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Nonequilibrium photon production in partonic transport simulations
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We discuss the implementation of leading-order photon production in nonequilibrium partonic transport
simulations. In this framework photons are produced by microscopic scatterings, where we include the
exact matrix elements of Compton scattering, quark-antiquark annihilation, and bremsstrahlung processes.
We show how the hard-thermal loop inspired screening of propagators has to be modified such that the
microscopic production rate agrees well with the analytically known resummed leading-order rate. We
model the complete quark-gluon plasma phase of heavy-ion collisions by using the partonic transport
approach called the Boltzmann approach to multiparton scatterings (BAMPS), which solves the ultrarelativistic
Boltzmann equation with Monte Carlo methods. We show photon spectra and elliptic flow of photons from
BAMPS and discuss nonequilibrium effects. Due to the slow quark chemical equilibration in BAMPS,
the yield is lower than the results from other groups; in turn we see a strong effect from scatterings of
energetic jet-like partons with the medium. This nonequilibrium photon production can dominate the thermal
emission, such that the spectra are harder and the photonic elliptic flow of the quark-gluon plasma becomes
negative.
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I. INTRODUCTION

Photons have been used for decades as a valuable probe of
the hot matter created in heavy-ion collisions. Such matter,
as created, e.g., in Au + Au collisions at the Relativistic
Heavy Ion Collider (RHIC) at BNL or in Pb + Pb collisions
at the Large Hadron Collider (LHC) at CERN, is highly
dynamic, and temporarily the energy density is high enough
that a so-called quark-gluon plasma (QGP) is formed [1–4].
Photons are emitted from the initial nucleon-nucleon contacts
(prompt photons), during the subsequent QGP phase and the
hot hadron gas (HG) phase (thermal photons and jet-medium
photons), by the fragmentation of jets outside the fireball,
and finally by the decay of long-lived resonances into real
photons. The sum of all but the latter sources is called the
direct photon contribution, and experiments have succeeded
in separating decay from direct photons (ALICE experiment
at the LHC [5], PHENIX experiment at RHIC [6–8]). The
measurements extend down to transverse momenta pT =
0.4 (0.9) GeV for RHIC (LHC), and both find an exponential
excess above Ncoll-scaled prompt photons, which indicates
a strong additional source, most likely the shining QGP
and hot HG. The decay background subtraction is done via
different methods, and improvements of the direct photon data
are expected in the future. Recently, ALICE and PHENIX
have measured elliptic and triangular flow of direct photons
for several centrality classes (PHENIX,

√
s = 200 GeV:

0%–20%,20%–40%,40%–60% [9]; ALICE,
√

s = 2.76 TeV:
0%–40%, [10]). Both experiments show unexpectedly large
flow; however, the measurement is extremely challenging and
error bars are still large. It is nearly impossible for experiments
to disentangle the measured time-integrated photon spectra
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into their separate sources. Theoretical models however,
compared with data, do not suffer from this problem. The
ultimate goal is the explanation of the measured photon spectra
by the correct combination of photon production mechanisms
of hard and soft quantum chromo or electro dynamical (QCD
or QED) interactions and a suitable spacetime evolution of
the high-energy heavy-ion collision. It is furthermore desirable
to explain the elliptic and triangular flow of photons in
theoretical models. The explanation of elliptic flow for hadrons
has required accurate modeling of the initial state and a
correct treatment of the nearly hydrodynamic expansion of the
medium with suitable viscosity [11–15]. It is crucial to also
describe the flow of photons; however, its physical picture is
substantially different. Photons leave the fireball without any
further scattering such that their flow originates solely from the
production process. For now, the large elliptic flow of photons
poses a formidable challenge for dynamical models, and the
simultaneous description of the yield and the flow of direct
photons remains an unsolved puzzle.

Until now, popular descriptions of the spacetime evolution
of heavy-ion collisions are given by fireball parametrizations
[16,17] or hydrodynamic simulations [15,18–24]. Photon
spectra can be obtained from those models by folding the
spacetime evolution of temperature T and four-velocity uμ

over analytically known photon production rates R(T ,uμ)
[16,25–30].

Transport approaches, such as the Boltzmann approach
to multiparton scatterings (BAMPS) [31], parton-hadron-
string dynamics (PHSD) [32,33] or UrQMD [34,35] have two
possibilities to study photon or dilepton production: “coarse
graining” of the particle ensemble [36] and obtaining a
spacetime background which can be used in the same way
as a hydrodynamic evolution as described above, or by using
the microscopic cross sections for the desired photon produc-
tion processes and generating photons within the transport
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framework directly. The latter method will be our choice in
the Boltzmann approach to multiparton scatterings (BAMPS)
[31,37–49], which is based on the numerical solution of the
Boltzmann equation (BE).

We show how tree-level and radiative scattering diagrams
can be implemented in dynamical transport simulations to
nearly reproduce full leading order (LO) photon rates. Subse-
quently we compute results for the QGP phase of high-energy
nuclear reactions. The physical difference of our approach
compared to hydro, fireball, or coarse-graining approaches
is the intrinsic nonequilibrium nature—high or low energetic
jets and the non, nearly, or full thermal medium is treated
equally. Furthermore, spacetime-dependent quark and gluon
fugacities1 influence the photon rates by default.

As a main result, we claim that the photon yield of the
QGP can be much smaller than previously thought, due to
the small initial quark content of the fireball. Furthermore,
the pre-equilibrium phase of the QGP does not contribute
significantly to yield or elliptic flow of direct photons. Second,
we show how important nonequilibrium photon production can
be for the elliptic flow: energetic particles behave “jet-like,”
and make the elliptic flow for higher transverse momenta
negative. These results provide necessary complementary
aspects to hydrodynamic calculations, which in most cases
does not include strong off-equilibrium dynamics.

Recently, much work is done concerning alternative rates
(see, e.g., Ref. [50]) or rather ignored effects, such as
viscous corrections (e.g., Ref. [51]) or unknown sources (e.g.,
Ref. [52]). This paper is organized as follows: In Sec. II we
describe our theoretical and numerical transport framework. In
Sec. III we introduce our implementation of 2 ↔ 2 and 2 → 3
(radiative) photon production processes, their comparisons
with hard thermal loop (HTL) resummed rates and explain
the handling of interference effects. We discuss the scaling
behavior with quark fugacities in Sec. III C. In Sec. IV A we
show qualitatively in a box model how jet-medium interactions
and a flowing thermal medium compete for elliptic flow and
clarify the term jet-photon conversion in Sec. IV B. Section V
is devoted to results for transverse momentum spectra and
elliptic flow of photons from the QGP phase and its physical
implications. Finally, we conclude in Sec. VI and give an
outlook on possible next steps. Our units are h̄ = c = k = 1;
the spacetime metric is given by gμν = diag(1,−1,−1,−1).
Greek indices run from 0 to 3.

II. PARTONIC CASCADE BOLTZMANN APPROACH
TO MULTIPARTON SCATTERINGS

We simulate the partonic evolution of heavy-ion colli-
sions by using the (3 + 1)-dimensional transport approach
(BAMPS) which solves the relativistic Boltzmann equation
by Monte Carlo techniques [31,53] for on-shell quarks and
gluons by using perturbative QCD (pQCD) scattering matrix
elements including 2 ↔ 2 and 2 ↔ 3 (radiative) processes.

1For high-energy reactions the number of quarks and antiquarks is
very similar, so that it makes sense to speak of an absolute quark
fugacity defined as λq ≡ nq+q̄ /n

equilibrium
q+q̄ with the density n.

With the phase-space distribution function f i(x,k) ≡ f i
k for

particle species i, the BE reads

kμ ∂

∂xμ
f i

k = C2→2[f ] + C2↔3[f ], (1)

where C2→2[f ] and C2↔3[f ] are the elastic and inelastic
collision terms. BAMPS uses the test particle method: The
physical particle number is increased by an integer factor
Ntest; however, all cross sections σ are simultaneously scaled
down, σ → σ/Ntest. This procedure increases the statistics but
does not affect the physical results. Throughout this work, we
include three flavors of light quarks, antiquarks, and gluons.
All particles are on shell and massless (corresponding to an
ideal equation of state) and carry physical electric charges and
degeneracies. We neglect heavy quarks (see Refs. [42,45,54])
because their presence is subdominant for photon observables.
Space is discretized in small cells with volume �V and
particles scatter and propagate within time steps �t . Within
each cell, the probability for binary scattering is

P22 = σtot,22(s)

Ntest
vrel

�t

�V
, (2)

where σtot,22(s) is the (in general Mandelstam-s-dependent)
binary total cross section. For 2 → 3 particle scattering the
probability is equivalently

P23 = σtot,23(s)

Ntest
vrel

�t

�V
. (3)

The inelastic 3 → 2 backreaction has a similar probability
expression.2 For massless particles, the relative velocity of the
two incoming particle with four-momenta p1,2 = (E1,2, �p1,2)
is vrel = s/(2E1E2). For binary collisions, the cross sections
are obtained via tree-level pQCD matrix elements, where
propagators are “screened” by a LO HTL Debye mass (for
photon production, see Sec. III). For gluon radiation in 2 → 3
inelastic collisions we use the Gunion–Bertsch approximation
for the matrix elements [55], which was further improved
in Ref. [46], whereas for radiated photons we use the full
QCD+QED matrix element. BAMPS features a running
coupling αs(Q2), which is evaluated at the momentum transfer
Q2 of the respective scattering process [45]. With this setup,
the nuclear modification factor and elliptic flow in heavy-ion
collisions could simultaneously be described in a former study
[56]. The framework allowed for several kinetic studies such
as the determination of transport coefficients, heavy quarks,
Mach cones, jet energy loss, and momentum asymmetry, see
e.g., Refs. [39,40,43,45,47,48,57–64].

Radiative cross sections

The bremsstrahlung process q + q → q + q + γ is an
important ingredient to the LO photon rate (more details in
Sec. III), thus in the following we give details regarding the
evaluation of the total cross section. This is similar to the

2We do not include 3 → 2 processes involving photons, because
these are subdominant processes. For gluon radiation it is imple-
mented.
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method for gluon radiation done earlier. Radiative processes
(particles 1 + 2 → 3 + 4 + 5) are described by the momentum
labels p1, p2, p3, p4, and p5 ≡ k. All considered 2 → 3
processes have an internal gluon propagator with momentum
q. The rapidity in the center of momentum (CoM) frame
is defined as y = 1/2 ln[(E + pz)/(E − pz)], where y is the
rapidity of the radiated photon, and its energy is ω = k⊥ cosh y.
The energy of the outgoing particle 3 is E3 = q⊥ cosh y3,
with its rapidity being y3. Here, k⊥, q⊥ are the momentum
components perpendicular to the z axis in momentum space.
The angle between �q⊥ and �k⊥ is φ. The total cross section for
radiative processes is defined as

σ2→3 = 1

2s

∫
d3p3

(2π )32E3

d3p4

(2π )32E4

d3k

(2π )32Ek

× (2π )4δ(4)(p1 + p2 − (p3 + p4 + k))|M2→3|2

= 1

256π4

1

ν

1

s

∫ s/4

0
dq2

⊥

∫ s/4

k2
⊥,min

dk2
T

∫ ymax

ymin

dy

∫ π

0
dφ

× |M2→3|2J [s,q⊥,k⊥,φ,y], (4)

with a symmetry factor ν = n! for n identical final-state
particles, the radiative matrix element |M2→3|2, and the
Jacobian

J [s,q⊥,k⊥,φ,y] =
∑ {(

∂F

∂y3

)−1
}

, (5)

where the sum is over the roots of

F = (p1 + p2 − p3 − k)2

= s − 2
√

s(q⊥ cosh y3 + k⊥ cosh y) + 2q⊥k⊥ cos φ

+ 2q⊥k⊥(cosh y3 cosh y − sinh y3 sinh y). (6)

The lower integration limit k2
⊥,min > 0 is further explained

in Sec. III B 1. The limits in the rapidity of the outgoing
photon ymax, ymin are functions of k2

⊥,min, k⊥, and s. For given
coordinates s, k⊥, q⊥, y, φ we can unambiguously obtain
four-momenta in the CoM frame p1, p2, p3, p4, k to get
the value of the matrix element at this point without any
approximation. The bremsstrahlung matrix element will be
discussed in Sec. III B. More details regarding these kinematics
can be found in Ref. [46].

III. PHOTON PRODUCTION RATE IN
PARTONIC TRANSPORT

The emission rate of photons from an equilibrated quark-
gluon plasma of temperature T at leading order O(e2g2T 4)
was first determined in Refs. [65,66]. In nearly all phenomeno-
logical studies concerning photons in heavy-ion collisions,
these rates are used and we will denote them as “AMY”
rates. Because the full leading-order rate contains both
2 ↔ 2 photon production (namely Compton-scattering and
quark-antiquark annihilation) and higher-order processes, such
as bremsstrahlung and inelastic pair annihilation including
coherence effects, we implement the 2 ↔ 2 processes and the
2 → 3 processes separately. We emphasize that the advantage
of transport simulations lies in the use of microscopic rates. We

do not rely on thermal distributions of incoming partons, any
pair of partons can produce a photon (given that the process
is kinematically and diagrammatically allowed). However, in
this section we use thermal distributions to show the validity
of the total photon production rates in the transport framework
by comparing to analytically known thermal rates.

A. 2 ↔ 2 processes for photon production

The authors of Refs. [67,68] have computed the 2 ↔ 2
contribution to the photon rate in the k/T � 1 limit. This
limit could be dropped in Refs. [65,66]. Essentially, in the
so-called HTL improved rate the momentum transfer t in
photon production matrix elements is split up into a soft
region t < t
 and a hard region t > t
. The rate from the
hard region is treated in a straightforward way by integrating
the appropriate squared matrix elements |MCompton|2 and
|MAnnihilation|2 in the rate integral (see Appendix B). The soft
region, t < t
, is treated differently, by using effective HTL
vertices and propagators in the corresponding loop diagrams.
In the end, both soft and hard contributions are added and
turn out to be independent of t
. In principle, the t < t


calculation of the dressed loop diagram corresponds to the
kinetic (t > t
) computation of the rate while making the
propagators effectively massive, using a mass of order gT .
For the vertices, however, a similar interpretation would be
difficult. Within the partonic transport model BAMPS, we
deal only with vacuum matrix elements, essentially the same
which are used in the t > t
 region of Refs. [67,68]. The matrix
element for Compton scattering qg → qγ reads

|MCompton|2 = 16

3
π2ααs

(
s2 + st

s2
+ s2 + st

u2

)
. (7)

The matrix element for quark-antiquark annihilation qq̄ → gγ
is

|MAnnihilation|2 = 128

9
π2ααs

(
tu

t2
+ tu

u2

)
, (8)

where s, t, u are the usual Mandelstam variables.

1. Screening of soft momentum transfers

To avoid a crude cutoff like t
 in the momentum integration
within BAMPS, we dress the quark propagators with a thermal
mass mD,q ∼ gT , motivated by the HTL effective propagators.
This screening of infrared divergencies naturally has a large
effect on the total photon rate (and also the differential one),
and must be carefully investigated, which is the purpose of this
section. In BAMPS we use the formulas from Appendix A
to compute the Debye mass from the given (in general
nonequilibrium) distribution functions. We want to mention
here the systematic uncertainty concerning the strong coupling
entering the Debye mass. It can be fixed (e.g., αs = 0.3) or a
running αs(Q2), where the scale Q2 has to be specified. In
the commonly used electric scale Q = a2πT , the prefactor
a is not clear, but O(1). In former versions of BAMPS,
Q2 was taken to be the momentum transfer of the specific
process, Q2 = s,t,u. Moreover, in Ref. [69] it was argued
that the coupling can be evaluated at the Debye mass itself,
m2

D = 4π
3 αs(m2

D)(Nc + Nf

2 )T 2. To allow for comparison with
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TABLE I. The comparison of AMY with Born-photon rates for
higher moments of the photon rate, using the fixed value of κ = 2.45.

Moment AMY/Born

0th 99.5%
1st 112.5%
2nd 121.9%
3rd 128.1%
4th 132.1%

other groups we set the coupling in this paper fix to αs = 0.3
for the photon production, unless otherwise stated. Note that
the procedure from this section and the following Secs. III A 2
and III B 2 is only strictly valid for fixed coupling. Recent
hydrodynamical calculations of photon rates also keep the
coupling fixed.

Having the screened matrix elements at hand, we then carry
out the integration to obtain the total cross section and finally
the photon spectra. These rates will, by construction, not be
equal to the HTL improved rate, which is why we multiply the
thermal masses by a real number κ . The propagators for the
different channels read correspondingly

1

t2
→ 1(

t − κm2
D,q

)2 ,
1

u2
→ 1(

u − κm2
D,q

)2 ,

1

s2
→ 1(

s + κm2
D,q

)2 . (9)

It is now our strategy to choose the value of κ in such a way
that our simplified procedure leads to a rate that resembles the
HTL improved rate closely (a similar procedure was done for
heavy quark energy loss; e.g., in Ref. [70]). We do this by
comparing the moments of the rate (where the nth moment is
defined as

∫ ∞
0 dEEn dR

dE
). To this end we solve the integral in

Eq. (B1) numerically (as in Appendix A of Ref. [71]) first for
quantum statistical distributions and screened matrix elements
including the κ factor (we call this the “Born” rate), and
compare the result to the HTL improved (2 ↔ 2) rate from
Refs. [65,66]. We adjust κ [which is of order O(1)] so that the
total rates3 R are equal. The comparison is shown in Fig. 1(a),
where we plot dR/dE in both schemes. One observes that the
Born rate (blue cross shaded area) has a slightly shifted peak
when compared with the HTL improved rate. To get a handle
on the quality of the comparison, we compare higher moments
of the rate; the results are shown in Table I. Note that the result
for κ is rather insensitive to the numerical integration limits,
as the integrand drops to zero for E/T → 0,∞.

2. Correction of the distribution functions

Finally, we need to correct for the small effect of the
distribution functions. In the present numerical study, we can

3The total rate is the total number of photons emitted per volume
per time (0th moment), R = ∫ ∞

0 dE dR
dE

.
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(a)

(b)

FIG. 1. The photon rate from Refs. [65,66] compared with the
rate obtained from the numerical solution of Eq. (B1) with matrix
elements (8) and (7), using a Debye mass κm2

D,q . In the left panel the
κ is fixed. In right panel we keep κ = 2.45 and fix the parameter Cstat

by integrating the Born matrix element with Boltzmann statistics.
(a) The parameter κ = 2.45 is tuned to make both integrated rates
equal. (b) The Born matrix element integrated with Boltzmann
statistics (green dotted line). Reducing this rate by Cstat = 0.84
(orange dashed line), the total rate R equals the Born rate with
quantum statistics [which equals approximately the elastic HTL
improved rate; see panel (a)].

only use Boltzmann (classical) statistics, in initial and final
states. There is no Pauli blocking or Bose enhancement [72].
That is why we will multiply the cross sections (equivalent
to the rate) with a factor Cstat in BAMPS to get the correct
number of photons even without quantum statistics. This
factor does not alter the differential cross section, as it is an
overall prefactor. Note that also the Debye mass follows the
Boltzmann distribution, because it is dynamically computed
from the simulation. To obtain Cstat, we solve Eq. (B1)
numerically with Boltzmann distributions and ignore Pauli
blocking or Bose enhancement, but keep the fixed value of
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FIG. 2. For two values of κ we compare the numerically obtained
2 ↔ 2 photon rate to the analytic expectation (obtained by using the
method from Ref. [71]).

κ from the procedure above.4 Then we compare again to
the HTL resummed 2 ↔ 2 rate from Refs. [65,66], which
uses quantum statistics. The difference of both total rates is
Cstat. The rates are shown in Fig. 1(b). The fact that Cstat

is below unity implies that the Pauli-blocking effect of the
outgoing quark in the Compton channel is more important
than the Bose-enhancement effect of the outgoing gluon in the
annihilation channel. This is consistent, because the Compton
process happens more often (due to the combinatorics of
the ingoing particles). Finally, we obtain the 2 ↔ 2 photon
production rate from BAMPS including the above-explained
ingredients in a box calculation. As an important numerical
check, we compare the numerical results with the analytic
expectation by using the exact same matrix elements (using
two arbitrary values of κ for illustration) in Fig. 2, and find
excellent agreement.

B. Radiative photon production

Motivated by the processes which give contributions to
the total photon rate from Refs. [65,66], we include radiative
photon processes in BAMPS. We restrict ourselves to the

4Here again, the Debye mass is in Boltzmann form.

p2 − k
p2

p1

k

p4

p3

p4 + k
p2

p1

k

p4

p3

(a) (b)

FIG. 3. The two contributing vacuum diagrams we use for
the numerical evaluation of the radiative photon rate. All internal
propagators are screened by hand, and an overall factor Kinel ensures
the similarity to the AMY rate, as explained in Sec. III B 2. (a) iMa ,
(b) iMb.

(a) (b)

FIG. 4. An example of the photon self-energy and its cuts to
obtain scattering matrix elements along the method from Ref. [73].
In diagram (a) the dashed line represents one possible cut, and the
closed loops must be opened (“tic-ed”) to get a scattering matrix
element. In (b) the dashed and double dashed lines are possible,
topologically different cuts, generating Bremsstrahlung with on-shell
gluons of the medium.

simplest bremsstrahlung diagram,5 shown in Fig. 3 with both
subdiagrams. In Refs. [65,66] it is shown that, at leading
order in the rate, only the self-energy in the form of Fig. 4
contributes, including a resummation of infinite gluon rungs.
We want to stick to this picture and neglect diagrams which
would not emerge by cuts of this self-energy, even though in
our transport setup those could be substantial. To this end,
we employ the cutting rules of Ref. [73] and obtain scattering
matrix elements. Every cut propagator is put on-shell, as well
as every opened loop. In Fig. 4(a) such a cut is shown, for the
case of two gluon rungs. The loops must be opened by “tics”
(see Ref. [73]) in every possible way. What emerges is exactly
the diagrams of Fig. 3. Note that the cuts of Fig. 4(b) produce
two on-shell gluons, and one quark line radiating a photon.
This, and corresponding diagrams with more gluon rungs,
represent a sequential scattering with gluons, which is included
by default in BAMPS, because the dominating subprocess
q + g → q + g was included from the beginning, and the rare
radiation of the photon is Compton scattering in this case.
Note that a (possible) 2 → 3 process like g + q → q + g + γ
(with a three-gluon vertex), is not included in the set of
diagrams resulting from the cuts. Ignoring the rigorous LO
power counting of Refs. [65,66], and just looking at the number
of vacuum QCD vertices, this process could be included and
would contribute significantly within BAMPS, because gluons
are abundant, especially in the early phase of the QGP. This will
be investigated in a future study. For now we use only one kind
of matrix element, motivated by the leading-order picture. As
we only have vacuum matrix elements, we will insert thermal
screening masses by hand into the propagators, as done before
in the case of 2 ↔ 2 scattering. In Appendix D we derive

the full squared matrix element |M|2rad. starting from spinors
and propagators without any further approximation. This is
the radiative matrix element for photons that we will use in
BAMPS, using techniques from Ref. [46].

1. Interference effects

Photon radiation from bremsstrahlung processes suf-
fers from the Landau–Pomeranchuk–Migdal (LPM) effect.
The calculation of the radiative photon production rate

5Diagrams with more vertices become numerically very elaborate.
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λq
mfp

FIG. 5. Here we show a sketch of an LPM interference effect: Due
to a short quark mean-free path a subsequent radiation is suppressed.
Note that this diagram is not used as shown here, we rather evaluate
the quark-quark elastic mean-free path dynamically in BAMPS and
compare it to the formation time of the photon. The photon is produced
by the pure bremsstrahlung subdiagram.

in Refs. [65,66] fully includes the interferences among
subsequently radiated photons. The notion of “destructive
interference” of photons is motivated by looking at possible
cuts of the retarded photon self-energy and the resulting
matrix elements. They must be summed and squared to obtain
the full amplitude. In our microscopic description which is
based on individual scatterings, we use an effective method
to simulate the LPM interference effect. Within a transport
approach, using individual scatterings for photon production,
such interferences are necessarily destroyed and must be
restored by hand.

At first, we calculate the specific inverse rate λ
spec
mfp of the

quark species which appear in the inelastic matrix elements for
photon production [this can be seen as a mean-free path (mfp),
where only certain scattering processes are included]. For the
calculation of λ

spec
mfp we take solely the specific 2 ↔ 2 processes

into account which appear as subdiagrams before or after the
photon is radiated (see Fig. 5). These specific processes are

processes 1: qq → qq/q̄q̄ → q̄q̄,

processes 2: qq̄ → qq̄.

Here q (q̄) are quark (antiquark) species for up, down, and
strange quarks. The corresponding numerical method is ex-
plained in Appendix C, and a typical process is schematically
depicted in Fig. 5. In Fig. 6 we show numerical results for the
inverse rate (mean-free path) corresponding to these processes
separately. It depends strongly on the (anti-)quark fugacity and
temperature. We will come back to the fugacity dependence of
the mean-free path and the rate in Sec. III C. Next we multiply
the amplitude for photon radiation by a Heaviside function
�(λspec

mfp − τf ) which ensures that the formation time τf of
the radiated photon is smaller than the mean-free path of the
radiating quark,

|M|2rad. → |M|2rad.�
(
λ

spec
mfp − τf

)
. (10)

By doing this, we discard photons with such soft k⊥ (transverse
momentum relative to the radiating quark) that the radiating
quark could have scattered again within the formation time.
The k2

⊥ integration in Eq. (4) in this case is limited by

k2
⊥,min = (λspec

mfp )
−2

. As this procedure reflects the underlying
interference effect only incomplete, we must insert a scale
factor Kinel in front of the matrix element. Recall that the
current implementation of the LPM effect for radiated gluons
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FIG. 6. Numerical results for the specific mean-free path for a
quark corresponding to different reactions, depending on temperature
and fugacity.

in BAMPS is done in a similar way; the only difference
is a factor XLPM being multiplied to the formation time
and a different determination of the mean-free path. These
differences are motivated by two physical effects: First,
radiated gluons suffer from scattering after the radiation
process, which dynamically alters their formation time. That
is why we allow more radiated gluons than would actually
be radiated if we required them to be fully formed. Second,
gluon radiation rates involve far more diagrams (see, e.g.,
Ref. [74]), such that the mean-free path is the total mean-free
path qX → Y where X can be a quark or gluon.

2. Fixing the scaling factor for bremsstrahlung in the Boltzmann
approach to multiparton scatterings

As mentioned in the previous section, the implementation
of radiative photon production is incomplete. There are in
fact several parts which deviate from the AMY description.
First, because we include only vacuum matrix elements with
Debye screened propagators, we miss the correct treatment
of soft momentum transfers. In the matrix element there are
two propagators (a quark and a gluon propagator) where we
insert Debye or thermal masses by hand and we could in
principle tune these masses by multiplying κ factors as in
the 2 ↔ 2 case from Sec. III A 1. However, it is not clear
how and if they should be tuned individually. The second
simplification is the LPM effect described in the previous
section. Third, we have the small effect of missing quantum
statistics here, too. At last, the full AMY rate includes
effectively not only the bremsstrahlung process, but also
inelastic pair annihilation (a 3 → 2 process), which we do not
include here in this study. In Refs. [65,66] it is shown that this
is a subdominant contribution. To cure all these problems, we
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scale the full matrix element |M|2rad. with a factor Kinel. Such
scaling is the simplest choice, and very common in transport
approaches. For inelastic processes, the total AMY rate
dR/dE diverges for small E, and the integral is ill de-
fined. However, for small energies (transverse momentum),
experiments do not measure anymore, and the perturbative
AMY description breaks down [75] so that we choose a
suitable lower integration limit. To be consistent with the
2 ↔ 2 photon production we could choose to integrate over
0.15 < E/T < 10 and compare the integral Rinel to the result
obtained by integrating the AMY result. In this case we obtain
Kinel = 0.79. Having our application in mind, where we focus
on transverse momenta in the range 0.5 < pT /GeV < 4, we
translate this at T ∼ 0.4 GeV to a sensible integration region
of 1 < E/T < 10, where the result is very insensitive to
the upper integration limit. For the following, we use this
integration region and obtain Kinel = 0.53. Using this factor,
we make sure that we get (in an equilibrium case) the same
number of photons and a similar spectrum in the energy
region of interest. In Fig. 7 we show the numerical photon
rate compared to the AMY rate, and also its first moment. The
numerical rate from microscopic scatterings in Fig. 7(a) shows
a similar slope as the AMY rate in the considered integration
region, and the integrals of the curves in the plot are equal.
The first moment in Fig. 7(b) from BAMPS is smaller than
the AMY rate by about a factor of 5.2, the second moment
(not shown) by a factor of 5.3. In Appendix E we show the
corresponding differential cross sections and cross-checks of
the kinematics. As a note, the thermal photon elliptic flow,
being a transfer of flow from a boosted thermal distribution
onto photons, is not sensitive to the differential photon rate
(because photons are emitted isotropically in the local rest
frame).

C. Photon rate at nontrivial quark fugacities

The photon rate naturally depends on the quark and gluon
content of the medium. For finite baryon chemical potentials
(or quark chemical potential) the rate is modified by the (trivial)
statistical factors (qq̄ annihilation and Compton scattering
behave differently), but also by other ingredients of the rate,
such as the gluon self-energies. These effects are studied
thoroughly in Ref. [76]. The authors conclude that the effect of
the chemical potential to the photon spectra at RHIC or LHC
is small, due to the small baryon chemical potential and the
moderate sensitivity of the rates. Although we use a simplified
diagrammatic setup, the effect of a quark-antiquark number
asymmetry is included in the transport approach by default.
For the present study at high energies, however, the effect is
negligible.

The second, more important characterization of the parton
content is the “absolute” fugacity. Assuming by the previous
argument that the number of quarks equals the number of
antiquarks, we define the gluon (quark) fugacities λg(λq) as

ng = λgn
equilibrium
g ,

nq + nq̄ = λq

(
nequilibrium

q + n
equilibrium
q̄

)
.
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FIG. 7. (a) The photon rate for bremsstrahlung and (b) the rate
weighted by the photon energy from BAMPS compared to the full
inelastic AMY result. The integral of the rate within 0.15 < E/T <

10 is equal without a K factor. (a) The equilibrium radiative photon
rate. (b) The equilibrium radiative photon rate weighted by photon
energy.

Effectively, for the considerations in this section, there is no
difference between quark and antiquark. Note that the fugaci-
ties in heavy-ion collisions are in general time dependent. The
initial state is still uncertain, especially the quark and gluon
content is under debate. It is commonly believed that gluons
are saturated or over-saturated [77], and quark-antiquark pairs
are not very abundant in the very early phase after the collision
[53]. In Ref. [78] an undersaturation of quark-antiquark pairs
(λq < 1) seems to be favored by data within a rate equation
approach. However, no precise answer about the fugacity
dependence could be given up to now. Other studies [77,79–82]
give slightly different pictures, but we shall not elaborate on
this topic here. Common ground is a quark fugacity λq which
is lower than unity and may or may not approach it within the
lifetime of the fireball. We investigate in the following how the
photon rate behaves for nontrivial quark and gluon fugacities.
Our arguments are similar to those of Ref. [83]. Naively,
the 2 ↔ 2 Compton scattering (quark-antiquark annihilation)
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q dependence
(dashed line, fit), whereas the 2 ↔ 2 photon production processes
show a behavior R ∼ λ1.07

q .

rates are proportional to λqλg (λqλq) just by taking the
incoming parton distribution functions into account. However,
the Debye screening prescription from Eq. (9) lets the quark
and gluon fugacities enter one more time into the rate. This
will scale the rates differently as naively expected. In Fig. 8 we
show the fugacity dependence of the 2 ↔ 2 photon production
(purple triangles) by comparing the total rate R to the rate
at unity fugacity, R[λq]/R[λq = 1]. We have computed the
Compton scattering and quark-antiquark annihilation rates for
several quark fugacities (the gluon fugacity λg is unity here)
and find a combined scaling as λ1.07

q . We conclude that the
2 ↔ 2 rates can be seen as being simply proportional to the
quark fugacity. The inelastic photon rate will scale naively with
λqλq ; however, our implementation of the LPM effect uses
the numerically (i.e., dynamically) evaluated quark mean-free
path for specific processes (see Fig. 6), which depends on the
average cross sections σ and particle densities n and thus on
the (quark) fugacity λq as ∼1/(nσ ) ∼ 1/(σλqT

3). The average
cross sections are themselves Debye screened, and decrease
for higher fugacities. These effects are summarized in Fig. 9,
where we show the scaling of Debye mass, density, average
cross section, and mean-free path, for the two processes
considered. Additionally, the fugacities enter also in the Debye
screened gluon propagator. In Fig. 8 we show the scaling of
the inelastic photon rate (normalized to the rate at λq = 1)
with the fugacity and compare with a naive scaling (without
the effect from the LPM procedure or Debye screening),
R[λq]/R[λq = 1] = λ2

q . By fitting a simple power law we find
for bremsstrahlung roughly R ∼ λ1.36

q , for λq � 0.3.

IV. ELLIPTIC FLOW OF PHOTONS ORIGINATING
FROM PARTON JETS

A. Box calculation of photon leakage effect

To understand the kinetics of photons originating from
hard partons qualitatively we use a fixed box with volume
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FIG. 9. Quark fugacity λq scaling of Debye mass mD , quark
density n, average cross section at T = 0.4 GeV, σi ≡ 〈vrelσtot,i(s)〉
(where i = 1,2,3 corresponds to the three different specific processes
considered), and the specific inverse rate λmfp.

V = LxLyLz and populate it homogeneously with a thermal
distribution of quarks and gluons (temperature T ). This
distribution can either be at rest with a four-velocity uμ =
(1,0,0,0), or boosted in the x direction, uμ = (γ,γ vx,0,0),
such that there is a strong collective flow in the x direction
(as seen from the laboratory frame). We change the box size
to be either very thin, Lx/Ly 
 1 or cubic, Lx = Ly = Lz.
Furthermore, we initialize at the geometric center of the box a
large amount of “jet”-like particles isotropically with Ej = 5T
or Ej = 10T . All particles are allowed to scatter and produce
photons; however, when any particle hits the wall, it is deleted.
We define a transverse momentum, pT = (p2

x + p2
y)1/2. Our

observable resembles an elliptic flow v2, but here it is merely
a momentum anisotropy,

v2 =
〈

p2
x − p2

y

p2
T

〉
average all photons

. (11)

To this end, we consider five scenarios:

A. cubic box at rest, including jets;
B. cubic box with flow, without jets;
C. cubic box with flow, including jets (jet pT = 10T );
D. thin box, Lx/Ly 
 1 at rest, including jets (jet pT =

5T , 10T );
E. thin box, Lx/Ly 
 1 with flow, including jets (jet pT =

10T ).

Evaluating the momentum anisotropy from these scenarios,
we plot the results in Fig. 10. As expected, no flow is
visible in the symmetric scenario A. In scenario B a thermal,
flowing background generates a momentum anisotropy which
increases for higher pT . Undisturbed flow from the background
is carried over to photons. Here we note that, by a simple
relativistic effect, the (Lorentz variant) result of Eq. (11) for
produced particles is lower in magnitude than that for the
background distribution. This effect depends on the boost.
Including jets, which are isotropically emitted from the center,
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FIG. 10. Results for the qualitative understanding of elliptic
flow of photons originating from flowing thermal background and
nonthermal “jet”-like partons for the five scenarios explained in
Sec. IV A. The thermal medium has a temperature of 0.4 GeV and,
for simplicity, photons originate from 2 ↔ 2 processes only.

the flow reduces to zero at exactly the jet energy. For
Compton scattering and quark-antiquark annihilation a large
amount of photons inherit nearly the full momentum from
the jets (jet-photon conversion). Because the jet momentum
is dominant, the momentum anisotropy of these photons is
zero, hence the curve of scenario C drops at the jet energy.
The flow at lower pT stems from the background flow. In
scenario D there is no background flow, and no positive v2

contribution. The jets, initialized in the middle of the box,
traverse it until whichever wall comes first until they are
deleted. During their traveling path, they can hit a thermal
particle and produce a (conversion) photon, with a momentum
close to that of the parent jet. This is more likely to happen
in the (long) y or z direction, than in x, as the box has a
small Lx size. Most of the photons have larger py momenta
than px , thus the v2 becomes negative (see, e.g., Ref. [84]
for similar findings). We show this effect for two different jet
pT and, clearly, the minimal v2 is reached at exactly the jet
pT . This effect can be termed the geometric leakage effect.
Finally, the combined effect of thermal background flow and
jet conversion photons is shown in scenario E: For low pT there
is substantial momentum anisotropy, whereas around the jet
pT the conversion effect dominates and pushes the v2 into the
negative region. This toy example shows what we can expect
in a heavy-ion collision when both jet particles and thermal
flowing particles are present. The relative strengths of both
effects have to be investigated in a full simulation.

B. Jet photon conversion

To explicitly see how higher energetic partons (“jets”)
interact with thermal particles and create a photon, we carry
out a simple box calculation, where quark or gluon jets with
fixed energy hit particles from a thermal bath. In Fig. 11 we
show the resulting photon spectra, normalized by the volume
density of jets njet. For a gluon jet, the only possible process is
Compton scattering. It can be seen that the photon spectrum is
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FIG. 11. Spectra of photons which are produced by an incident jet
particle with Ejet = 15 GeV hitting a thermal bath. We show 2 ↔ 2
and 2 → 3 contributions separately.

peaked at values E ∼ O(T ), due to the present channels. For
gluons we cannot speak of jet-photon conversion. Quark jets,
interacting only in 2 ↔ 2 processes (Compton scattering and
quark-antiquark annihilation), have a dominating peak at the
jet energy Ejet = 15 GeV. Due to momentum conservation the
direction of the momentum of the photon must be very close
to that of the jet quark—this is a true jet-photon conversion.
The relative strength of the thermal peak at low energies and
the peak at the jet energy depends on the ratio T/Ejet. For
bremsstrahlung we show the result for two different specific
mean-free paths (dotted and dash-dotted line). The energy of
the photon is distributed between the thermal scale and the
jet energy scale and depends on the LPM effect. However,
in Appendix E we show that the differential cross section
is peaked at low transverse momentum, which means the
emission is favorably collinear to the jet quark. In this case
we have a similar effect for the resulting photon as in the
jet-photon-conversion case.

V. RESULTS

In the following we show results from realistic simulations
of heavy-ion collisions by using the photon production
methods explained above within the framework of BAMPS.
Details concerning the BAMPS setup for heavy-ion collisions
can be found in Refs. [31,40,56,62]. The initial geometry of
the collisions is governed by a Glauber model [31,54]. For
the initial parton distribution we use PYTHIA 6.4 [85]; details
about the implementation can be found in Ref. [54]. Because
photons are very rare probes, they do not alter the collision
dynamics. For this reason we use recorded BAMPS events
and sample photons by collisions among the recorded particles.
This method allows us to enhance the photon cross section by
a nearly arbitrary factor and scale the resulting spectra down
by this factor (for better statistics). We have checked that all
our results are independent of these factors. The background
collision includes the latest improvements from BAMPS, such
as the improved Gunion–Bertsch matrix elements for gluon
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FIG. 12. The pT spectrum of direct photons from the QGP phase
of Au + Au collisions at

√
s = 200 GeV for 20%–40% most-central

collisions. We show the elastic (magenta dotted) and inelastic (greed
dashed) contribution from BAMPS as well as their sum (red solid) in
comparison with a recent hydro result (yellow double dashed) from
Ref. [25] and a result from off-shell transport PHSD [86].

radiation and a pQCD running coupling6 [46,56,63]. The
evolution of BAMPS runs until the energy density drops locally
below εc = 0.6 GeV/fm3. We have checked that the photon
spectra are insensitive to this choice, because the rather cool
medium in the later stages no longer produces many photons.

A. Photon yield from heavy-ion collisions

At present, BAMPS simulates only the QGP phase of
heavy-ion collisions. This complicates studies and compar-
isons with photon data more than for other observables (such
as, e.g., heavy quarks, jets, or bulk medium elliptic flow).

In Fig. 12 we show results for photon spectra in trans-
verse momentum pT from BAMPS separately for 2 ↔ 2
photon production processes (magenta dotted line) and 2 → 3
processes (green dashed line). The sum (red solid line)
has an important contribution from the inelastic processes,
especially at the highest and lowest pT . In Fig. 13 we
show the effect of a running coupling for photon production.
The momentum transfer of the respective channel serves as
scale Q to evaluate the coupling, αs(Q2), but the coupling
constant appearing inside the Debye masses is evaluated at
the scale of an effective temperature in the corresponding
cell (Q = 2πTeff). The running coupling changes the slope
only slightly, but increases the photon rate by a factor of 2
below pT � 1.5 GeV and 1.5 above pT � 1.5 GeV. Other
models, such as PHSD [86] and MUSIC [25], produce QGP
rates around a factor of five to ten larger in magnitude than
our results (for fixed αs), and a significantly steeper slope.
The quark and gluon fugacities in MUSIC are unity, PHSD
states only absolute particle numbers. Due to the small yield

6Note that photon production is independent from the background
events, and we chose the coupling to be fixed or running for the
photon production cross sections; see also Fig. 13.
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FIG. 13. Same as Fig. 12, but we switch on a running coupling
for photon production (green dashed line).

of photons in the present setup, a possible pre-equilibrium
contribution from BAMPS to, e.g., hydrodynamic calculations
is negligible. As the BAMPS results for photons from the
QGP undershoot the hydrodynamic calculations for all pT ,
and even hydrodynamics underestimates experimental data,
BAMPS cannot help in this direction with the present initial
state. From all the above we see that the initial condition is
the main uncertainty, and once more, our results underline the
need to understand better the initial quark and gluon content
of the fireball (see also Ref. [87]). We show the fugacities in
BAMPS in Fig. 14 for the same parameters of the collision.
We have extracted the quark fugacity by using an effective
temperature for two representative geometries, the central cell
of the collision and a tube of 1.5 fm radius and length of
one unit in rapidity. We remark that, at early times, these
equilibrium quantities are only rough estimates of the quark
content because the medium is not yet equilibrated. As shown
in Fig. 8 the 2 ↔ 2 photon rates scale nearly linearly with the
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centrality. Shown is the average over only the central cell and a
tube of transverse radius 1.5 fm extending in spacetime rapidity
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FIG. 15. Same as Fig. 14, but for artificially increased quark-
antiquark production cross section σgg→qq̄ = Kσgg→qq̄ , where K =
10 (left panel) and K = 100 (right panel). The photon spectra are
mostly sensitive to the early phase, where the notion of fugacity (or
temperature) can only be effective.

quark fugacity, so that they are strongly affected by the quark
fugacities λq � 0.2 at early times in BAMPS. The inelastic
rate has a more complicated fugacity dependence, such that
the photon rate at λq = 0.2 is less than 10% of the equilibrium
rate at λq = 1. The combined effects explain the difference
with the other models.

To see which role is played by the chemically equilibrating
medium, we alter the fugacity evolution of the quarks (and
thus also the gluons) by tuning arbitrarily the quark-antiquark
production cross section7 by a factor of 10 and 100. The
resulting fugacity evolution is shown in Fig. 15. It can be
seen that, at around t = 2 fm/c the quark fugacity increases
from λq(t = 2 fm/c) ≈ 0.15 to λq(t = 2 fm/c) ≈ 0.2 (for
Kgg→qq̄ = 10) and λq(t = 2 fm/c) ≈ 0.5 (for Kgg→qq̄ =
100). In Fig. 16 the resulting photon spectra are shown. The
difference between the three scenarios is moderate, because
most of the photons are produced within the first 2fm/c. The
difference in the fugacity is, however, much stronger at later
times (at t = 4 fm/c about a factor of five), where not many
photons are produced due to the thinner and colder medium.
This shows that the quark content at the very initial phase
is crucial for photon spectra. Because the two other quoted
models (MUSIC and PHSD) in Figs. 12 and 16 underestimate
the data for RHIC slightly, our results suggest that this problem
could be even more severe.

B. Elliptic flow

Within BAMPS, the event plane is known exactly, because
we are dealing only with smooth Glauber initial conditions.

7We ignore the tuning of the backreaction qq̄ → gg because the
purpose of this test is to drive the chemical equilibration faster. In
the central cell, the quark fugacity even increases above unity for late
times and Kgg→qq̄ = 100.
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FIG. 16. Same as Fig. 12, but here we change the chemical
equilibration during the evolution by artificially increasing the gg →
qq̄ cross section by a factor of 10 (magenta dotted line) and 100
(green dashed line).

This is why elliptic flow can be conveniently obtained
by averaging (p2

x + p2
y)/p2

T over all particles considered;
photons in our case. Experimental results of direct photon
elliptic flow are a weighted average over all sources of
direct photons, weighted by their spectra. We can perform
weighted averages by taking prompt photons and photons
from hadronic scattering from elsewhere, in order to compare
with data, but we find it instructive to compare directly
the QGP contribution from BAMPS with other studies. In
Fig. 17 we show the elliptic flow of photons originating
from only 2 ↔ 2 collisions (green upward triangles), only
bremsstrahlung (blue squares), and their sum (red points). The
pink downward triangles [88] show elliptic flow of photons
induced by jet-plasma interactions within a 2D + 1 hydro
model, where a time-dependent jet distribution is assumed and
the jet-thermal rate is obtained by integrating separately the
2 ↔ 2 and collinear (bremsstrahlung) rates using a thermal and
a jet distribution. The final results are obtained by folding these

FIG. 17. The elliptic flow of photons from BAMPS for Au + Au
collisions at

√
sNN = 200 GeV and 20%–40% centrality. Shown are

the sum and the elastic and inelastic contribution separately.
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rates over the hydro background. The thus-obtained elliptic
flow is negative, a robust feature which was also observed in
more simple one-dimensional (1D) Bjorken expansion [84],
or with different initial conditions. Within BAMPS, we do
not assume any jet distribution by hand, energetic particles
propagate and suffer from energy loss by default. As we
see in Fig. 17, at low pT the inelastic scattering shows only
very little effect from the thermal flow, and its contribution
is negative. The 2 ↔ 2 photon production at pT � 1.3 GeV
shows a large flow, translated from the flowing background.
The maximum magnitude is inline with the hydro result and
the PHSD transport model. The total photon flow in the QGP
from BAMPS is very small in magnitude and negative. We
estimate the impact of our results when confronted to data by
simply replacing our QGP result with that from a complete
hydro calculation and compare roughly to experimental data.
The reweighting of the flow (the strongly flowing hadronic
contribution gets more weight, as our QGP yield is lower),
will (trivially) enhance the flow at lower pT . At higher pT

we see the diminishing of flow due to the negative v2 from
BAMPS. Again, bearing in mind the inconsistency, we have
added a “pre-equilibrium contribution” from BAMPS to the
complete hydro result. This, as was the case also for the yield,
has only a very small effect.

VI. CONCLUSIONS

We have implemented photon production cross sections
at full leading order in a dynamical, microscopic transport
approach for heavy-ion collisions. The conceptual difficulties
concerning the rates, which involve in principle infinite
scattering amplitudes, could be tackled by tuning the screening
mass and fixing overall multiplicative factors. Consequently,
the analytically fully known leading-order photon production
rate has been reproduced by the transport simulation from
microscopic scatterings. We discussed the Debye mass depen-
dence as well as the fugacity dependence of the photon rate
and found a nontrivial scaling with fugacity, which is different
for 2 ↔ 3 and 2 ↔ 2 photon production. Having the fugacity
dependence of the photon rate under control, we turned to
realistic heavy-ion collisions.

We give results for the direct photon contribution to spectra
and elliptic flow from the QGP phase (in this exploratory
study we restricted ourselves to RHIC collisions at

√
sNN =

200 GeV). The magnitude of the pT spectrum naturally
depends strongly on the quark content of the medium which
in turn is largely influenced by the initial conditions. Our
implementation of PYTHIA initial conditions combined with the
mentioned fugacity dependence shows the expected smaller
yield than hydrodynamic computations which is in complete
chemical equilibrium from their initialization time on. The pT

spectra from BAMPS are also harder; this is due to the choice
of initial condition, but also a distinct feature of the nonequi-
librium nature of BAMPS. Partons which are not part of a
thermal ensemble scatter and make photons and these photons
are not expected to show a thermal behavior. Especially at
higher momenta (between 2–3 GeV), the spectrum is harder.
If yet unknown initial conditions with larger quark content
were used in the future, the nonequilibrium photon spectrum

would be higher and thus closer to the data. In this case one
would have a stronger pre-equilibrium contribution, whereas
with our present setup the pre-equilibrium contribution is very
small.

A more obvious implication of nonequilibrium photon
production can be seen in our results for the elliptic flow.
Due to microscopic production of photons by partons which
are not part of a pure thermal ensemble, the momentum
asymmetry of the produced photons is not the result of a simple
boosted thermal spectrum. Jet-photon conversion, the almost
one-to-one transfer of momentum of (usually higher energetic)
particles to photons, could have been identified to play an
important role. We have observed the competing of a thermal
flowing medium with positive photon v2 and the nonequilib-
rium leakage effect with its negative v2. This leakage effect
probes the asymmetric geometry of the fireball by the traverse
of slightly higher energetic quarks and their conversion into
photons, or radiative but very collinear emission. The resulting
elliptic flow is dominated by nonthermal emission at higher
pT and strongly negative, and larger but still negative for low
pT , where background flow is more important. We believe
that other yet unidentified effects solve the photon-puzzle in
future. Fragmentation photons may play a role as well as the
effect of electromagnetic fields on the evolution. Both effects
can be investigated in microscopic transport models, and with
this work we have set the basis.
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APPENDIX A: DEBYE SCREENING PRESCRIPTIONS

The screening masses and thermal quark masses behave
very similarly for our purposes. They are of order gT but have
different prefactors depending on the type of statistics. The
squared thermal mass for light quarks is defined as

m2
D,q = g2CF

∫
d3p

(2π )3Ep

(fg + fq). (A1)

The squared thermal gluon mass (=Debye mass) is defined as

m2
D,g = 16παs

∫
d3p

(2π )3Ep

(Ncfg + Nf fq). (A2)

Using Boltzmann statistic distributions, the squared gluon
Debye mass is

m2
D,g = 8

π
(Nc + Nf )αsT

2 ≈ 15.28αsT
2, (A3)
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whereas the squared thermal quark mass is

m2
D,q = 1

9
m2

D = 8αsT
2

9π
(Nc + Nf ) = 16

3π
αsT

2 ≈ 1.7αsT
2.

(A4)

Using quantum statistic distributions, the squared gluon Debye
mass is

m2
D,g = 4παs

3

(
Nc + Nf

2

)
T 2 = 6παsT

2 ≈ 18.85αsT
2,

(A5)

whereas the squared thermal quark mass is

m2
D,q = 1

2
m2

∞ = 1

2

CF g2
s T

2

4
= 2παs

3
T 2 ≈ 2.09αsT

2. (A6)

APPENDIX B: PHOTON RATES

The total photon production rate (units [energy4]) for
processes P + P ′ → K + K ′, where K is the four-momentum
of the photon, can be written as [71]

R = N
∫

d3p

2Ep(2π )3

∫
d3p′

2Ep′ (2π )3

∫
d3k

2Ek(2π )3

×
∫

d3k′

2Ek′(2π )3 (2π )4δ(4)(P + P ′ − K − K ′)

× |M|2f (P )f (P ′)[1 ± f (K ′)], (B1)

where N is a symmetry factor respecting the electric charges
and degeneracies. In the case of Compton scattering, the
symmetry factor for two flavors isN = 320/3, for three flavors
N = 128. In the case of quark-antiquark annihilation, the
symmetry factor for two flavors is N = 20, for three flavors
N = 24. By using an approximation for the case E � T , the
differential photon rate can be obtained from the scattering
matrix elements M(s,t) using [67]

Ek

dRi

d3k
= Ni

(2π )6

T

32Ek

e−Ek/T

∫ ∞

0
ds

1

s

× ln
{(

1 ± e
− s

4EkT
)±1}∫ 0

−s

dt |Mi |2, (B2)

where s, t , and u = −s − t are the usual Mandelstam
variables. However, by using the techniques from Ref. [71], the
rate can be integrated numerically without the approximation
E � T . Note that by using Eq. (B1) or (B2) the matrix element
must not diverge for soft momentum transfer. These formulas
can thus only be used if either a soft momentum cutoff is
applied (qcut, as in most previous works, e.g., Ref. [71]), or
the propagators in the matrix elements are naively screened by
using a screening mass. This we call Born approximation.

APPENDIX C: ALGORITHM TO DETERMINE SPECIFIC
MEAN-FREE PATHS

The mean-free path is the inverse of the scattering rate per
particle λmfp = R−1. The inverse rate for scattering of a single

particle q within a medium of particle density nq is

λ
q
mfp,qq→qq = [nq〈σ (s)vrel〉therm]−1, (C1)

where the average is over the thermal ensemble and vrel ≡
s/(2E1E2), where E1, E2 are the energies of two incoming
particles and the Mandelstam variable s = (P1 + P2)2 is the
squared sum over their four-momenta. A thermal ensemble
allows for the direct calculation of the mean-free path from
the thermal ensemble, just given the cross section σ (s) and
the equilibrium density nq . However, we explicitly want to
extract the mean-free paths in a chemical and/or kinetically
nonequilibrated system. For this purpose, we choose all
possible scattering partners i in each computational cell and
compute their collision probability P i

22 from Eq. (2), such that

λ
q
mfp,qq→qq = [nq〈σ (s)vrel〉therm]−1

= Nq

1

M

M∑
i=1

P i
22

�t

= 1

�V

2

(Nq − 1)

M∑
i=1

σivrel,i

�t
,

M ≡ 1

2
Nq(Nq − 1). (C2)

Note that here Nq is the total number of quarks in the cell with
volume �V , which is the physical number times the number
of test particles, Ntest. The cross section in Eq. (2) is divided
by Ntest, such that the mean-free path is the physical mean-
free path and independent of Ntest. For processes qq → qq
there are

(
Nq

2

) = 1/2Nq (Nq − 1) possible scattering processes
for Nq quarks in the system, and we take numerically the
average to get the mean-free path of a quark when considering
only scatterings with another quark of the same flavor. In a
similar way we can compute the mean-free paths for qq ′ →
qq ′, q̄q̄ ′ → q̄q̄ ′ ,qq̄ → qq̄.

APPENDIX D: BREMSSTRAHLUNG DIAGRAMS
FOR QUARK-QUARK SCATTERING

In this section we compute the squared matrix element for
the qq → qqγ process, shown in Fig. 3. For this purpose,
we label the amplitude of Fig. 3(a) with Ma , and the one
from Fig. 3(b) with Mb. We have to compute (Ma + Mb)
 ·
(Ma + Mb). As customary in scattering theory, the matrix
element is given by an average over initial spin, polarization,
and color states, and a sum over final states.

1. Matrix elements

With the momentum assignment p3 = p1 + q, p4 = p2 −
q − k we write down the first matrix element [Fig. 3(a)] by
using momentum space Feynman rules:

iMa = ūw(p3)(ig)γ μλa
ilu

s(p1)
−igμνδab

q2
ūr (p4)(ig)γ νλb

mj

× i(m + /p2 − /k)

(p2 − k)2 − m2
(iQEM )γ αε


α(k)ut (p2). (D1)
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The second matrix element [Fig. 3(b)] is

iMb = ūw(p3)(ig)γ μλa
ilu

s(p1)
−igμνδab

q2
ūr (p4)(iQEM )

× γ αε

α(k)

i(m + /p4 + /k)

(p4 + k)2 − m2
(ig)γ νλb

mju
t (p2). (D2)

By using the Dirac equation we transform the numerators of
the quark propagators in the following way:

(/p2 + m)γ αu(p2) = 2pα
2 u(p2),

(/p4 + m)γ νu(p2) = 2pν
4u(p2),

and we simplify the denominators,

(p2 − k)2 = −2p2 · k, (p4 + k)2 = 2p4 · k. (D3)

Note that, later on, we screen the t-channel quark propagator
in Ma by using a Debye mass m2

D,q ,

1

−2p2 · k
→ 1

−2p2 · k − m2
D,q

, (D4)

and the s-channel propagator in in Mb,

1

2p4 · k
→ 1

2p4 · k + m2
D,q

. (D5)

Only at this step we set the masses to zero, m ≡ 0. The gluon
propagator will be screened with the Debye mass m2

D,g ,

1

q2
→ 1

q2 − m2
D,g

. (D6)

2. Amplitude

Next we simplify the summed matrix elements,

iMa + iMb = ūw(p3)(ig)2γ μλa
ilλ

b
mju

s(p1)
−igμν

q2
(iQEM )ūr (p4)

[
i
(
γ νpα

2 − γ ν/kγ α
)

−2p2 · k
+ i

(
2γ αpν

4 + γ α/kγ ν
)

2p4 · k

]
ut (p2)ε


α(k)

= −ig2QEMūw(p3)γνu
s(p1)

λa
ilλ

a
mj

q2
ūr (p4)

[
γ ν/kγ α − γ νpα

2

2p2 · k
+ γ α/kγ ν + 2γ αpν

4

2p4 · k

]
ut (p2)ε


α(k). (D7)

This amplitude needs to be squared in the next step, (iMa + iMb) · (iMa + iMb)
, and then summed over final states and

averaged over initial states. We define the resulting summed and averaged squared matrix element as |M|2. The sum over final
photon polarizations reduces to [89] ∑

ε

ε

α(k)εβ(k) → −gαβ. (D8)

The color matrices are [see Ref. [89], Eq. (17.63)]

1

N2
c

∑
colors

λaλaλbλb = 2

9
. (D9)

The average over initial quark spins and sum over final spins gives a factor 1/4 and, by using∑
spin t

ut (p)ūt (p) = /p, (D10)

we can transform the matrix element into traces,

|M|2rad. = 1

4

2

9

Q2
EMg4

q4
Tr

{
/p4

[−γ ν/kγβ + 2γ νp2,β

2p2 · k
+ −γβ/kγ ν − 2γβpν

4

2p4 · k

]
/p2

[
γ β/kγ μ − 2γ μp

β
2

2p2 · k
+ γ μ/kγ β + 2γ βp

μ
4

2p4 · k

]}
.

(D11)

The gluon momentum squared is q2 = (p4 − p2 + k)2 and the
gluon propagator reads

1

q4
= 1

(2p4 · k − 2k · p2 − 2p4 · p2)2 , (D12)

and after screening,

1

q4
→ 1(

2p4 · k − 2k · p2 − 2p4 · p2 − m2
D,g

)2 . (D13)

The trace in Eq. (D11) can be done by using the Mathematica
package FEYNCALC 8.2.0 [90], with the result [where we defined
the scalar product of four-vectors (ij ) ≡ pi · pj ],

A ≡ 2(25) + m2
D,q,

B ≡ 2(45) + m2
D,q,

C ≡ 4(45) + m2
D,q,

D ≡ (35)B2 − 2(34)A
(
2(25) − B − m2

D,q

)
,
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E ≡ (23)A
(
(25)C + (45)

(−B − m2
D,q

))
+ (24)A(2(34)A + (35)(A + B)) + (25)D,

F ≡ (24)A(A + B) + (25)B2,

G ≡ (23)A((24)B + (45)A) + (34)F,

H ≡ −2(23)B + (34)
(−B − m2

D,q

) + (35)m2
D,q,

J ≡ (45)H + (24)(35)B + (25)((34)C + 2(35)(45)),

|M|2rad. = 1

4

2

9
Q2

EMg4128

× A((12)J − 2(13)(24)(45)A) + (14)E + (15)G

A2B2
(
2(24) + 2(25) − 2(45) + m2

D,g

)2 .

(D14)

We have checked that the Ward identity is fulfilled.

3. Symmetry factor

The self-energy in Fig. 4 with the given cut generates the
qq → qqγ process. We discuss its multiplicity factor here.
The photon legs of the self-energy can be crossed, which is
why the self-energy carries a factor of two. The four gluon
vertices are completely identical. Every gluon can be reversed.
This contributes a factor of four. The loop can be opened by
tic-ing the upper or lower quark line, which introduces a factor
of two. In total the symmetry factor is 16.

APPENDIX E: VERIFICATION OF BREMSSTRAHLUNG
PROCESS AND KINEMATICS

To cross-check the inelastic photon production and verify
the kinematic integration limits and the limit stemming from
the LPM constraint, we show in Fig. 18 a typical set of
sampled photon momenta according to the full bremsstrahlung

0
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 0.4

 0.6

 0.8

1

-4 -3 -2 -1 0 1 2 3 4

k T
 [G

eV
]

y

λmfp=20 fm
λmfp=10 fm

LPM constraint: λmfp=1.7 fm
kinematical constraint
BAMPS, λmfp=1.7 fm

FIG. 18. The exact photon bremsstrahlung matrix element is used
to sample photons. Their momentum is given in k⊥, q⊥, y, φ space;
here we show several realizations (red dots) as an example. The green
dashed curves represent the limits. The purple and blue dash-dotted
lines show the limit from the LPM constraint for larger mean-free
paths. The asymmetry in y is forced by using only one fixed quark as
the radiating one.
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FIG. 19. The differential cross section in the rapidity of the
radiated photon for various mean-free paths.

matrix element. Each of the red dots represents one sampled
photon for a fixed (but arbitrary) configuration of incoming
quark momenta. For illustrational purposes (to see the intrinsic
asymmetry in y) we fix the quark line where the photon is
emitted and discard the radiation from the other quark line.
However, in any real simulation of BAMPS the incoming
quarks are randomly taken to be either quark one or two—thus
the momentum spectrum will be symmetric in y. Omitting
the integration over y in Eq. (4), we compute numerically
the differential cross section dσ23/dy normalized by the total
cross section σtot in Fig. 19. Here the symmetry in y can
clearly be seen. Omitting the integration over k2

⊥ in Eq. (4),
we compute also the differential cross section with respect
to k2

⊥, as shown in Fig. 20. Both figures are done for an
arbitrary momentum setup of the incoming quarks; namely,
p1 = (2T ,0,2T ,0), p2 = (2T ,0,0,−2T ), and T = 0.4 GeV.
It is clearly visible, that the mean-free path changes the
kinematics of the outgoing photon momenta, a larger mean-
free path allows more collinear radiation.

10-1

100

101

102

103

10-5 10-4 10-3 10-2 10-1

s/
σ t

ot
dσ

/d
k T

2

kT
2/s

T=0.4 GeV
αs=0.3
s=1.44 GeV2

lower limits from LPM effect:
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FIG. 20. The differential cross section in the transverse momen-
tum of the radiated photon for various mean-free paths.
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