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Anisotropic fluid dynamics for Gubser flow
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Exploring a variety of closing schemes to the infinite hierarchy of momentum moments of the exactly solvable
Boltzmann equation for systems undergoing Gubser flow, we study the precision with which the resulting
hydrodynamic equations reproduce the exact evolution of hydrodynamic moments of the distribution function.
We find that anisotropic hydrodynamics, obtained by expanding the distribution function around a dynamically
evolving locally anisotropic background whose evolution is matched to exactly reproduce the macroscopic
pressure anisotropy caused by the different longitudinal and transverse expansion rates in Gubser flow, provides
the most accurate macroscopic description of the microscopic kinetic evolution. This confirms a similar earlier
finding for Bjorken flow [Molnár et al., Phys. Rev. D 94, 125003 (2016)]. We explain the physics behind this
optimal matching procedure and show that one can efficiently correct for a nonoptimized matching choice by
adding a residual shear stress to the energy-momentum tensor whose evolution is again determined by the
Boltzmann equation.
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I. INTRODUCTION

Anisotropic hydrodynamics [1–29] is a variant of dissipa-
tive (“viscous”) fluid dynamics that addresses the following
problem: All real fluids have nonzero mean free paths,
resulting in nonzero transport coefficients such as shear
and bulk viscosity. In such fluids, hydrodynamic expansion
competes with microscopic relaxation processes, keeping an
expanding fluid from ever reaching local thermodynamic equi-
librium. If the expansion is anisotropic, the different expansion
rates along different directions and the associated velocity
shear render the momentum distribution of the microscopic
constituents anisotropic in the local rest frame (LRF). If this
anisotropy becomes large, it manifests itself macroscopically
through large shear stresses, resulting in highly anisotropic
effective pressures that depend on the expansion rate and its
anisotropies.

By Landau matching, the energy and conserved parti-
cle densities, e and n, control the local temperature T
and chemical potentials μ of the fluid’s constituents in a
nonexpanding state. The fluid’s equation of state P (e,n)
reflects the interactions among the microscopic constituents
and is a material property of the fluid. Pressure gradients
are the forces driving hydrodynamic expansion, by local
acceleration of the fluid. The resulting evolution of the
densities of energy, momentum, and conserved charges is
constrained by conservation laws and causality and therefore
happens slowly, i.e., on time scales controlled by spatial
pressure and density gradients within the fluid. As long as
the microscopic relaxation time scale (i.e., the mean free
time between collisions in a microscopic picture based on
colliding particles) is short compared with these macroscopic
time scales, the momentum distribution of the microscopic
constituents approaches a thermal equilibrium distribution
feq(−(u(x) · p)/T (x),μ(x)/T (x)) in the LRF (which moves
with flow four-velocity uμ(x) in the global frame), character-
ized by a local temperature T (x) and chemical potentials μ(x)

consistent with the macroscopic energy and conserved particle
densities e(x) and n(x). Deviations δf (x,p) from this isotropic
local equilibrium distribution are suppressed by powers of
the Knudsen and inverse Reynolds numbers [30], which are
generically small for a small ratio between the microscopic
relaxation and macroscopic hydrodynamic time scales.

Generically, if expansion ceases, such deviations quickly
relax to zero, on a time scale controlled by the microscopic
mean free time. For anisotropically expanding systems, how-
ever, the local momentum anisotropy persists until its driving
force (i.e., the anisotropy of the expansion rate) dies down [31–
34]. In spite of the action of microscopic processes that
typically erase deviations from local momentum anisotropy on
microscopic time scales, the pressure anisotropy thus persists
for macroscopic hydrodynamic time scales. Although not
constrained by conservation laws (i.e., not a hydrodynamic
mode per se), pressure anisotropies thus evolve slowly, on
similar time scales as the energy and particle densities.

Standard second-order viscous hydrodynamic equations
of generalized Israel-Stewart type [30,32,35–39] are typi-
cally derived from momentum moments of the Boltzmann
equation, separating ideal and dissipative contributions by
expanding the Boltzmann equation around an (isotropic) local
equilibrium distribution feq. In such an approach, rapidly
anisotropically expanding systems lead to large dissipative
corrections persisting over long time periods, challenging
the applicability of the expansion on which the approach is
based. Anisotropic hydrodynamics expands the Boltzmann
equation instead around a deformed momentum distribution
in the LRF [40], with the idea that the deformation parameter
ξ , characterizing the leading-order term of the distribution
function at the microscopic level, should evolve in such a way
that, on the macroscopic level, it captures the evolution of the
pressure anisotropies caused by the anisotropic expansion.

Over the years, many different proposals were made on
how to obtain the evolution equation for ξ [1–6,8–22,25–
28], without achieving conceptual clarity. The idea that the
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deformed leading-order distribution function should be defined
such that deviations from the full distribution function (i.e., of
the full solution of the Boltzmann equation) are as small as
possible [11], and that residual dissipative effects can therefore
be treated perturbatively as in Israel-Stewart theory, is difficult
to implement formally. An important insight to circumvent this
problem was made by Molnár et al. [41,42], who suggested
that ξ should be treated as a Lagrange parameter just like
the temperature T and chemical potentials μ and chosen
such that the leading-order distribution function completely
accounts, at any point in space and time, for the macroscopic
longitudinal pressure PL.1 A similar matching procedure was
previously suggested by Tinti [43]. Independently, Bluhm and
Schaefer derived anisotropic nonrelativistic hydrodynamics
by matching the components of the pressure tensor to the
microscopic anisotropy parameter [23,24].

This so-called PL-matching scheme was shown in Ref. [42]
to yield a form of the anisotropic hydrodynamic equations
that almost perfectly reproduces the evolution of all hydrody-
namic moments of the distribution function known from the
exact solution of the Boltzmann equation in relaxation time
approximation (RTA) for a gas of massless Boltzmann parti-
cles undergoing Bjorken expansion (i.e., pure boost-invariant
longitudinal expansion without transverse gradients) [44–47].
In this highly symmetric scenario, the bulk viscous pressure
vanishes by conformal symmetry, and the shear stress tensor
reduces to a single component whose evolution describes
the evolving pressure anisotropy PL − PT , yielding almost
exactly the same result as obtained from the corresponding
moment of the distribution function whose evolution according
to the RTA Boltzmann equation is exactly known. The
Boltzmann equation couples the evolution of this shear stress
component to higher order (nonhydrodynamic) moments of the
distribution function,2 and the equation is closed by postulating
that the deviation δf̃ of the distribution function from the
leading-order term yields a negligible contribution to these
moments. The analysis in Ref. [42] demonstrates that for a
system of massless Boltzmann particles undergoing Bjorken
flow this approximation is exceedingly accurate, for any value
of the microscopic relaxation time (i.e., for any choice of the
specific shear viscosity η/s, where η is the shear viscosity
and s the entropy density) and of the initial momentum-space
deformation.

We show in this work that analogous results hold for
another situation for which an exact solution of the RTA Boltz-
mann equation is known [48–50], namely a gas of massless
Boltzmann particles undergoing Gubser flow [51,52] (a flow
pattern that combines boost-invariant longitudinal expansion
with fast azimuthally symmetric transverse flow). For this

1The same suggestion was already made in Refs. [11,21] whose
authors failed, however, to find the correct evolution equations for
ξ that would ensure that this matching condition remains preserved
over the entire evolution of the fluid.

2In general, the evolution equation of a tensorial moment of the
distribution function of rank r couples with higher order moments
up to order r + 2. This happens in both standard viscous [30] and
anisotropic hydrodynamics (see Eqs. (110)– (112) of Ref. [41]).

case, anisotropic hydrodynamics was studied previously by
Nopoush, Ryblewski, and Strickland (NRS) [53], however,
without invoking the PL-matching scheme. We show that
using PL matching improves the accuracy of the anisotropic
hydrodynamic evolution, but also that a similarly accurate
(although more laborious) scheme can be developed by using
the NRS [53] closing prescription and correcting for the
resulting slightly inaccurate evolution of the deformation
parameter ξ by adding a residual shear stress component that
accounts for the nonzero contribution to the shear stress from
the deviation δf̃ in this scheme (as was done in Ref. [11]
for Bjorken flow). The same is not true for standard viscous
hydrodynamics (we specifically study its improved Denicol
et al. (DNMR) variant [30]), which, in spite of accounting
for the δf deviations from the leading-order (isotropic)
distribution, yields rather large deviations from the exact
results for the evolution of energy density and shear stress.

Like many studies before, the analysis presented in this
work relies strongly on the availability of kinetic theory for
the microscopic dynamics. The concept of a momentum de-
formation parameter ξ makes sense only within kinetic theory.
For strongly coupled plasmas, such as the quark-gluon plasma,
a microscopic quasiparticle picture may not be available. In
such situations, hydrodynamics must be formulated entirely
in terms of macroscopic variables, avoiding any recourse
to ξ and its dynamics. We use the model at hand, which
admits both microscopic and macroscopic descriptions, with
analytically known relationships between both, to derive an
entirely macroscopic version of anisotropic hydrodynamics
with Gubser symmetry. In the microscopic kinetic formulation,
the dynamics of the momentum deformation parameter ξ
was shown to be controlled not only by the microscopic
relaxation time, but also by a higher-order moment of the
distribution function which itself also depends on ξ , i.e.,
on the shear stress and thus on the macroscopic dynamic
state of the medium. This driving term, which contains both
microscopic information about the interactions among the
medium constituents (through its dependence on the local
pressure) and macroscopic information on the dynamical state
of the medium (through its dependence on the local shear
stress) is the key new ingredient necessary for an anisotropic
hydrodynamic description. While its form is exactly known
for the massless gas of Boltzmann particles studied here, it
is presently unavailable for the quark-gluon plasma. Until we
figure out how to compute it from first principles, one will need
to model it because without it anisotropic hydrodynamics with
a realistic equation of state for hot QCD matter is not well
defined.

Before starting our discussion, we introduce our nota-
tion. Throughout this work, we adopt natural units h̄ = c =
kB = 1. The metric signature is taken to be “mostly plus”
(−, + , + ,+). In Minkowski space with Milne coordinates
xμ = (τ,r,φ,η), the line element is given by

ds2 = gμνdxμdxν = −dτ 2 + dr2 + r2dφ2 + τ 2dη2, (1)

where the longitudinal proper time τ , the spacetime rapidity
η, the transverse radius r , and the azimuthal angle φ are given
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in terms of the Cartesian coordinates (t,x,y,z) by

τ =
√

t2 − z2, η = tanh−1
(z

t

)
,

r =
√

x2 + y2, φ = tan−1
(y

x

)
. (2)

The fluid velocity uμ is a time-like normalized vector
uμuμ = −1 which is defined in the Landau Frame, i.e.,
uμ = T μνuμ/

√
uμT μνuν .

The paper is structured as follows: In Sec. II, we briefly
review Gubser flow and its associated symmetries. Section III
is the core of the paper in which we derive two new
variants of anisotropic hydrodynamics for Gubser flow and
compare their evolution equations with each other, with
previously studied different hydrodynamic approximations,
and with those arising from the exact solution of the relaxation
time approximation (RTA) Boltzmann equation. Numerical
results from these different approximations are compared and
discussed in Sec. IV. We summarize our findings in Sec. V.
Some technical details of the derivations of the hydrodynamic
evolution equations can be found in the Appendices.

II. THE GUBSER FLOW

Gubser flow [51,52] describes conformally symmetric sys-
tems that expand azimuthally symmetrically in the transverse
plane together with boost-invariant longitudinal expansion.
It is most easily described in de Sitter space times a line,
dS3 ⊗ R, where the flow looks static. To proceed from
Minkowski space with Milne coordinates to dS3 ⊗ R, one
first performs a Weyl rescaling of the metric,

dŝ2 = ds2

τ 2
= −dτ 2 + dr2 + r2dφ2

τ 2
+ dη2, (3)

followed by the coordinate transformation xμ = (τ,r,φ,η) �→
x̂μ = (ρ,θ,φ,η), where

ρ(τ̃ ,r̃) = −arcsinh

(
1 − τ̃ 2 + r̃2

2τ̃

)
, (4a)

θ (τ̃ ,r̃) = arctan

(
2r̃

1 + τ̃ 2 − r̃2

)
, (4b)

with τ̃ = qτ and r̃ = qr , where q is an arbitrary energy scale
that sets the transverse size of the system [51,52]. In these
coordinates, the Weyl transformed line element reads

dŝ2 = −dρ2 + cosh2 ρ(dθ2 + sin2 θ dφ2) + dη2, (5)

with the metric ĝμν = diag(−1, cosh2 ρ, cosh2 ρ sin2 θ,1)
and the square root of the metric determinant

√−ĝ =
cosh2 ρ cos θ . The new “de Sitter time” coordinate ρ has
the range ρ ∈ (−∞,∞) while the new coordinate θ ∈ (0,2π )
plays the role of an angle.

The line element (5) is invariant under rotations in
the space spanned by (θ,φ); the corresponding symmetry
group is denoted as SO(3)q [51]. Including the reflection
symmetry η → −η and longitudinal boost invariance, the
line element (5) is invariant under the “Gubser symmetry”
SO(3)q ⊗ SO(1,1) ⊗ Z2 [51]. The only normalized vector
that is invariant under this symmetry is ûμ = (1,0,0,0) [51,52].

This symmetry also implies that macroscopic variables such
as the energy density ε̂(x̂) = ε̂(ρ) depend only on the de
Sitter time [51,52] while phase-space distributions f (x̂,p̂) =
f (ρ,p̂2

�,p̂η) depend only on ρ [51,52] and the momentum
components p̂2

� = p̂2
θ + p̂2

φ/ sin2 θ and p̂η conjugate to the
coordinates θ,φ, and η [48,49].

We denote by variables with a hat all quantities that are
expressed in Gubser coordinates x̂μ.

III. FLUID DYNAMICS FOR GUBSER FLOW

In this section, we review the derivation of fluid dynamical
equations for the conformally symmetric Gubser flow from
the relativistic Boltzmann equation for a system of massless
particles, p̂2 = 0, using the relaxation time approximation
(RTA) for the collision term. In Gubser coordinates, this RTA
Boltzmann equation reads [48,49]

∂ρf
(
ρ,p̂2

�,p̂η

) = 1

τ̂r (ρ)

[
feq

(−û · p̂
T̂ (ρ)

)
− f

(
ρ,p̂2

�,p̂η

)]
,

(6)

where feq(z) = e−z is the local thermal equilibrium distribu-
tion,

−û · p̂ =
√

p̂2
�/ cosh2 ρ + p̂2

η (7)

is the particles’ energy in the local rest frame (LRF) of
the fluid, and T̂ is the temperature. Conformal symmetry
requires τ̂r (ρ) = c/T̂ (ρ) with c = 5 η̄, where the specific shear
viscosity η̄ ≡ η/s is the ratio of the shear viscosity and entropy
density. The exact solution of Eq. (6) [48,49] will be given in
Subsec. III F below when we need it.

The macroscopic hydrodynamic variables that make up
the energy-momentum tensor are obtained as momentum
moments of the distribution function,

T̂ μν(x̂) = 〈 p̂μ p̂ν 〉, (8)

where 〈O(x̂)〉 ≡ ∫
p̂
O(x̂,p̂)f (x̂,p̂), with∫
p̂

≡
∫

dp̂θdp̂φdp̂η

(2π )3
√−ĝÊp̂

, (9)

denotes the momentum moment of the phase-space observable
O(x̂,p̂).3 We evaluate these momentum integrals in the LRF
where the on-shell energy Êp̂ = p̂ρ = − û · p̂. Momentum
moments of the equilibrium distribution are denoted by
〈O(x̂,p̂)〉eq.

Using the relation (8), any (approximate) dynamical solu-
tion for the distribution function can be used to derive a set of
hydrodynamic and relaxation equations for the components
of the energy-momentum tensor. Taking derivatives of the
left-hand side of Eq. (8) leads to terms on the right-hand
side that involve momentum moments of derivatives of the
distribution function. These must be evaluated using the Boltz-
mann equation (6) and, in general, couple the hydrodynamic

3Note that we define the momentum integration measure in terms
of the covariant components of the four-vector p̂μ [48,49,54].
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moments in the energy-momentum tensor to higher-order,
nonhydrodynamic momentum moments of the distribution
function. To close the set of equations, one must truncate the
momentum hierarchy using some approximation scheme. We
now discuss the sets of hydrodynamic equations resulting from
several different such closing schemes for systems undergoing
Gubser flow.

A. Viscous hydrodynamics

For the derivation of standard viscous hydrodynamics from
kinetic theory, one expands the distribution function around a
local equilibrium distribution:

f (x̂,p̂) = feq(βû(x̂)(− û(x̂) · p̂)) + δf (x̂,p̂), (10)

where βû(x̂) = 1/T̂ (x̂) is the inverse local temperature. The
local rest frame energy − û(x̂) · p̂ is isotropic in momentum
space. δf encodes all deviations from local thermal equilib-
rium, in particular any local momentum anisotropies caused
by anisotropic global expansion.

In this situation, it is convenient to decompose the metric
tensor ĝμν into the locally temporal and spatial projec-
tors, −ûμûν and �̂μν = ĝμν + ûμûν , respectively, and use
these to decompose the particle four-momentum as p̂μ =
(−û·p̂) ûμ + p̂〈μ〉. Here −û · p̂ is the LRF energy, and for
any four-vector Âμ the transverse projection Â〈μ〉 = �̂μνÂν

is a vector that is purely spatial in the LRF. For later use, we
also introduce B̂〈μν〉 = �̂

μν
αβ B̂αβ where the double projector

�̂
μν
αβ = (�̂μ

α �̂ν
β + �̂

μ
β �̂ν

α − 2
3 �̂μν�̂αβ)/2 projects the tensor

B̂μν onto its symmetric, traceless, and locally purely spatial
(i.e., orthogonal to ûμ(x̂)) part.

In the Landau frame, the most general form of the energy-
momentum tensor is then

T̂ μν = ε̂ ûμûμ + P̂�̂μν + π̂μν, (11)

where ε̂ is the LRF energy density, P̂ = P̂0(ε̂) + �̂ is the
isotropic pressure, and π̂μν is the shear stress tensor. For
conformal systems such as the one studied here, the bulk
viscous pressure �̂ vanishes, and the isotropic pressure P̂
is given by the thermal pressure P̂0(ε̂) = ε̂/3 obtained from
the conformal equation of state. These macroscopic quantities
correspond to the following moments of the distribution
function f (x̂,p̂i):

ε̂ = ûμûν T̂
μν = 〈(û · p̂)2〉, (12a)

P̂ = 1
3�̂μνT̂

μν = 1
3 〈�̂μνp̂

μp̂ν〉, (12b)

π̂μν = T̂ 〈μν〉 = 〈p̂〈μp̂ν〉〉. (12c)

In addition to the choice of the LRF velocity as the
timelike eigenvector of T̂ μν , T̂ μνûν = ε̂ ûμ, uniqueness of
the decomposition (10) requires fixing the local inverse
temperature βû. This is done through the Landau matching
condition [55]

ε̂ := 〈(û · p̂)2〉eq = ε̂eq(T̂ ) = 3

π2
T̂ 4, (13)

which ensures that the parameter T̂ in feq is adjusted such
that δf does not contribute to the LRF energy density. As

a result, all deviations of the system from local equilibrium
are encoded in the shear stress tensor π̂μν ≡ 〈p̂〈μp̂ν〉〉δ , where
〈· · · 〉δ indicates a momentum moment of δf .

The evolution equation for the energy density ε̂ is ob-
tained from the timelike (i.e., ûν) projection of the energy-
momentum conservation law D̂μT̂ μν = 0 (where D̂μ is the
covariant derivative). For systems with Gubser symmetry, this
yields [51,52]

∂ρε̂ + 8
3 ε̂ tanh ρ = π̂ ηη tanh ρ. (14)

Such systems have only one independent shear stress com-
ponent π̂ ≡ π̂ ηη. To obtain an evolution equation for π̂ , one
can start from the RTA Boltzmann equation and use the
method of moments described in Ref. [30] (DNMR).4 Within
the 14-moment approximation, one obtains (see Ref. [48],
Appendix A, and Ref. [53])

∂ρπ̂ + π̂

τ̂r

+ 46

21
π̂ tanh ρ = 16

45
ε̂ tanh ρ. (15)

Introducing the normalized shear stress ˆ̄π ≡ 3π̂/(4ε̂), the
coupled DNMR equations (14) and (15) can be rewritten as

∂ρ ln ε̂ = 4

3
( ˆ̄π − 2) tanh ρ, (16a)

∂ρ ˆ̄π + ˆ̄π

τ̂r

= 4

3
tanh ρ

(
1

5
+ 5

14
ˆ̄π − ˆ̄π2

)
. (16b)

B. Anisotropic hydrodynamics

Anisotropic hydrodynamics generalizes viscous hydrody-
namics by allowing for a leading-order dissipative deformation
of the distribution function due to anisotropic expansion of the
system. If the expansion rate along a certain “longitudinal”
direction l̂μ is much larger or smaller than in the other
directions, one can account for this by generalizing the
decomposition (10), making the leading-order distribution
anisotropic in momentum in the LRF by including an addi-
tional dependence on the momentum component in the l̂μ

direction [11,41]:

f (x̂,p̂) = fa(βû(−û · p̂),βl̂(l̂ · p̂)) + δf̃ (x̂,p̂). (17)

ûμ, l̂μ, βû, and βl̂ are all functions of x̂. The parameter βl̂

parametrizes the strength of the leading-order local momentum
anisotropy, and δf̃ takes into account residual dissipative
corrections. Anisotropic hydrodynamics is expected to be
an improvement over viscous hydrodynamics whenever the
residual dissipative effects associated with δf̃ are smaller
than the leading-order dissipative effects manifest in the local
momentum anisotropy βl̂ . We demand that in the limit βl̂ → 0
the anisotropic distribution function fa reduces to the local
equilibrium distribution feq in (10).

To account for the effects from the momentum anisotropy
of the leading-order distribution function fa on the structure
of the macroscopic energy-momentum tensor, it is convenient

4For a complete discussion of different methods to derive hydrody-
namics from relativistic kinetic theory, see Ref. [56].
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to perform the tensor decomposition in terms of both the
fluid velocity ûμ and space-like “longitudinal” vector l̂μ

which in the LRF is chosen to point in the η direction:
l̂μ = (0,0,0,1). The space orthogonal to these two vectors
is spanned by the transverse spatial projector tensor �̂μν =
�̂μν − l̂μl̂ν [41,42,57–60]. The four-momentum can now be
decomposed as p̂μ = (− û · p̂) ûν + (l̂ · p̂) l̂μ + p̂{μ}, where
p̂{μ} ≡ �̂μνp̂ν are the transverse spatial momentum com-
ponents while l̂ · p̂ = p̂η is the longitudinal momentum in
the LRF.

This leads to the following decomposition of the energy-
momentum tensor (8) in the Landau frame [41]:

T̂ μν = ε̂ ûμ ûν + P̂L l̂μl̂ν + P̂⊥ �̂μν + 2 Ŵ
(μ
⊥l̂

l̂ν) + π̂
μν
⊥ ,

(18)

with

ε̂ = ûμûν T̂
μν ≡ 〈 (− û · p̂)2 〉, (19a)

P̂L = l̂μl̂ν T̂
μν ≡ 〈 (l̂ · p̂)2 〉, (19b)

P̂⊥ = 1
2 �̂μνT̂

μν ≡ 1
2 〈 �̂μνp̂

μp̂ν 〉, (19c)

Ŵ
μ

⊥l̂
= �̂μ

α T̂ αβ l̂β ≡ 〈 (l̂ · p̂) p̂{μ}〉, (19d)

π̂
μν
⊥ = �̂

μν
αβ T̂ αβ ≡ 〈 p̂{μp̂ν} 〉. (19e)

In the last line, we introduced the notation B{μν} ≡
�̂

μν
αβBαβ where the double projector �̂

μν
αβ ≡ 1

2 (�̂μ
α �̂ν

β +
�̂ν

β�̂μ
α − �̂μν�̂αβ) projects an arbitrary tensor Bμν on its

symmetric, traceless, and locally spatially transverse part.
Comparison of Eqs. (12c) and (18) shows that the shear stress
πμν has been further decomposed as [41,42]

π̂μν = π̂
μν
⊥ + 2 Ŵ

(μ
⊥l̂

l̂ν) + 1
3 (P̂⊥ − P̂L)(�̂μν − 2 l̂μl̂ν). (20)

The above decomposition is general. For systems with Gubser
symmetry, it simplifies considerably. Conformal symmetry
requires ε̂ = 2P̂⊥ + P̂L, corresponding to zero bulk viscous
pressure � and a conformal equation of state ε̂ = 3P̂0(ε̂) =
2P̂⊥ + P̂L. The SO(3)q ⊗ Z(2) part of the Gubser symmetry
implies π̂

μν
⊥ = 0 = Ŵ

μ

⊥l̂
. This leaves

T̂ μν = ε̂ ûμ ûν + P̂L l̂μl̂ν + P̂⊥ �̂μν (21)

as the most general energy-momentum tensor for systems with
Gubser symmetry. The single nonvanishing shear stress com-
ponent π̂ ≡ π̂ ηη defines the difference between the longitudinal
and transverse pressures via

P̂L − P̂⊥ = 3
2 π̂ (22)

and the shear stress tensor via

π̂μν = π̂
(
l̂μl̂ν − 1

2 �̂μν
)
. (23)

For the leading-order anisotropic distribution function, we use
the Romatschke-Strickland (RS) ansatz [61]

fa(x̂,p̂; �̂,ξ ) = feq(ERS(ξ )/�̂), (24)

where feq(z) = e−z is again the Boltzmann distribution but
now evaluated for the momentum-anisotropic argument

ERS(ξ ) ≡
√

(û · p̂)2 + ξ (l̂ · p̂)2 =
√

p̂2
�

cosh2 ρ
+ (1 + ξ )p̂2

η.

(25)

Here �̂ and ξ are functions of x̂. The definition (25)
corresponds to parameters βû = 1/�̂(ρ) and βl̂ = ξ βû =
ξ (ρ)/�̂(ρ) in (17), where we used the fact that Gubser
symmetry restricts the spacetime dependence of �̂ and ξ to
functions of the de Sitter time ρ only.

Following [42] we define the scalar integrals

Inlq ≡ 〈(−û · p̂)n−l−2q(l̂ · p̂)l(�̂μνp̂
μp̂ν)q〉

≡ Înlq(�̂,ξ ) + Ĩnlq , (26)

where the first term on the right-hand side denotes the
leading-order contribution from fa (which depends on the
parameters �̂ and ξ ) and the second term denotes the
subleading contribution from δf̃ in Eq. (17). For massless
particles, the dependences of the leading-order Î integrals on
�̂ and ξ factorize [see Appendix A, Eq. (A3)].

With these definitions, the leading-order RS distribution
function (24) contributes to the energy-momentum tensor as
follows:

T̂
μν

RS = ε̂RS ûμ ûν + P̂RS
L l̂μl̂ν + P̂RS

⊥ �̂μν, (27)

where

ε̂RS = 〈(− û · p̂)2〉a = Î200(�̂,ξ ), (28a)

P̂RS
L = 〈(l̂ · p̂)2〉a = Î220(�̂,ξ ), (28b)

P̂RS
⊥ = 1

2 〈�̂μνp̂
μp̂ν〉a = 1

2 Î201(�̂,ξ ). (28c)

Using Eq. (22) and the mass-shell condition in the form
�̂μνp̂

μp̂ν = (− û · p̂)2 − (l̂ · p̂)2, these relations further imply

π̂RS = 〈
(l̂ · p̂)2 − 1

3 (−û · p̂)2
〉
a

= Î220(�̂,ξ ) − 1
3 Î200(�̂,ξ ).

(29)

Conformal symmetry implies that the trace of the energy-
momentum tensor to vanish exactly, and hence

ε̂RS = 2P̂RS
⊥ + P̂RS

L . (30)

As in the viscous hydrodynamic case, to make the decom-
position (17) of the distribution function unique we need a
prescription for the parameters βû = 1/�̂ and βl̂ = ξ/�̂. For
�̂ we use the Landau matching condition [1,2]

ε̂RS(�̂,ξ ) := ε̂eq(T ) =⇒ �̂ := T̂

[R̂200(ξ )]1/4
, (31)

where R̂200(ξ ) is the ξ -dependent part of I200(�̂,ξ ) [see
Eq. (A3)]. This condition ensures that the first term in the
energy-momentum tensor (21) receives no contribution from
the residual deviation δf̃ in Eq. (17), ε̂RS = ε̂.

For the second parameter ξ , a number of different prescrip-
tions have been proposed [1–6,8–22,25–28]. They correspond
to different ways of splitting the distribution function f into
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a leading-order term fa and a residual deviation δf̃ . Since (as
we will see) the terms in the energy momentum tensor arising
from fa and from δf̃ are treated differently in the derivation
of equations of motion, these different prescriptions lead
to different anisotropic hydrodynamic equations. Different
anisotropic hydrodynamic approximations can, in this sense,
be characterized by the different ways the anisotropy parameter
ξ (ρ) evolves. In the following subsections, we discuss three
different such possibilities. It is worth noting that Eq. (31)
implies that for a given value of the energy density ε̂ (which
fixes T̂ ) the value of �̂ depends on ξ and is thus sensitive
to the different evolutions of ξ in these different versions of
anisotropic hydrodynamics.

C. PL matching

We start with the simplest and, as it turns out, most effective
prescription for ξ , the P̂L-matching scheme first proposed in
Ref. [11] and recently successfully implemented for systems
undergoing Bjorken flow by Molnár et al. [41,42].5 This
prescription considers ξ as a parameter that represents on
the microscopic level the macroscopic longitudinal pressure
P̂L (or, more precisely, the shear stress component π̂ that is
responsible for the longitudinal-transverse pressure difference
P̂L − P̂⊥), in very much the same way as the temperature
T̂ represents the energy density ε̂. It should therefore be
fixed by a corresponding “Landau matching condition” that
adjusts the value of ξ in fa such that fa fully captures all
contributions to P̂L (or, equivalently, to π̂), i.e., P̂L and π̂
receive no contribution from the residual deviation δf̃ of the
distribution function:

P̂L ≡ P̂RS
L (�,ξ ) ⇐⇒ π̂ = π̂RS, ˆ̃π = 0. (32)

With this additional matching condition, the leading-order
energy-momentum tensor (27) and the full energy-momentum
tensor (21) become identical; i.e., the residual deviation δf̃
does not contribute at all to T̂ μν , but only to higher-order
nonhydrodynamic momentum moments of the distribution
function.

Using the identities P̂L = P̂0(ε̂) + π̂ = ε̂/3 + π̂ and P̂⊥ =
P̂0(ε̂) − π̂/2 = ε̂/3 − π̂/2 in (21), the energy conservation
law takes exactly the same form as in viscous hydrodynamics,
Eqs. (14) or (16a).

The equation of motion for π̂ is most easily obtained by
using the RTA Boltzmann equation to derive an equation of
motion for P̂L and then using π̂ = P̂L − P̂0 = P̂L − ε̂/3. A

5We note that the P̂L-matching condition (32) below is a special
case of a more general prescription proposed earlier by Tinti [43] for
(3+1)-dimensional anisotropic hydrodynamics which uses a general-
ized Romatschke-Strickland form for the leading-order distribution
function fa that is flexible enough to capture all components of the
energy-momentum tensor (by appropriately matching its parameters),
i.e., the residual deviation δf̃ of the distribution function contributes
nothing to T μν . By adapting the derivations in Ref. [43] to Bjorken-
and Gubser-symmetric situations, we checked that they lead to the
same results as those reported in Ref. [42] and in this subsection,
respectively, for the P̂L-matching scheme.

straightforward calculation yields

∂ρP̂L = ∂ρ

(∫
p̂

p̂2
η f

)

= − P̂L − 1
3 ε̂

τ̂r

− (P̂L + I240) tanh ρ, (33)

where we used the mass-shell condition p̂ · p̂ = −(p̂ρ)2 +
p̂2

η + p̂2
�/ cosh2 ρ = 0 to eliminate p̂2

� from the integration
measure as well as the Landau matching conditions for
ε̂ and P̂L. Equation (33) is not closed because I240 still
involves an integral over the full distribution function; to
close the equation, we can approximate it by dropping the
δf̃ contribution to I240 [42] by replacing I240 → Î240(�̂,ξ ).
Substituting this approximation together with P̂L = ε̂/3 + π̂
into Eq. (33) yields the following equation for π̂ :

∂ρπ̂ + π̂

τ̂r

+ tanh ρ

(
4

3
π̂ + Î240(�̂,ξ )

)
= 5

9
ε̂ tanh ρ. (34)

This should be compared with Eq. (15) in viscous hydro-
dynamics. As before, this equation can be rewritten for the
normalized shear stress ˆ̄π = 3π̂/(4ε̂),

∂ρ ˆ̄π + ˆ̄π

τ̂r

= 4

3
tanh ρ

(
5

16
+ ˆ̄π − ˆ̄π2 − 9

16
F( ˆ̄π )

)
, (35)

which should be compared with Eq. (16b). Here

F( ˆ̄π ) ≡ R̂240[ξ ( ˆ̄π )]

R̂200[ξ ( ˆ̄π )]
, (36)

where ξ ( ˆ̄π ) is the inverse of the function

ˆ̄π (ξ ) = 3π̂

4ε̂
= 3 Î220 − Î200

4 Î200
= 1

4

(
3 R̂220(ξ )

R̂200(ξ )
− 1

)
(37)

[see Eqs. (28) and (29)], with the R̂ functions given in (A6).
Equation (37) can be used to compute (by numerical inversion)
the de Sitter time evolution of ξ from the solution ˆ̄π (ρ) of the
anisotropic hydrodynamic equations.

Note that the coupled anisotropic hydrodynamic equa-
tions (16a) and (35) are formulated entirely in terms of the
macroscopic hydrodynamic variables ε̂ and ˆ̄π , without taking
recourse to the microscopic parameters �̂ and ξ . This was
achieved by exploiting the factorization (A3) of the �̂ and ξ
dependencies in the modified thermal integrals over the RS
distribution function Inlq that holds for massless particles.
The only differences between the DNMR equations (16) and
anisotropic hydrodynamics are somewhat different factors
multiplying the constant and linear terms in ˆ̄π and the
appearance of the function F( ˆ̄π ) on the right-hand side of
Eq. (35). For nonconformal theories, the function F [which
arises from the term Î240 in (34)] depends on both ε̂ and ˆ̄π .
F(ε̂, ˆ̄π ) serves as an additional driving force for the shear
stress that arises from the competition between the microscopic
interactions driving the fluid towards local momentum isotropy
and the anisotropic expansion driving the system away from
it. As such, it depends on both the intrinsic properties of
the medium (reflected in its dependence on ε̂ or transverse
temperature �̂) and its actual dynamical state (reflected in
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its dependence on ˆ̄π or the momentum anisotropy parameter
ξ ). While F(ε̂, ˆ̄π ) is analytically known for the noninteracting
massless Boltzmann gas with Gubser symmetry studied here,
it is not obvious how to calculate it in QCD from first principles
for a system undergoing arbitrary anisotropic expansion. We
regardF(ε̂, ˆ̄π ) as an additional, anisotropic driving force which
for interacting theories must be suitably parametrized until a
way of computing it from first principles has been found.

For comparison with the following subsections, we also
present the evolution equations in terms of the microscopic
parameters �̂ and ξ . Using the energy and P̂L matching
conditions together with Eqs. (28) and (29), we rewrite
the energy conservation law (14) in terms of the scalar
integrals (26):

∂ρÎ200(�̂,ξ ) + tanh ρ (3 Î200(�̂,ξ ) − Î220(�̂,ξ )) = 0. (38)

Chain rule differentiation ∂ρÎ200(�̂,ξ ) = (∂�̂Î200) ∂ρ�̂ +
(∂ξ Î200) ∂ρξ turns this into an equation that couples the ρ

derivatives of �̂ and ξ . They can be uncoupled by using
Eq. (35), rewritten [with ˆ̄π (ξ ) from (37)] as

∂ρξ + 1

τ̂r

ˆ̄π (ξ )

∂ξ ˆ̄π (ξ )
= −2 tanh ρ (1 + ξ ). (39)

The right-hand side of this equation [which, due to subtle
cancellations, turns out to be surprisingly simple when
compared with that of Eq. (35)] controls the free-streaming
(τ̂r → ∞) evolution of the anisotropy parameter ξ , and thereby
the late-time behavior of the hydrodynamic quantities.6

D. The NRS prescription

Anisotropic hydrodynamics for Gubser symmetric systems
was discussed previously by Nopoush et al. (NRS) [53].
Instead of using P̂L matching, they considered a linear
combination of third-order moments Iμνλ ≡ ∫

p̂
p̂μp̂νp̂λf of

the distribution function, specifically the combination

I ≡ (1 + ξ )I320 − 1
2I301 ≡ Î(�̂,ξ ) + Ĩ, (40)

where on the right-hand side we split I into its leading order
contribution Î(�̂,ξ ) [from fa in Eqs. (24) and (25)] and the
residual Ĩ (from δf̃ ), in analogy to Eq. (26). Using the RTA
Boltzmann equation, NRS derived the following equation of
motion for Î(�̂,ξ ):

∂ρ Î − Î320 ∂ρξ + Î − Ieq

τ̂r

= −2 tanh ρ

(
Î − 1

2
Î301

)
, (41)

where Ieq is the corresponding combination of third-order
moments of the local equilibrium distribution feq. In this
derivation (which is accurate to leading order in the expansion
of the distribution function around fa), all contributions to I
from δf̃ are neglected.

6The factor 2 tanh ρ on the right-hand side represents the scalar
expansion rate θ̂ = D̂ · û of the Gubser flow [48,51,52].

By dimensional analysis and thanks to the factorization
of the �̂ and ξ dependencies for massless particles, Î is
proportional to ε̂5/4. Normalizing Eq. (41) by ε̂5/4 one obtains,
after some algebra [53], the following equation of motion for
the anisotropy parameter ξ :

∂ρξ + ξ (1 + ξ )3/2 R̂5/4
200(ξ )

τ̂r

= −2 tanh ρ (1 + ξ ). (42)

Equations (38) and (42) constitute the NRS scheme. This
should be compared with Eqs. (38) and (39) in the P̂L-
matching scheme. Clearly, the anisotropy parameter ξ evolves
differently in the NRS and P̂L-matching schemes.

E. Residual dissipative corrections to the NRS prescription

Since with the NRS prescription ξ evolves differently than
in the P̂L-matching scheme, the moment

∫
p̂

p̂2
η fa(�̂,ξ ) no

longer fully matches the macroscopic longitudinal pressure
P̂L. Instead, the latter receives an additional contribution ˆ̃π
from δf̃ which has to make up for the missing piece:

P̂L = P̂RS
L + ˆ̃π = Î220(�̂,ξ ) +

∫
p̂

p̂2
η δf̃ . (43)

This residual shear stress correction on the longitudinal
pressure was not taken into account in Ref. [53]; i.e., NRS
continued to solve for the energy conservation law the
equation (38) which only accounts for the leading-order
contribution to P̂L from an incorrectly matched anisotropic
distribution function fa . Inclusion of the residual shear
stress from δf̃ modifies the energy conservation law as
follows:

∂ρÎ200(�̂,ξ ) + tanh ρ(3 Î200(�̂,ξ ) − Î220(�̂,ξ )) = ˆ̃π tanh ρ.

(44)

Obviously, now an additional equation of motion for ˆ̃π is
needed.7

7This closely mirrors the situation in Ref. [11] where (for a system
with Bjorken symmetry) the ξ evolution was obtained from the zeroth
moment of the RTA Boltzmann equation, which then necessitated
the inclusion and propagation of a residual shear stress component
ˆ̃π to correctly evolve the longitudinal pressure. For the case of
Gubser symmetry, we found that using the zeroth moment of the
RTA Boltzmann equation as an equation of motion for ξ causes the
evolution of the total shear stress π̂ to fail, by developing a singularity
whenever ξ approaches a zero crossing. We have not been able to
find a remedy for this unphysical behavior associated with the use of
the zeroth moment for Gubser flow. We view this as an illustration
of the principle that the zeroth moment of the Boltzmann equation
should be used to determine the evolution of the (nonequilibrium)
chemical potential of the leading-order distribution function (which
in the present work was set to zero) rather than that of the momentum
anisotropy parameter.
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It is derived from the RTA Boltzmann equation using the
standard procedure (see, e.g., Ref. [30]): Writing f = fa + δf̃ ,
Eq. (6) gives the following evolution equation for δf̃ :

∂ρδf̃ = −fa + δf̃ − feq

τ̂r

− ∂ρfa, (45)

where from Eqs. (24) and (25)

∂ρfa =
[
∂ρ�̂

�̂2
ERS + 1

�̂ERS

(
tanh ρ

p̂2
�

cosh2 ρ
− ∂ρξ

2
p̂2

η

)]
fa.

(46)

With this, the residual shear stress ˆ̃π ≡ ˆ̃π
ηη

evolves as

∂ρ
ˆ̃π = ∂ρ

(∫
p̂

p̂〈ηp̂η〉 δf̃
)

= − π̂RS + ˆ̃π

τ̂r

− tanh ρ

(
4

3
ˆ̃π + Ĩ240

)

− ∂ρ�̂

�̂2

(
Ĥ221 − 1

3
Ĥ201

)

− tanh ρ

�̂

(
4

3
Ĥ42−1 − Ĥ44−1 − 1

3
Ĥ40−1

)

+ ∂ρξ

2�̂

(
Ĥ44−1 − 1

3
Ĥ42−1

)
. (47)

The anisotropic integrals Ĥnlr are defined in Appendix A,
Eq. (A8), and Ĩ240 is the δf̃ contribution to I240.

Equation (47) is exact but not closed without an ap-
proximation for the residual deviation δf̃ in the integral
Ĩ240.8 We here use the 14-moment approximation for δf̃ .
Its specific form for our present situation is derived in
Appendix B:

δf̃14 = {
α̂ + β̂ û · p̂ + 4

3 ω̂(û · p̂)2

+ 1
2 ω̂〈ηη〉[3(l̂ · p̂)2 − (û · p̂)2]

}
fa, (48)

where [with απ̃ (ξ ), βπ̃ (ξ ), γπ̃ (ξ ), and κπ̃ (ξ ) given in
Eqs. (B9)–(B12)]

α̂ =
ˆ̃π απ̃ (ξ )

Ĵ2(�̂)
, β̂ =

ˆ̃π βπ̃ (ξ )

Ĵ3(�̂)
, (49a)

ω̂ =
ˆ̃π γπ̃ (ξ )

Ĵ4(�̂)
, ω̂〈ηη〉 =

ˆ̃π κπ̃ (ξ )

Ĵ4(�̂)
. (49b)

Using this approximation for δf̃ the calculation of the term
Ĩ240 in Eq. (47) is straightforward. Some algebra leads then to
the following closed evolution equation for the residual shear
stress ˆ̃π :

∂ρ
ˆ̃π = − π̂RS + ˆ̃π

τ̂r

− tanh ρ

[
4

3
ˆ̃π + α̂ Î240 − β̂ Î340 + 4

3
ω̂ Î440 + 1

2
ω̂〈ηη〉(3 Î460 − Î440)

]

− ∂ρ�̂

�̂2

(
Ĥ221 − 1

3
Ĥ201

)
− tanh ρ

�̂

(
4

3
Ĥ42−1 − Ĥ44−1 − 1

3
Ĥ40−1

)
+ ∂ρξ

2�̂

(
Ĥ44−1 − 1

3
Ĥ42−1

)
. (50)

The evolution equations (44), (42), and (50) define the Next to
Leading Order NRS (NLO NRS) prescription for anisotropic
hydrodynamics for Gubser flow. Note that the NLO residual
dissipative corrections do not affect the evolution of the
momentum anisotropy parameter ξ , which remains the same
as in the leading-order NRS treatment of Ref. [53]. The NLO
corrections only modify the evolution of the energy density ε̂
and pressure anisotropy P̂L − P̂⊥ ∼ π̂ = π̂RS + ˆ̃π .

We conclude this subsection by noting that, due to the
appearance of nonhydrodynamic higher order moments Înlq

in the NRS and NLO NRS prescriptions, the latter lead to
evolution equations that explicitly refer to the evolution of the
microscopic momentum anisotropy parameter ξ and cannot
be formulated purely macroscopically. This sets them apart
from the viscous hydrodynamic and P̂L-matching anisotropic
hydrodynamic formulations. It is therefore not clear how to
generalize the NRS and NLO NRS prescriptions to strongly
coupled situations where a microscopic kinetic description in
terms of quasiparticle distribution functions is not possible.

8We found that simply setting Ĩ240 to zero on the right-hand side
of Eq. (47) is inconsistent with keeping ˆ̃π nonzero and leads to an
incorrect asymptotic behavior of the total shear stress as large ρ.

F. Exact solution of the Boltzmann equation

For Gubser flow, the RTA Boltzmann equation (6) is solved
exactly by [48,49]

fex
(
ρ; p̂2

�,p̂η

) = D(ρ,ρ0)f0
(
ρ0; p̂2

�,p̂η

)
+ 1

c

∫ ρ

ρ0

dρ ′ D(ρ,ρ ′) T̂ (ρ ′)

× feq(Êp̂(ρ ′)/T̂ (ρ ′)), (51)

with damping function D(ρ,ρ0) = exp [− 1
c

∫ ρ

ρ0
dρ ′ T̂ (ρ ′)] and

initial condition f0 at de Sitter time ρ0 for which we take an
RS distribution (24) with initial transverse temperature �̂0 and
initial momentum anisotropy ξ0:

f0
(
ρ0; p̂2

�,p̂η

) = exp

⎛
⎝− 1

�̂0

√
p̂2

�

cosh2ρ0
+ (1 + ξ0)p̂2

η

⎞
⎠.

(52)

For ξ0 → 0, f0 → feq. feq(Êp̂(ρ ′)/T̂ (ρ ′)) in (51) is the
thermal equilibrium distribution at time ρ ′.
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From the exact solution for f , one can find the exact
evolution of the energy density ε̂ = Î200 and shear stress
π̂ = Î220 − 1

3 Î200 [48,49]:

ε̂(ρ) = D(ρ,ρ0)

(
cosh ρ0

cosh ρ

)4

ε̂RS[�̂0,ξFS(ρ; ρ0,ξ0)]

+ 1

c

∫ ρ

ρ0

dρ ′ D(ρ,ρ ′) T̂ (ρ ′)
(

cosh ρ ′

cosh ρ

)4

ε̂RS

× [T̂ (ρ ′),ξFS(ρ; ρ ′,0)], (53)

π̂ (ρ) = D(ρ,ρ0)

(
cosh ρ0

cosh ρ

)4
π̂RS[�̂0,ξFS(ρ; ρ0,ξ0)]

+ 1

c

∫ ρ

ρ0

dρ ′ D(ρ,ρ ′) T̂ (ρ ′)
(

cosh ρ ′

cosh ρ

)4

π̂RS

× [T̂ (ρ ′),ξFS(ρ; ρ ′,0)]. (54)

Here we defined ξFS(ρ; ρα,ξα) = −1 + (1 + ξα)( cosh ρα

cosh ρ
)2. The

temperature for the equilibrium distribution is obtained
from the energy density by Landau matching, ε̂RS(�̂,ξ ) =

(3/π2) �̂4R̂200(ξ ) = 3 T̂ 4/π2. When discussing the results
in the following section, we usually plot the evolution of
the temperature rather than the energy density. The specific
shear viscosity η̄ = η/s of the system is tuned by vary-
ing c = 5η̄. We solve the above integral equations for ε̂
(or T̂ ) and π̂ numerically using the method described in
Refs. [45,46,48,62].

IV. RESULTS

In this section, we compare the numerical results obtained
from the five different approaches discussed in the preced-
ing section [viscous hydrodynamics (DNMR), anisotropic
hydrodynamics based on the P̂L matching, NRS and NLO
NRS prescriptions, and the exact solution of the Boltzmann
equation] for the evolution of the temperature, normalized
shear stress, and momentum anisotropy parameter. For the
P̂L-matching scheme and exact solution of the Boltzmann
equation, we solve equations for the macroscopic shear
stress; we convert the shear stress to a momentum anisotropy
parameter using the matching condition (37).
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FIG. 1. de Sitter time evolution of the temperature T̂ and the normalized shear stress ˆ̄π for the exact solution of the RTA Boltzmann equation
(black solid lines) and four different hydrodynamic approximations: second-order viscous hydrodynamics (DNMR theory, short-dashed
magenta lines), anisotropic hydrodynamics with P̂L-matching (dotted red lines), leading-order anisotropic hydrodynamics in the NRS scheme
(dash-dotted green lines), and next-to-leading-order anisotropic hydrodynamics in the NRS scheme amended by residual viscous corrections
(long-dashed blue lines). For the initial momentum distribution, we here assumed isotropy, i.e., ξ0 = 0. The top, middle, and bottom rows of
panels correspond to specific shear viscosity 4πη/s = 1, 3, and 10, respectively. The four columns of plots show, from left to right, the ρ

evolution of the temperature T̂ , of the ratio between its hydrodynamic and exact kinetic evolution T̂ /T̂exact, of the normalized shear stress ˆ̄π ,
and of the difference between its hydrodynamic and exact kinetic evolution ˆ̄π − ˆ̄πexact.
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For the benefit of the reader, we summarize the set of
equations that are being solved in each of the five cases:

(1) Viscous hydrodynamics (DNMR). Equations (16) for
ε̂ and ˆ̄π , together with ε̂ = 3 T̂ 4/π2. In this approach
ξ ≡ 0.

(2) Anisotropic hydrodynamics with P̂L matching. Equa-
tions (16a) and (35) together with ε̂ = 3 T̂ 4/π2 and
Eq. (37) to obtain T̂ and ξ from ε̂ and ˆ̄π .

(3) Anisotropic hydrodynamics, NRS prescription. Equa-
tions (38) and (42) for �̂ and ξ , from which we get T̂
and ˆ̄π using Eqs. (31) and (37).

(4) Anisotropic hydrodynamics, NLO NRS prescription.
Equations (42) and (44) for �̂ and ξ , together with
Eq. (50) for the residual shear stress ˆ̃π and Eqs. (31)
and (37) to get T̂ and the leading-order ˆ̄π (ξ ) from �̂
and ξ .

(5) Exact solution of the RTA Boltzmann equation. Equa-
tions (53) (rewritten in terms of T̂ ) and (54), together
with Eq. (37) to get ξ from ˆ̄π .

All five models are started at an initial de Sitter time
ρ0 = − 10 with initial temperature T̂0 = 0.002 and run for
three choices of the specific shear viscosity, 4πη/s = 1, 3, and
10 (top, middle, and bottom rows of panels in Figs. 1–3), and
three choices of the initial momentum anisotropy, ξ0 = 0, 100,
and −0.9 (shown in Figs. 1, 2, and 3, respectively). We now
proceed to discuss these results in detail.

A. Evolution of temperature and shear stress

Figures 1–3 show the de Sitter time evolution of the tem-
perature T̂ and of the normalized shear stress ˆ̄π , in the first and
third column in absolute values, and in the second and fourth
columns relative to the exact solution of the RTA Boltzmann
equation. It is obvious that all three anisotropic hydrodynamic
schemes studied here vastly outperform standard second-order
viscous hydrodynamics. Over the range of de Sitter times
studied here, anisotropic hydrodynamics with P̂L-matching
never deviates from the exact solution by more than a few
percent. The results from the leading-order NRS scheme (for
which the momentum anisotropy parameter is not matched to
the macroscopic pressure anisotropy) performs slightly worse,
but not dramatically so. Once the residual shear stress caused
by the nonoptimal ξ evolution in this approach is added to the
formalism at next-to-leading order, the evolution of both T̂

and ˆ̄π agrees almost perfectly with that in the P̂L-matching
scheme.

For all of the anisotropic hydrodynamic schemes the
normalized shear stress ˆ̄π correctly approaches the asymptotic
free-streaming value 1

2 predicted by the RTA Boltzmann
equation [48], in contrast to standard second-order viscous
fluid dynamics; the asymptotic temperature lies a few percent
above the exact value. The asymptotic behavior at large de
Sitter times is almost independent of the initial momentum
anisotropy ξ0: Due to the rapid expansion, the system quickly
loses its memory of the initial state. As the specific shear
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FIG. 2. Same as Fig. 1, but for an initially highly oblate momentum distribution, ξ0 = 100.
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FIG. 3. Same as Fig. 1, but for an initially highly prolate momentum distribution, ξ0 = −0.9.

viscosity increases (corresponding to increasing values of
the microscopic relaxation time), the deviations between the
hydrodynamic evolution of the macroscopic observables and
that extracted from the exact solution of the Boltzmann
equation grow a bit. However, even for η/s values 10 times
larger than the “minimal” value 1/(4π ) [63,64] the deviations
from the exact solution stay below 4% for both the temperature
ratio T̂ /T̂ex and the difference ˆ̄π − ˆ̄πex as long as the P̂L-
matching scheme is employed.

B. Evolution of the momentum anisotropy ξ

As described at the beginning of this section, for the
system discussed in this paper which has a microscopic kinetic
description in terms of a distribution function of massless
particles, the normalized macroscopic pressure anisotropy
ˆ̄π = (P̂L − P̂⊥)/(2ε̂) can be related to the microscopic mo-
mentum anisotropy parameter ξ .9 In Fig. 4(a), we compare the
de Sitter time evolution of this parameter (offset by 1 because
1 + ξ is always positive). Whereas second-order viscous
hydrodynamics (DNMR theory) is based on the assumption
ξ = 0 at all times, the anisotropic hydrodynamic schemes all
show very large and strongly time-dependent deviations from
this value, in agreement with the prediction from the exact
solution of the Boltzmann equation. In Fig. 4, we show the

9To be precise, for the NLO NRS scheme, ξ is obtained from the
leading-order contribution to the pressure anisotropy.

case of an initially strongly oblate momentum distribution
ξ0 = 100, but we have also studied other initial conditions with
smaller initial ξ0 value and find that in all cases 1 + ξ initially
grows exponentially with ρ until it hits the falling part of
the curve shown in Fig. 4(a) and then approximately follows
that curve. At large ρ all curves approach ξ → −1, due to an
exponential growth of the Knudsen number Kn = θ̂ τ̂r where
θ̂ is the scalar expansion rate. For Gubser flow, Kn ∼ sinh2/3 ρ
at large de Sitter times [48], caused by the exponential decrease
of the temperature. This leads to the eventual freeze-out
of the momentum distribution due to lack of collisions,
driving the system towards an asymptotic free-streaming state
[48].

In detail, the ξ evolution differs slightly among the two
different closing schemes for anisotropic hydrodynamics
studied in this work and between them and the exact solution
from the Boltzmann equation. To emphasize these differences,
we plot in Fig. 4(b) the ratio (1 + ξ )/(1 + ξexact). While
the anisotropic hydrodynamic schemes are clearly a huge
improvement over standard second-order viscous hydrody-
namics (DNMR), their ξ evolutions still differ from the exact
solution by several 10% when judged by this ratio. However,
for the P̂L-matching scheme, the evolution of ξ clearly
follows the exact trajectory more closely than for the NRS
scheme.

The observant reader may notice that all of the curves appear
to cross zero near ρ = 0 (i.e., close to the de Sitter time at
which dynamics switches from contraction to expansion and
the scalar expansion rate passes through zero). This naive
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FIG. 4. Comparison of the de Sitter time evolution of the momentum anisotropy parameter ξ corresponding to the exact solution of the
RTA Boltzmann equation and the various hydrodynamic approximations discussed in this work, for an initial value ξ0 = 100 and a specific
shear viscosity 4πη/s = 3. The different approaches are plotted using the same line styles as in Figs. 1–3. See text for discussion.

impression turns out to be misleading: Careful inspection
shows that the crossing occurs at ρ > 0 and moves to larger ρ
values as the shear viscosity (or microscopic relaxation time)
increases. It is also slightly different for the exact solution
of the Boltzmann equation and the two different anisotropic
hydrodynamic approximation schemes.

V. CONCLUSIONS

In this work, we studied conformal systems undergoing
Gubser flow that admit simultaneously a kinetic description
via the RTA Boltzmann equation and a macroscopic hydro-
dynamic description. We reviewed the standard second-order
viscous hydrodynamic formulation and compared it with three
different variants of anisotropic hydrodynamics, implementing
different closing schemes. In the comparison with the dynami-
cal evolution of the hydrodynamic moments of the distribution
function obtained from the exact solution of the Boltzmann
equation for this situation, anisotropic hydrodynamics with
the P̂L-matching scheme revealed itself as the most accurate
macroscopic approximation, similar to what was observed in
Ref. [42] for Bjorken flow. In this approach, the evolution of
the microscopic momentum anisotropy parameter ξ is matched
to the expansion-driven macroscopic pressure anisotropy
P̂L − P̂⊥. We also showed that an alternate closing scheme
proposed in Ref. [53] where the ξ evolution does not match the
pressure anisotropy can be made equally accurate, albeit with
more work by solving a larger set of equations, by accounting
for the residual shear stress associated with the nonoptimal
ξ evolution (NLO NRS scheme). Both procedures lead to
descriptions that deviate from the exact results by at most a few
percent.

We emphasize that, in contrast to this NLO NRS scheme,
anisotropic hydrodynamics with P̂L matching can be for-
mulated entirely macroscopically, without explicitly referring
to the underlying kinetic description and its parameters. In
particular, the momentum anisotropy parameter ξ can be
equivalently replaced by the normalized shear stress ˆ̄π . This
puts the anisotropic hydrodynamic treatment on the same

footing as second-order viscous hydrodynamics: It can be
generalized from conformal systems with Gubser symmetry
to nonconformal systems undergoing arbitrary expansion by
simply swapping out the ideal conformal equation of state
ε̂ = 3P̂ for a realistic EOS (such as the lattice QCD EOS
for an expanding quark-gluon plasma). The only nontrivial
step in this generalization is the choice of the function
F( ˆ̄π ) in Eq. (35) which describes a nonlinear coupling that
describes how the evolution of the shear stress ˆ̄π in a given
fluid cell depends not only on the temperature but also on
the pressure anisotropy already established by the degree of
anisotropy of the expansion rate in that cell. In the general
nonconformal case, F will additionally depend on the energy
density, F(ε̂, ˆ̄π ). While it can be computed analytically for the
Gubser symmetric situation studied here, we do not know yet
how to determine this function from first principles for other
types of liquids. More research is needed to identify suitable
parametrizations for F(ε̂, ˆ̄π ) that can be used in heavy-ion
collisions.

It has been stated in Ref. [65] that hydrodynamics is valid
as long as nonhydrodynamic modes can be safely ignored, but
it breaks down when this is no longer the case. The evolution
of the pressure anisotropy PL − PT is nonhydrodynamic,
in the sense that it manifestly depends on the microscopic
relaxation time and is not directly controlled by a conser-
vation law. It clearly plays a crucial and non-negligible role
in relativistic heavy-ion collisions, without invalidating the
hydrodynamic approach. It requires microscopic knowledge
of QCD (just like knowledge of the equation of state (EOS)
is required for ideal fluid dynamics), but unlike the EOS
it also depends on the macroscopic dynamical state of the
fluid.
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APPENDIX A: ANISOTROPIC INTEGRALS

Here we calculate the anisotropic thermal integrals Înlq and
Ĥnlr that appear in this paper. First we define

Înlq(�̂,ξ ) = 〈 (−û · p̂)n−l−2q (l̂ · p̂)l (�̂μνp̂
μp̂ν)q 〉a

=
∫

p̂

(p̂ρ)n−l−2q p̂l
η

(
p̂2

�

cosh2 ρ

)q

fa. (A1)

The change of variables

p̂θ

cosh ρ
= λ sin α cos β, (A2a)

p̂φ

cosh ρ sin θ
= λ sin α sin β, (A2b)

p̂η = λ (1 + ξ )−1/2 cos α (A2c)

leads to the following factorization of the integral (A1):

Înlq(�̂,ξ ) = Ĵn(�̂) R̂nlq(ξ ), (A3)

Ĵn(�̂) =
∫ ∞

0

dλ

2π2
λn+1 e−λ/�̂ = (n + 1)!

2π2
�̂n+2, (A4)

R̂nlq(ξ ) = 1

2(1 + ξ )(n−2q)/2

∫ 1

−1
d cos α (sin α)2q (cos α)l

× [(1 + ξ ) sin2 α + cos2 α](n−l−2q−1)/2. (A5)

The R̂nlq functions needed in this paper are

R̂200(ξ ) = 1

2

(
1

1 + ξ
+ arctan

√
ξ√

ξ

)
, ∂ξ R̂200(ξ ) = 1

4ξ

(
1 − ξ

(1 + ξ )2
− arctan

√
ξ√

ξ

)
, (A6a)

R̂201(ξ ) = 1

2ξ

(
1 + (ξ − 1)

arctan
√

ξ√
ξ

)
, R̂220(ξ ) = 1

2ξ

(
− 1

1 + ξ
+ arctan

√
ξ√

ξ

)
, (A6b)

R̂240(ξ ) = 1

2ξ 2

(
3 + 2ξ

1 + ξ
− 3

arctan
√

ξ√
ξ

)
, R̂301(ξ ) = 2

3(1 + ξ )3/2
, (A6c)

R̂320(ξ ) = 1

3(1 + ξ )1/2
, R̂340(ξ ) = 1

ξ 2(1 + ξ )1/2

⎛
⎝− (3 + 4ξ )

3(1 + ξ )
+

arctanh
√

ξ
1+ξ√

ξ
1+ξ

⎞
⎠, (A6d)

R̂400(ξ ) = 1

8

(
5 + 3ξ

(1 + ξ )2
+ 3

arctan
√

ξ√
ξ

)
, R̂420(ξ ) = 1

8ξ

(
ξ − 1

(1 + ξ )2
+ arctan

√
ξ√

ξ

)
, (A6e)

R̂440(ξ ) = 1

8ξ 2

(
− 3 + 5ξ

(1 + ξ )2
+ 3

arctan
√

ξ√
ξ

)
, R̂460(ξ ) = 1

8ξ 3

(
8ξ 2 + 25ξ + 15

(1 + ξ )2
− 15

arctan
√

ξ√
ξ

)
. (A6f)

In Sec. III, we needed the moments Î
eq
nlq associated with

the equilibrium distribution function. They are obtained as the
isotropic limit of Eq. (A3):

Î
eq
nlq(T̂ ) ≡ lim

ξ→0
Înlq(�̂,ξ ) = Înlq(T̂ ,0). (A7)

Finally, we define the anisotropic integrals

Ĥnlr (�̂,ξ ) = 〈
(−û · p̂)n−l(l̂ · p̂)l Er

RS

〉
a

=
∫

p̂

Ên−l
p̂ p̂l

η Er
RS fa.

(A8)

With the change of variables (A2), one can show that

Ĥnlr (�̂,ξ ) = Ĵn+r (�̂) R̂nl0(ξ ). (A9)

APPENDIX B: 14-MOMENT APPROXIMATION IN
ANISOTROPIC VISCOUS HYDRODYNAMICS

In this section, we present the calculation of the four coef-
ficients which enter into the 14-moment approximation (48)

for δf̃ . We begin with the most general 14-moment ansatz for
anisotropic fluids [11] and decompose it in LRF coordinates
for Gubser flow, using the notation Êp̂ ≡ p̂ρ = −û · p̂:

δf̃ ≈ δf̃14 = [â + β̂μp̂μ + ω̂μνp̂
μp̂ν]fa

= [
α̂ − β̂Êp̂ + ω̂

(
Ê2

p̂ + 1
3 p̂2) + (β̂〈μ〉

− 2Êp̂ ω̂〈μ〉)p̂〈μ〉 + ω̂〈μν〉p̂〈μp̂ν〉]fa. (B1)

Here we used that ω̂μν is traceless and introduced β̂ ≡
−β̂μûμ, p̂2 ≡ p̂2

�/ cosh2 ρ + p̂2
η, ω̂ ≡ ω̂μνûμûν , and ω̂〈μ〉 =

−�̂μνω̂
νλûλ. This expression can be simplified by using

the constraints imposed by Gubser symmetry and Landau
matching. In the Landau frame and in the absence of chemical
potentials, the spatial vectors β̂〈μ〉 and ω̂〈μ〉 vanish, respec-
tively. Due to the SO(3)q symmetry, the traceless symmetric
spatial tensor ω̂〈μν〉 has only one independent component,
namely ω̂〈ηη〉:

ω̂〈μν〉 = ω̂〈ηη〉 diag(0, − cosh2 ρ, − cosh2 ρ sin2 θ,1). (B2)
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Using the mass-shell condition to eliminate p̂2
�, Eq. (B1) thus

reduces to
δf̃14 = [

α̂ − β̂Êp̂ + ω̂
(
Ê2

p̂ + 1
3 p̂2

) + 1
2 ω̂〈ηη〉

(
3p̂2

η − p̂2
)]

fa.

(B3)

The four coefficients α̂, β̂, ω̂, and ω̂〈ηη〉 must be matched to
the contributions of the residual deviation δf̃ to the particle
and energy densities as well as the bulk and shear viscous
pressures [11]:

δ ˆ̃n ≡ −〈(û · p̂)〉δ̃ = 0, δ ˆ̃ε ≡ 〈(û · p̂)2〉δ̃ = 0, ˆ̃� ≡ 1
3 〈�̂μνp̂

μp̂ν〉δ̃ = 1
3 〈p̂2〉δ̃ , ˆ̃π ≡ 〈p̂〈ηp̂η〉〉δ̃ = 〈

p̂2
η − 1

3 p̂2〉
δ̃
. (B4)

For conformal systems, the bulk viscous pressure vanishes; for technical reasons, we introduce an infinitesimal fictitious mass
m for the particles, approaching the conformal limit at the end by setting m → 0. This is the reason why in Eq. (B3) we did not
replace p̂2 by Ê2

p̂.

Inserting the ansatz (B3) into Eq. (B4) and using p̂2 = Ê2
p̂ − m2, one obtains the matrix equation A b = c, where

b = (
α̂ β̂ ω̂ ω̂〈ηη〉

)T
, c = (

0 0 3 ˆ̃� ˆ̃π
)T

, (B5)

A =

⎛
⎜⎜⎜⎝

Î100 −Î200
4
3 Î300

3
2 Î320 − 1

2 Î300

Î200 −Î300
4
3 Î400 − 1

3m2Î200
3
2 Î420 − 1

2 Î400 + 1
2m2Î200

Î200 − m2Î000 −Î300 + m2Î100
4
3 Î400 − 5

3m2Î200
3
2 Î420 − 1

2 Î400 − 3
2m2Î220 + m2Î200

Î220 − 1
3 Î200 −Î320 + 1

3 Î300
4
3 Î420 − 4

9 Î400
3
2 Î440 − Î420 + 1

6 Î400

⎞
⎟⎟⎟⎠. (B6)

Here we expanded the second and third rows in m, keeping only terms up to O(m2). After subtracting the second from the third
row and rescaling it by −1/m2, the matrix equation becomes⎛

⎜⎜⎜⎝
Î100 −Î200

4
3 Î300

3
2 Î320 − 1

2 Î300

Î200 −Î300
4
3 Î400 − 1

3m2Î200
3
2 Î420 − 1

2 Î400 + 1
2m2Î200

Î000 −Î100
4
3 Î200

3
2 Î220 − 1

2 Î200

Î220 − 1
3 Î200 −Î320 + 1

3 Î300
4
3 Î420 − 4

9 Î400
3
2 Î440 − Î420 + 1

6 Î400

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

α̂

β̂

ω̂

ω̂〈ηη〉

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

0
ˆ̃ρ0

ˆ̃π

⎞
⎟⎟⎟⎠, (B7)

where ˆ̃ρ0 ≡ −3 ˆ̃�/m2 is the irreducible δf̃ moment associated with the residual bulk viscous pressure. In the conformal limit,
we set in Eq. (B7) the mass m and the scalar moment ˆ̃ρ0 to zero. The matrix can now be easily inverted. One finds

α̂ =
ˆ̃π απ̃ (ξ )

Ĵ2(�̂)
, β̂ =

ˆ̃π βπ̃ (ξ )

Ĵ3(�̂)
, ω̂ =

ˆ̃π γπ̃ (ξ )

Ĵ4(�̂)
, ω̂〈ηη〉 =

ˆ̃π κπ̃ (ξ )

Ĵ4(�̂)
, (B8)

where, with the shorthand t(ξ ) ≡ arctan
√

ξ/
√

ξ , the functions απ̃ , βπ̃ , γπ̃ , and κπ̃ are given by

απ̃ (ξ ) = −3ξ
2(39 + 76ξ ) − (213 + 343ξ + 104ξ 2)t(ξ ) + 90(1 + ξ )t2(ξ )+ 45(1 + ξ )3t3(ξ )

192 + 6(131 + 212ξ )t(ξ ) − (1932 + 2817ξ + 712ξ 2)t2(ξ ) + 630(1 + ξ )t3(ξ ) + 315(1 + ξ )3t4(ξ )
, (B9)

βπ̃ (ξ ) = 24ξ
√

1 + ξ
12 + (15 + 13ξ )t(ξ ) − (27 + 26ξ − ξ 2)t2(ξ )

192 + 6(131 + 212ξ )t(ξ ) − (1932 + 2817ξ + 712ξ 2)t2(ξ ) + 630(1 + ξ )t3(ξ ) + 315(1 + ξ )3t4(ξ )
,

(B10)

γπ̃ (ξ ) = 5

2
ξ

3(57+95ξ+4ξ 2) − 2(99+234ξ+231ξ 2+122ξ 3)t(ξ )+9(9+19ξ+31ξ 2+21ξ 3)t2(ξ )+54(1+ξ )3(2ξ−1)t3(ξ )

192+6(212ξ+131)t(ξ ) − (1923+2817ξ+712ξ 2)t2(ξ )+630(1+ξ )t3(ξ )+315(1+ξ )3t4(ξ )
,

(B11)

κπ̃ (ξ ) = 20

3
ξ 2 3(4ξ − 13) − (162 + 297ξ + 122ξ 2)t(ξ ) + 9(31 + 52ξ + 21ξ 2)t2(ξ ) + 108(1 + ξ )3t3(ξ )

192 + 6(212ξ + 131)t(ξ ) − (1923 + 2817ξ + 712ξ 2)t2(ξ ) + 630(1 + ξ )t3(ξ ) + 315(1 + ξ )3t4(ξ )
. (B12)

In the massless limit, Eq. (B3) coincides with Eq. (48) in the text. As a cross-check, we consider the isotropic limit ξ → 0 of the
coefficients (B8):

lim
ξ→0

α̂ = 0, lim
ξ→0

β̂ = 0, lim
ξ→0

ω̂ = 0, lim
ξ→0

ω̂〈ηη〉 = π̂

2(ε̂ + P̂)T̂ 2
. (B13)

With this, we see that Eq. (48) reduces in the isotropic limit to the well-known Israel-Stewart result [66] for conformal systems [67]:

lim
ξ→0

δf̃14 =
[

π̂

4(ε̂ + P̂)T̂ 2

(
3p̂2

η − Ê2
p̂

)]
feq. (B14)
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