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Isovector dipole resonance and shear viscosity in low energy heavy-ion collisions
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The ratio of shear viscosity over entropy density in low energy heavy-ion collision has been calculated by
using the Green-Kubo method in the framework of an extended quantum molecular dynamics model. After the
system almost reaches a local equilibration for a head-on 40Ca + 100Mo collision, thermodynamic and transport
properties are extracted. Meanwhile, the isovector giant dipole resonance (IVGDR) of the collision system also
is studied. By the Gaussian fits to the IVGDR photon spectra, the peak energies of the IVGDR are extracted
at different incident energies. The result shows that the IVGDR peak energy has a positive correlation with the
ratio of shear viscosity over entropy density. This is a quantum effect and indicates a difference between nuclear
matter and classical fluid.
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I. INTRODUCTION

Shear viscosity, as an important transport coefficient of
fluids, attracted more attention in recent years [1–4]. Some
years ago, Kovtun, Son, and Starinets (KSS) found [5] that the
ratio of shear viscosity η over the entropy density s has a low
limit bound for all fluids, namely, the value,

η

s
� 1

4π
, (1)

in certain supersymmetric gauge theories. The value of 1
4π

was claimed as the universal lower bound of shear viscosity
over entropy density, i.e., the so-called KSS bound. The lower
the η/s is, the more ideal the fluid behaves. The analysis of
the ultrarelativistic heavy-ion collisions from the Relativistic
Heavy Ion Collider (RHIC) seems to indicate that the strongly
interacting quark-gluon matter behaves like a perfect liquid
with the above ratio being close to the lower limit [6].
Many experimental efforts at the RHIC and the Large Hadron
Collider (LHC) as well as theoretical investigations have been
carried out for the study of η/s of this extreme hot and dense
quark matter. Along this direction, the temperature dependence
of η/s has been studied in high energy heavy-ion collisions [7]
by comparing with the LHC and RHIC data where the partonic
fluid is almost ideal. However, in heavy-ion collisions at very
low energies, a nucleus behaves like a Fermi nucleonic fluid
rather than a partonic fluid, and the related study of η/s of the
nuclear matter is very limited. In this context, studies of the
behavior of η/s of nuclear matter at low temperatures is very
interesting through low energy heavy-ion collisions [8–10].

Some previous studies have investigated the shear viscosity
over entropy density for warm nuclear matter in various
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models, such as for an equilibrated system of nucleons and
fragments produced in multifragmentation within an extended
statistical multifragmentation model [11] for an evolving
system with the nuclear transport models [8,9,12–15] and
thermal models [16], etc. Studies also focus on the η/s
behavior when the nuclear liquid-gas phase transition [17–
20] takes place where a local minimum of η/s is found
[8,11,14–16].

Meanwhile, η/s of low excited nuclear matter also was
touched by a probe of dipole resonance in the lower excita-
tion energy region [21,22]. Fluid viscosity always plays an
important role in the collective motions of fluids. For instance,
wave propagation velocity and damping are dependent on
fluid viscosity. However, wave frequency is independent
of fluid viscosity. When a wave propagates into different
kinds of fluids, the frequency remains unchanged. Giant
resonance is a kind of collective motion built in nuclei, and the
relation between giant resonance and nuclear matter viscosity
is interesting and worth studying. On the width of giant dipole
resonance (GDR), it consists of the Landau width �LD [23], the
spreading width �↓ [24], and the escape width �↑. For medium
and heavy nuclei, the spreading width �↓ gives the major
contribution, which corresponds to two-nucleon interaction.
The dependence of the giant dipole resonance width on the
shear-viscosity over the entropy-density ratio has been dis-
cussed [22]. In terms of macroscopic description, the isovector
giant dipole resonance (IVGDR) is considered as a collective
motion in which all the protons and neutrons, respectively,
moving together with opposite phase positions [25] as shown
in Fig. 1. Two components of nuclear matter, protons and
neutrons, moving against each other, form a dipole oscillation
which is different from classical waves in a fluid. From this
classical description, the viscosity of nuclear matter should
affect the frequency of the IVGDR because strong viscosity
may slow down the frequency of a dipole oscillation between
the neutrons’ centers and the protons’ centers. The frequency
of a dipole resonance nuclear system is represented by the peak
energy of the GDR. Therefore, the viscosity may be inversely
proportional to the peak energy of the GDR. However, the
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FIG. 1. A schematic for the macroscopic description of the
isovector giant dipole resonance.

relation between the viscosity of nuclear matter and the peak
energy (or frequency) of the isovector dipole oscillation is not
clear so far, and it deserves a detailed investigation.

Heavy-ion collision is an efficient tool for investigating
nuclear matter properties from low energy to relativistic
energy. In heavy-ion fusion with low energy collisions, the
relation between the temperature of nuclear matter and the
width of the giant resonance spectra is confirmed [26,27].
In contrast, temperature dependence of the frequency of
neutron-proton oscillations indicated by the giant resonance
spectra is not so clear. Of course, some experiments and
model calculations show that the giant resonance spectra
move to low energy when the temperature of nuclear matter
gets higher [28,29]. To discuss the viscosity dependence of
the frequency of the isovector dipole oscillation, heavy-ion
collisions provide an ideal venue.

In this paper, an extension version of the quantum molecular
dynamics model is employed to calculate 40Ca + 100Mo head-
on collisions. The thermodynamic and transport properties
are extracted from the nuclear fireball located in the central
sphere with the radius of R = 3 fm. The rest of the paper is
organized as follows. Section II provides a brief introduction
of an extended quantum molecular dynamics (EQMD) model,
a formula of thermodynamic properties, the shear viscosity
by the Green-Kubo method, as well as the GDR spectrum.
The relation of shear viscosity and GDR peak energies also
is presented in this section. Finally a summary is given in
Sec. III.

II. MODEL AND RESULTS

A. An extended quantum molecular dynamics model

The QMD model [30,31] approach is a many-body theory
describing heavy-ion collisions in ten to GeV per nucleon
range. Later on an EQMD model in which the width of the
Gaussian wave packets for each nucleon is independent and
treated as a dynamical variable [32,33]. Furthermore, the Pauli
potential is employed in the EQMD model [32] and plays an
important role to describe some special structures, such as α
clustering in light nuclei [34], which is a current hot topic in
nuclear structure physics [35–37]. In the EQMD, each nucleon

in a colliding system is described as a Gaussian wave packet,

φi(ri) =
(

νi + ν∗
i

2π

)3/4

exp

[
−νi

2
(ri − Ri)

2 + i

h̄
Pi · ri

]
.

(2)

Here Ri and Pi are the central parts of the wave packet in
coordinate space and in momentum space, respectively. The
complex Gaussian width νi is

νi = 1

λi

+ iδi . (3)

Here, λi and δi are the real part and the imaginary part,
respectively, of the wave packet. The single nucleon density
[ρi(r,t)], matter density [ρ(r,t)] in coordinate space, and
the kinetic-energy density [ρk(r,t)] in momentum space,
respectively, can be calculated by the sum over all nucleons by
the following equations:

ρi(r,t) = 1

(πλi)3/2
exp

[
−

(
r2 − r2

i

)
λi

]
, (4)

ρ(r,t) =
AT +AP∑

i=1

ρi(r,t), (5)

ρk(r,t) =
AT +AP∑

i=1

Pi(t)2

2m
ρi(r,t). (6)

The total wave function of the system is a direct product of the
Gaussian wave packets of nucleons,

ψ =
∏

i

φi(ri). (7)

The Hamiltonian is written as

H = 〈�|
∑

i

− h̄2

2m
∇2

i − Tc.m. + Hint|�〉 (8)

=
∑

i

[
P2

i

2m
+ 3h̄2

(
1 + λ2

i δ
2
i

)
4mλi

]
− Tc.m. + Hint, (9)

where Tc.m. and Hint denote the spurious zero-point center-
of-mass kinetic-energy and the potential-energy terms, re-
spectively. For the effective interaction Hint, we use Skyrme,
Coulomb, symmetry, and the Pauli potential, i.e.,

Hint = HSkyrme + HCoulomb + Hsymmetry + HPauli. (10)

Specifically, the Pauli potential is written as

HPauli = cP

2

∑
i

(fi − f0)μθ (fi − f0), (11)

where fi ≡ ∑
j δ(Si,Sj )δ(Ti,Tj )|〈φi |φj 〉|2 is the overlap of a

nucleon i with nucleons having the same spin and isospin and
θ is the unit step function. The coefficient cP is the strength of
the Pauli potential.

Time evolutions of the nuclear matter density and kinetic-
energy density in a central volume (R = 3 fm) are shown in
Fig. 2. At different energies, both the nuclear density and the
kinetic-energy density display rapid growth at the beginning,
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FIG. 2. (a) The time evolution of the nuclear matter density and
(b) kinetic-energy density within a central volume (R = 3 fm) for the
head-on 40Ca + 100Mo collisions. The different color lines represent
different incident energies.

then the densities of the nuclear system have a small shock
until they approach equilibrium due to the fusion(like) reaction
mechanism.

B. Formula of thermodynamic properties

Thermodynamical properties of hot nuclear matter formed
in heavy-ion collisions, e.g., temperature, chemical potential,
and entropy density, can be extracted by different approaches.

At low temperatures, T 	 εF (εF is the Fermi energy), the
relation between the excitation energy E∗ and the temperature
T is given by

E∗ = aT 2. (12)

For the expression of the level density the Reisdorf formal-
ism [38] is used with a value of the parameter a for A/8
in our calculation. When the fusion reaction is close to the
stable state, we assume that the compound nucleus is uniformly
heating, so the temperature of the central region is the same as
the entire system.

The average temperature of the compound system in a
central sphere is shown in Fig. 3(a). With the incident energy
increasing, the nuclear temperature increases slightly.

The chemical potential μi of the nucleon in the model can
be determined by the following implicit equation:

1

2π2

(
2m

h̄2

)3/2 ∫ ∞

0

√
ek

exp
(

ek−μi

T

) + 1
dek = ρi, (13)

(a)

(b)

(c)

FIG. 3. (a) The temperature, (b) the chemical potential, and (c)
the entropy density of the compound nucleus in a central region at
different incident energies.

where ek = p2

2m
is the kinetic energy and p is the momentum

of the nucleons [14]. Therefore, using this formula, one can
calculate the chemical potential by the nucleon’s information,
e.g., momentum, density, and temperature. The chemical
potential in a central sphere when the system almost reaches a
local equilibration is shown in Fig. 3(b).

For the entropy density calculation, it is straightforward
to derive the entropy after the density, temperature, and the
chemical potential have been determined [39]

S ≡ U − A

T
= N̄

[
5

2

f5/2(z)

f3/2(z)
− ln z

]
, (14)

where N̄ is the number of nucleons. fm(z) = 1
�(m)

∫ ∞
0

xm−1

z−1ex+1dx and z = eμ/T is the fugacity. For transforming
entropy (S) and entropy density (s), we have

s = ρ

N̄
S = ρ

[
5

2

f5/2(z)

f3/2(z)
− ln z

]
. (15)

C. Ratio of shear viscosity over entropy density by the
Green-Kubo formula

As mentioned above, we need to check if the equilibrium
of the collision system has been reached before a Green-Kubo
formula can be applied. To this end, we use a stopping
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FIG. 4. The time evolution of the stopping parameter in a central
region at different incident energies.

parameter Ra [40], which is defined as

Ra =
A∑

i=1

2
√

p2
x + p2

y

π
√

p2
z

(16)

for checking the degree of the equilibrium. The time evolution
of Ra in a central volume shown in Fig. 4 illustrates that the
Ra approaches a saturated value close to 1, which means the
nuclear system in the central region is close to equilibrium in
the later stage of the collisions.

To study the extended irreversible dynamic processes, the
Kubo fluctuation theory is employed to extract transport
coefficients. Shear viscosity determines the strength of the
energy momentum fluctuation of dissipative fluxes around the
equilibrium state, which can be calculated by the Green-Kubo
relation. The Green-Kubo formula [41] for shear viscosity is
defined by

η = 1

T

∫
d3r

∫ ∞

0
dt〈πij (0,0)πij (r,t)〉, (17)

where T is the equilibrium temperature of the system, t is the
postequilibration time (0 represents the starting time when the
system tends to equilibrium), and 〈πij (0,0)πij (r,t)〉 is the shear
component of the energy momentum tensor. The expression for
the energy momentum tensor is defined by πij = Tij − 1

3δijT
i
i

where the momentum tensor is written as [10]

Tij (r,t) =
∫

d3p
pipj

p0
f (r,p,t), (18)

where pi,pj is the momentum component and p0 is the total
energy of each nucleon, f (r,p,t) is the phase-space density of
the particles. To compute an integral, we assume that nucleons
are uniformly distributed inside the volume. Meanwhile, the
spherical volume with the radius of R = 3 fm is fixed, so the
viscosity becomes

η = V

T
〈πij (0)2〉τπ , (19)

FIG. 5. The postequilibration time evolution of the stress tensor
in a central region at different incident energies.

where τπ represents the relaxation time and can be extracted
from the following fit:

〈πij (0)πij (t)〉 ∝ exp

(
− t

τπ

)
. (20)

As shown in Fig. 5, 〈πij (0)πij (t)〉 is plotted as a function
of time for the 40Ca + 100Mo collision at different incident
energies. The correlation function is damped exponentially
with time and can be fitted by Eq. (20) to extract the inverse
slope correspondence to the relaxation time.

Finally, the shear viscosity can be obtained by Eq. (19).
Figure 6 shows the ratio of shear viscosity over entropy density
as a function of temperature. In low energy 40Ca + 100Mo
collisions, as the incident energy increases, the temperature
slightly increases, however, the ratio of shear viscosity over
entropy density of the nuclear fireball shows a slight drop. Of

FIG. 6. The ratio of shear viscosity over entropy density as a
function of temperature in a central region for the head-on 40Ca +
100Mo collisions. The solid line (Auerbach and Shlomo) is taken from
Ref. [21], and the dashed line (Dinh Dang) is an extrapolation of the
phonon-damping model prediction for 208Pb in Ref. [22]. [Note the
units on the vertical axis, (1/4π )].
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course, this dependence trend is consistent with our previous
studies [8,12]. In the same figure, two lines also are plotted for
comparison. The solid line is taken from Ref. [21], which is for
an ideal Fermi gas, and the dashed line is an extrapolation of
the phonon-damping model prediction for 208Pb of Ref. [22].
Even though the systems are not the same as ours for these giant
dipole resonances in Refs. [21,22], overall, different methods
do not give too many different η/s values.

D. Giant dipole resonance

The giant dipole resonance, that is formed during fusion in
the N/Z asymmetry heavy-ion reactions in this paper, comes
from preequilibrium dipole oscillations due to the charge
asymmetry in the entrance channel, a so-called dynamical
dipole mode. It is called preequilibrium GDR formed in a
hot nucleus, which is different from the standard GDR that
generally is excited by using rapidly varying electromagnetic
fields associated with photons or generated by fast electri-
cally charged particles [42]. For an example, the oscillation
frequency of preequilibrium GDR is expected to be smaller
because of the large deformation along the fusion path [42,43].

For a collision system, the isovector giant dipole moment
in coordinator space DR(t) and in momentum space DK(t),
respectively, is written [43–46] as

DR(t) = NZ

A
[RZ(t) − RN (t)], (21)

DK(t) = NZ

Ah̄

[
PZ(t)

Z
− PN (t)

N

]
, (22)

where RZ(t) and RN (t) are the center of mass of the protons
and neutrons, respectively, in coordinate space and PZ(t) and
PN (t) are the center of mass of the protons and neutrons,
respectively, in momentum space. Figure 7(a) shows the time
evolution of the giant dipole oscillation in coordinate space
at different incident energies. It is clear that there are dipole
oscillations at different incident energies.

Derived from the overall dipole moment D(t), one can
get the γ -ray emission probability for energy E where the
calculation formulas were introduced by Baran et al. in
Ref. [43],

dP

dE
= 2

3π

e2

Eh̄c3

∣∣∣∣ ¯dVk

dt
(E)

∣∣∣∣
2

, (23)

where dP
dE

can be interpreted as the average number of

γ rays emitted per energy unit and
¯dVk

dt
(E) is the Fourier

transformation of the second derivative of DR(t) with respect
to time,

¯dVk

dt
(E) =

∫ tmax

0

d2DRk(t)

dt2
ei(Et/h̄)dt. (24)

By the above equation, the photon emission spectrum
can be obtained and shown in Fig. 7(b). The results show
that the frequency of the dipole oscillation is dependent on
the temperature of nuclear matter. Finally, the peak energies
of the IVGDR at different incident energies are extracted by
the Gaussian fitting to the spectrum. Figure 7(c) displays
that the energy of the peak (centroid) positions is inversely

FIG. 7. The time evolution of the (a) the giant dipole moment
in coordinate space, (b) the GDR spectra, and (c) their centroid
energies for the head-on 40Ca + 100Mo collisions with different
incident energies.

proportional to the temperature. This tendency is consistent
with the results of previous experiments [29].

E. Relationship of the GDR and η/s

The relation between the ratio of shear viscosity over
entropy density and peak energy is shown in Fig. 8. As the
temperature gets higher, both the frequency of the dipole
oscillation and the shear viscosity over entropy density be-
come lower. This is very interesting since the tendency is
against the prediction made from the classical description
as mentioned earlier in this paper. This contradiction also
indicates that the dependence between the viscosity of the
nuclear matter and the frequency of the dipole oscillation is
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FIG. 8. The peak energy of the GDR as a function of the ratio
of shear viscosity over entropy density for the head-on 40Ca + 100Mo
collision. [Note the units on the horizontal axis, (1/4π ).]

a quantum effect, which is an important difference between
nuclear matter and classical fluid.

Assuming the above dependence between the η/s and
the frequency of the dipole oscillation can be extrapolated
to extreme conditions of nuclear matter, one can get some
interesting extrapolations. For instance, for the extremely high
temperature, where quark-gluon plasma could be formed, the
frequency of the dipole oscillation (assuming it still exists) will
be extremely low, and the matter behaves like a nearly perfect

fluid with extremely low viscosity. In other words, there is no
way to get dipole excitation for a nearly perfect fluid.

III. CONCLUSION

In this article, we use an EQMD model to simulate some
thermodynamic quantities for a fusion system of 40Ca + 100Mo
at beam energies from 5 to 15 MeV/nucleon. The ratio of
shear viscosity over entropy density is obtained by applying
the Green-Kubo formula after the fusion system almost is
equilibrated, and its value is about (2–5)

4π
in this energy range.

Meanwhile, the IVGDR spectra are obtained for the system,
and the peak energies are extracted at each incident energy (or
temperature of the fusion system). From the Gaussian fits to the
IVGDR spectra, the peak energy shows a slight decrease with
the increasing of temperature. By temperature dependencies of
both η/s and peak energies of the IVGDR, the relation of the
peak energies of the IVGDR versus the ratio of shear viscosity
over entropy density of the system is established, and a positive
correlation was found. This behavior seems against the guess
from the classical description of fluids. In this context, the
η/s dependence of the frequency (peak energy) of the dipole
oscillation is a kind of quantum effect.
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