make sure that, at
midrapidity, the system looks boost invariant after the decays
as well. However, when we consider the identified particle pT

spectra and flow coefficients, we take all particles into account
regardless of their rapidity to achieve better statistics.

C. Initial-state and centrality class definitions

The initial state and centrality classes are defined by using
the Monte Carlo (MC) Glauber model described in Ref. [16].
Nucleons are randomly distributed to nucleus by using a
standard two-parameter Woods–Saxon potential. Two nucle-
ons from different nuclei collide if their transverse distance
rd <

√
σNN/π , where σNN is the inelastic nucleon-nucleon

cross section. We take σNN = 42 mb at
√

sNN = 200 GeV
and σNN = 64 mb at

√
sNN = 2760 GeV. Here we neglect

nucleon-nucleon correlations and finite-size effects since their
effects on anisotropies at midcentral collisions were found to
be very small [35,36].

Multiplicity is taken to be proportional to the number of
ancestors, Nanc, which is a weighted sum of the number of
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participants, Npart, and the number of binary collisions, Nbin,
and is defined as

Nanc = (1 − f )Npart + f Nbin, (9)

where f is the fraction of the binary collision contribution.
This fraction f is chosen to reproduce the centrality depen-
dence of multiplicity.

In principle, when a fit to the multiplicity data is made, one
should first generate events with a certain f , sort the events
according to their centrality, and then calculate the average
number of ancestors in each centrality bin. Unfortunately, this
is a very time-consuming procedure because a large number
of events must be made for the centrality class definitions.
Thus our approach here is to fix the centrality classes by using
fixed impact parameter intervals. Because the average number
of participants and binary collisions is now known at each
centrality bin, a χ -squared fit can be easily made to fit the
ratio f . This approximation is well justified, because average
Npart and Nbin values are not sensitive to the centrality class
definition.

After the fraction of binary collisions, f , is determined,
we convert the centrality classes to the number of ancestors
intervals. To fix f , we used the STAR Collaboration data
[37] from RHIC, and the ALICE Collaboration data [38]
from the LHC. We neglected the most-peripheral centrality
classes starting from 60% centrality since we do not expect
hydrodynamics to be applicable for peripheral collisions. Our
result for RHIC is f = 0.088 and at the LHC we obtain
f = 0.17.

The initial entropy density distribution s(x,y) for a single
event is taken to be

s(x,y) = Ksd√
2πσ 2

∑
wi exp

(
− (x − xi)2 + (y − yi)2

2σ 2

)
,

(10)

where the sum runs over all participants and binary collisions,
wi is the weight [(1 − f ) for participant and f for binary
collision], xi and yi are the transverse coordinates of a
participant or a binary collision, and σ is a Gaussian smearing
parameter controlling the shape of the distribution. The overall
normalization constant Ksd is fixed to reproduce the observed
multiplicity in the 0%–5% most-central collisions. In this work
we use σ = 0.8 fm. We do not study the dependence of the
results on σ because smaller width of the Gaussians leads
to a formation of very-small-scale structures on the constant
Knudsen number surface; see Ref. [39]. The scale of these
structures is smaller than the mean free path of pions, and thus
we do not consider them physical. At this stage we do not
consider it worth the effort to improve the freeze-out criterion
to remove these structures since further studies should be
carried out by using viscous hydrodynamics, and dissipation
is known to smear small-scale structures, anyway.

To calculate the average initial state, we average 1000 MC
Glauber initial states. In this procedure impact parameters in
each event are aligned. We first obtain an averaged entropy
density profile and then use the EoS to convert it to energy
density profile, which is the actual initial condition for
hydrodynamics.

IV. RESULTS

We concentrate on the effects of the freeze-out criterion on
particle distributions and their anisotropies and do not aim to
faithfully reproduce the data. We compare the calculated pT

distributions to the data to show that our parameter choices
are reasonable, but do not compare elliptic flow nor triangular
flow with the data to avoid the need to evaluate the anisotropy
the same way the particular data set was analyzed. It was
seen in Ref. [12] that the favored freeze-out temperature and
Knudsen number do not depend on centrality in the 0%–50%
centrality range where fluid dynamics works best. We do not
expect event-by-event fluctuations to change this behavior and
therefore do not study the centrality dependence of the pT

spectra or anisotropies in detail. Instead, we mostly concentrate
on the 20%–30% centrality bin, and leave the study of p + A
and peripheral A + A collisions for a later work.

A. Averaged initial state in
√

sNN = 200 GeV Au + Au
collisions at the RHIC

To visualize how the freeze-out surface depends on the
freeze-out criterion, we show the constant-temperature and
constant-Knudsen-number freeze-out surfaces in Fig. 2. The
surfaces are calculated by using an average initial state for a√

sNN = 200 GeV 20%–30% central Au + Au collision and
chemically frozen s95p-PCE-v1 EoS. The constant-Knudsen-
number surface is closer to the center of the system, and thus
the edges of the system are hotter and the maximum flow ve-
locity is lower than on the constant-temperature surface. On the
other hand, the system lives longer, and the center decouples
at lower temperature. Similar behavior can be seen at the LHC
energy as well, and when chemical equilibrium is assumed.

In Fig. 3 we show the transverse momentum spectra of
positive pions and protons in 20%–30% centrality class. The
calculations were performed either by using the EoS s95p-v1,
which assumes chemical equilibrium (Fig. 3, top panel), or
the s95p-PCE-v1 EoS (Fig. 3, bottom panel), which assumes
chemical freeze-out at Tchem = 150 MeV. With the s95p-v1
EoS the initial time is the conventional τ0 = 0.6 fm, and the
freeze-out temperature Tf = 140 MeV and Knudsen number
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FIG. 2. Constant-temperature (solid red curve) and constant-
Knudsen-number (dashed blue curve) freeze-out surfaces in

√
sNN =

200 GeV 20%–30% central Au + Au collisions. Surfaces are shown
along the x and y axes.
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FIG. 3. Transverse momentum spectra of positive pions and
protons in

√
sNN = 200 GeV 20%–30% central Au + Au collisions

assuming (a) chemically equilibrated or (b) chemically frozen EoS.
The solid red line corresponds to the results obtained by using
freeze-out at constant temperature and the dashed blue line by
using freeze-out at constant Knudsen number. The data are from
the PHENIX Collaboration [40].

Knf = 1 lead to almost identical pion and proton distributions
which reproduce the data reasonably well.

The assumption of separate chemical freeze-out (Fig. 3,
bottom) necessitates the use of an earlier initial time τ0 = 0.2
fm to make the proton spectrum hard enough.3 When chemical
equilibrium has been lost, the temperature decreases faster
with decreasing energy density than in chemical equilibrium.
This necessitates the use of lower freeze-out temperature Tf =
120 MeV, and larger freeze-out Knudsen number Knf = 1.3 to
get sufficient transverse flow to reproduce the data. Since Knf

is a free parameter of the order of one, and the assumption of

3Later freeze-out, i.e., lower freeze-out temperature or larger freeze-
out Knudsen number, would make the pion spectrum too soft; see
discussions in Refs. [41,42].
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FIG. 4. Elliptic flow of positively charged pions and protons in√
sNN = 200 GeV 20%–30% central Au + Au collisions assuming (a)

chemical or (b) partial chemical equilibrium in the EoS. The solid red
line corresponds to the results obtained by using freeze-out at constant
temperature and the dashed blue line by using freeze-out at constant
Knudsen number. Error bars depict estimated statistical errors.

chemical equilibrium until the end of the evolution somewhat
unphysical, it is acceptable that Knf is different for CE and
PCE EoSs.

As shown it is possible to find constant-temperature and
constant-Knudsen-number values for freeze-out, which give
similar pion and proton spectra. This is a nontrivial result,
since the corresponding freeze-out surfaces are different. On
a constant-Knudsen-number surface the average flow velocity
is lower, and the center decouples at lower temperature. These
differences would make the spectra steeper, but their effect is
canceled by the edges of the system freezing out at a higher
temperature.

Next, in Fig. 4 we plot the pT -differential elliptic flow
v2(pT ) of pions and protons at

√
sNN = 200 GeV 20%–30%

central Au + Au collisions by using both EoSs and freeze-out
criteria. Since we use an averaged initial state, we have evalu-
ated the elliptic flow with respect to the reaction plane, v2{RP}.

054911-5



SAEED AHMAD, HANNU HOLOPAINEN, AND PASI HUOVINEN PHYSICAL REVIEW C 95, 054911 (2017)

In our earlier proceedings contribution [43], we saw that
elliptic flow was sensitive to the freeze-out criterion when
s95p-PCE-v1 EoS was used. However, in that calculation we
had fixed Knf = 1.0, and the pT distributions were different
as well. Now, after choosing the freeze-out Knudsen number
to reproduce the data and the spectra calculated by using
the constant-temperature freeze-out criterion, both freeze-out
criteria lead to similar elliptic flow. The same happens also
when we keep Knf = 1.0 fixed, and adjust the freeze-out tem-
perature instead to Tf = 140 MeV to achieve similar spectra.

To study whether the sensitivity to the freeze-out criterion
might depend on the initial state, we performed the calculations
by using a pure binary-collision profile as well. We used
an initial time τ0 = 0.6 fm, freeze-out temperature Tf =
120 MeV, and Knudsen number Knf = 1.3 with s95p-PCE-v1
and found that the spectra and elliptic flow were again
independent of the freeze-out criterion. Thus we suspect that
this similarity with both criteria is not due to some property of
the initial state but could be a more general phenomenon. Also
note that the same pair of constant temperature and constant
Knudsen number worked with both initial states.

B. Event-by-event fluctuating initial states in
√

sNN = 200 GeV
Au + Au collisions at the RHIC

As argued in the introduction, in event-by-event calcu-
lations the two freeze-out criteria might lead to different
results, even if the results were similar when averaged initial
state was used. To study this assumption, we modeled the
collisions at RHIC event by event by using the chemically
frozen s95p-PCE-v1 EoS. We followed the same procedure
than in our calculations using an averaged initial state and
treated both the freeze-out temperature and Knudsen number
as free parameters to be adjusted to reproduce the observed pT

spectra. It turned out that the same combination of parameters,
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FIG. 5. Transverse momentum spectra of positively charged
pions and protons in

√
sNN = 200 GeV 20%–30% central Au + Au

collisions from event-by-event hydrodynamical simulations. The
solid red line corresponds to the results obtained by using freeze-out
at constant temperature and the dashed blue line by using freeze-out
at constant Knudsen number. The data are from the PHENIX
Collaboration [40].
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FIG. 6. (a) Elliptic and (b) triangular flow of positive pions and
protons in

√
sNN = 200 GeV 20%–30% central Au + Au collisions

from event-by-event hydrodynamical simulations. The solid red line
corresponds to the results obtained by using freeze-out at constant
temperature and the dashed blue line by using freeze-out at constant
Knudsen number. Error bars depict estimated statistical errors.

Tf = 140 MeV and Knf = 1.3, lead to a reasonable repro-
duction of the data in both event-by-event and averaged initial
state calculations; see Figs. 5 and 3, respectively. However, as
observed before, e.g., in Ref. [16], the spectra are a little bit
flatter in the event-by-event case.

The pT -differential elliptic and triangular flows are shown
in Fig. 6. In event-by-event calculations it makes more sense
to calculate the flow coefficients with respect to their event
planes, and therefore vn{EP } values are shown in the figures.
Consequently, comparison with the averaged initial state case
cannot be made, because the definitions of flow are different.

Unlike what we expected, there is no significant difference
between the freeze-out criteria. We also checked with a smaller
number of events that in the most-central collisions, where both
v2 and v3 are generated mostly by fluctuations, the situation is
the same. Thus both anisotropies seem to be insensitive to the
freeze-out criterion in event-by-event calculations, too.
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We have also checked that, in individual events, the spectra,
elliptic flow, and triangular flow are not necessarily the same
with the parameters used, but the difference can be of the order
of 10% in each studied variable. This opens up the question
of whether the event-by-event distribution of anisotropies
[44] might be sensitive to the freeze-out criterion, and how
the freeze-out criterion would affect the correlation between
the initial-state anisotropy and final momentum anisotropy
[44,45]. We have not checked either what would happen if we
adjusted the freeze-out criteria event-by-event so that the pT

distributions were similar in each single event.

C. Averaged initial state in
√

sNN = 2760 GeV Pb + Pb
collisions at the LHC

At a single collision energy one can always fix the
freeze-out temperature to reproduce the pT spectra, but there
is no physical reason why the same freeze-out temperature
should work at another collision energy. On the other hand,
the dynamical criterion with freeze-out at constant Knudsen
number is based on local expansion dynamics and general
considerations about the validity of hydrodynamics, and
therefore we can expect the freeze-out to take place at the same
value of Knudsen number independent of the collision energy.
Thus it is worthwhile to check what happens in collisions at
the LHC energy.

In Fig. 7 we show the transverse momentum spectra of pions
and protons in

√
sNN = 2760 GeV 0%–5% central Pb + Pb

collisions using averaged initial state and s95p-PCE-v1 EoS.
Both in the shown 0%–5% centrality class, and in the
semicentral 20%–30% centrality class, the favored freeze-out
temperature was the same Tf = 120 MeV both at the RHIC
and at the LHC, but the data favored lower freeze-out Knudsen
number Knf = 1.0 at the LHC. Thus, as expected, the freeze-
out Knudsen number does not depend on the centrality of
the collision, but contrary to expectations, it depends on the
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Collaboration [50].
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corresponds to the results obtained by using freeze-out at constant
temperature and the dashed blue line by using freeze-out at constant
Knudsen number. Error bars depict estimated statistical errors.

collision energy. The dependence on collision energy may be
an effect of neglecting dissipation: When the dynamical crite-
rion of freeze-out at constant Knudsen number was used in the
context of dissipative hydro [12], the same freeze-out Knudsen
number worked both at the RHIC and the LHC. On the other
hand, since the slopes of the final pT distributions depend on
the initial pressure gradients, the collision energy dependence
of the freeze-out Knudsen number may also indicate that our
Glauber-based initial-state model does not properly reproduce
the initial gradients. Thus it would be interesting to apply the
dynamical freeze-out criterion to more sophisticated EKRT
[45–47] and IP-Glasma [48,49] initial states.

The pT -differential elliptic flow of pions and protons shown
in Fig. 8 depicts the same pattern at the LHC as at the RHIC:
Once the pT spectra are reproduced, both freeze-out criteria
lead to similar elliptic flow.

To be sure, we carried out the event-by-event calculations
at the LHC energy too, but saw the very same behavior
as at the RHIC and when using the averaged initial state:
Once the freeze-out parameters were chosen to reproduce the
observed spectra (Tf = 120 MeV and Knf = 1.0), the elliptic
and triangular flows were similar, too.

V. CONCLUSIONS

As argued in the introduction, freeze-out criterion based on
freeze-out at a constant temperature is an oversimplification,
and a dynamical criterion where freeze-out takes place at
constant Knudsen number would be more physical. However,
we saw that, in semicentral and central collisions, identified
particle spectra and elliptic and triangular flows are not
sensitive to the freeze-out criterion.

We evaluated the Knudsen number as the ratio of the
expansion rate of the system, and the scattering rate of
pions. We applied the freeze-outs at constant temperature
and constant Knudsen number to ideal fluid calculations of
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Au + Au collisions at the RHIC and Pb + Pb collisions at
the LHC at 20%–30% centrality, and fixed the values of
freeze-out parameters by fitting the observed pion and proton
pT distributions. The two criteria lead to different freeze-out
surfaces: with dynamical freeze-out the edges decouple earlier
(i.e., at higher temperature) and the center of the system
lives longer, letting the matter cool more compared with the
constant-temperature case. However, after the pT spectra were
constrained to be similar, no sign of the different temperatures
and flow velocities on the freeze-out surface could be seen in
the anisotropies.

We did check that the same insensitivity persists in
most-central collisions, but we did not check what might
happen when the collision system is much smaller, such as in
peripheral A + A or in p + A collisions. The earlier results of
Ref. [12] indicate that the sensitivity to the freeze-out criterion
increases when the system size or collision energy decreases,
and thus the p + A collision system could be very sensitive
to the freeze-out criterion. Maybe even to such an extent that
the Knudsen number at the very beginning of the evolution is
larger than one [6].

Our event-by-event calculations revealed that even if the
spectra and anisotropies after averaging over many events
were not sensitive to the freeze-out criterion, spectra and
anisotropies in individual events were. This leaves open the
question of whether event-by-event distributions of aver-
age pT or anisotropy coefficients vn might be sensitive to
the freeze-out criterion. One could also expect that HBT
radii would be an observable which is more sensitive than
the anisotropies to the exact properties of the freeze-out
surface.

Unfortunately, we were unable to study how the value of
the smearing parameter σ of the Monte Carlo Glauber model
affects the sensitivity to freeze-out, and thus whether small-
scale density fluctuations in the initial state might affect the
freeze-out. This remains to be explored in a further study,

although one may expect that dissipation has largely smeared
away small-scale structures by the time of freeze-out.
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APPENDIX A: INTEGRALS IN CALCULATION OF
SCATTERING RATE

The reduction of the number of integrals over momentum
in the scattering-rate calculations has been shown in Ref. [25]
for equal-mass particles obeying Boltzmann statistics, and
generalized for nonidentical particles when the scattering
partner has a fixed momentum in Ref. [22]. For the sake of
completeness, we repeat the process here and generalize it for
quantum statistics.

The total number of times pions scatter with particles i per
unit volume per unit time is given by

Ri = 2
∫ ∞

sa

ds
√

(s − sa)(s − sb)σπi(s)
∫

d3pπ

2Eπ

d3pi

2Ei

fπ (T ,μπ )fi(T ,μi)δ(s − (pi + pπ )2), (A1)

where, compared with Eq. (2), we have added the integration over center-of-mass energy s and the corresponding δ function. To
proceed we express the distribution functions fπ and fi as a series:

fi(T ,μi) = gi

(2π )3

1

e
E−μi

T ± 1
= gi

(2π )3

∞∑
n=1

(∓1)n+1enμi/T e−nE/T , (A2)

where −1 in the series is for fermions and +1 for bosons, change the momentum coordinates to spherical coordinates, change
the integral over the magnitude of momentum to integral over energy, and rewrite the δ function as

δ(s − (pi + pπ )2) = 1

2|pπ ||pi |δ
(

cos θi + s − (
m2

π + m2
i

) − 2EπEi

2|pπ ||pi |
)

. (A3)

The angular integrals can now be carried out, and we get

Ri = gi

25π4

∞∑
k=1

ekμπ/T

∞∑
n=1

(∓1)n+1enμi/T

∫ ∞

sa

ds
√

(s − sa)(s − sb)σπi(s)

×
∫ ∞

mπ

dEπ

∫ ∞

mi

dEie
− k

T (Eπ+ n
k
Ei)�

(
1 −

∣∣∣∣∣ s − (
m2

π + m2
i

) − 2EπEi

2|pπ ||pi |

∣∣∣∣∣
)

. (A4)
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We change the integration variables from Eπ and Ei to y = Eπ + 1
r
Ei and x = Eπ − 1

r
Ei , where r = k/n. The � function

constraint can now be written as b < x < c, where

b =
(
r2m2

π − m2
i

)
y − d

rs − (r − 1)
(
m2

i − rm2
π

) , c =
(
r2m2

π − m2
i

)
y + d

rs − (r − 1)
(
m2

i − rm2
π

) ,

d =
√

r2y2 − [
rs − (r − 1)

(
m2

i − rm2
π

)]√
(s − sa)(s − sb).

(A5)

It turns out that the integration over x is constrained more by the � function than by the integration limits, and we get

Ri = gi

26π4

∞∑
k=1

ekμπ/T

∞∑
n=1

(∓1)n+1enμi/T r

∫ ∞

sa

ds
√

(s − sa)(s − sb)σπi(s)
∫ ∞

α

dye− ky
T (c − b), (A6)

where

α =
√

s

r
− r − 1

r2

(
m2

i − rm2
π

)
. (A7)

The y integral can now be reordered and carried out to be∫ ∞

α

dye−k y
T

√
y2 − α2 = T α

k
K1

(
kα

T

)
, (A8)

where K1 is the modified Bessel function. Inserting this into Eq. (A6) and keeping the y-independent terms omitted from Eq. (A8),
we finally get

Ri = giT

25π4

∞∑
k=1

ekμπ/T

∞∑
n=1

(∓1)n+1

n
enμi/T

∫ ∞

sa

ds
(s − sa)(s − sb)σπi(s)√
rs − (r − 1)

(
m2

i − rm2
π

)K1

(
n

T

√
rs − (r − 1)

(
m2

i − rm2
π

))
. (A9)

After summing over all particles i and dividing by the pion
density, we get Eq. (3).

APPENDIX B: CENTER-OF-MASS MOMENTUM IN
PARTICLE-RESONANCE SCATTERING

If one of the scattering partners is a resonance, the
conventional expression for the center-of-mass momentum of
the scattering,

pcms(
√

s,m1,m2) =
√

[s − (m1 + m2)2][s − (m1 − m2)2]

2
√

s
,

(B1)

must be amended to take into account the finite width
of the resonance. To do this, we again mostly follow the
UrQMD description [27] and include an integral over the mass
distribution of the resonance:

pcms(
√

s) =
∫ √

s−mπ

0
dm pCMS(

√
s,mπ,m)

× 1

2π

�R

(mR − m)2 + �2
R/4

, (B2)

where we assume the mass distribution to be the Breit–Wigner
distribution with mass-independent width �R , and mR is the
pole mass of the resonance.

Note that, in the integrals of Appendix A and in the
evaluation of the EoS, the resonances have been assumed to
have zero width, and their pole masses have been used as their
masses.

APPENDIX C: FULL DECAY WIDTH

The evaluation of the full decay width �tot(M) in Eq. (4)
requires knowledge of partial decay widths of three- and four-
body decay channels as well. Unfortunately, Eq. (5) cannot
be easily generalized to many-body decays. To treat all decay
channels in a similar fashion, we combine the particles in
three- and four-body decays into a particle and a particle pair,
or two particle pairs, respectively, use the invariant mass(es)
of particle pair(s) to evaluate the center-of-mass momentum
[Eq. (B1)], and use the available phase space to give the mass
distribution of the invariant mass of the pair(s). In particular,
for three-body decays we obtain

pcms(M) = 8M

N

∫ M−m3

m1+m2

dmpair
[
pcms

(
M,mpair,m3

)]2

×pcms
(
mpair,m1,m2

)
, (C1)

where the normalization factor N is given by

N = 8M

∫ M−m3

m1+m2

dmpairpcms
(
M,mpair,m3

)
×pcms

(
mpair,m1,m2

)
. (C2)

If any of the daughter particles in a multiparticle decay is a
resonance, we use its pole mass only and neglect its width.
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