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New and efficient method for solving the eigenvalue problem for the two-center shell model
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We propose a method to solve the eigenvalue problem with a two-center single-particle potential. This method
combines the usual matrix diagonalization with the method of separable representation of a two-center potential;
that is, an expansion of the two-center potential with a finite basis set. To this end, we expand the potential on a
harmonic-oscillator basis, while single-particle wave functions on a combined basis with a harmonic oscillator
and eigenfunctions of a one-dimensional two-center potential. To demonstrate its efficiency, we apply this method
to a system with two 16O nuclei, in which the potential is given as a sum of two Woods–Saxon potentials.
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I. INTRODUCTION

A single-particle motion in a two-center potential [1–3]
is an important ingredient in understanding the dynamics
of heavy-ion fusion reactions and nuclear fission [4–8]. In
particular, a Landau–Zener transition at level crossing points
plays an important role in dissipative phenomena in the nuclear
dynamics [4,5]. Single-particle levels in a two-center potential
also provide a basis to calculate the shell correction energy in
a potential-energy surface for fission [9] as well as for fusion
to synthesize superheavy elements [10].

In the past, the two-center shell model has been solved
with various methods. These are mainly categorized into two
approaches. The first approach is to expand single-particle
wave functions on some basis and then to obtain eigenfunctions
by diagonalizing the Hamiltonian matrix. For this purpose,
the two-center harmonic-oscillator basis [11], a deformed
harmonic-oscillator basis with single-center [6,12,13], and a
nonorthogonal two-center basis [14–17] have been used. The
second approach, on the other hand, is to expand each potential
in a two-center potential on some basis and then to shift it
with a quantum-mechanical shift operator [18,19]. To obtain
eigenfunctions for the resultant potential, the single-particle
Schrödinger equation is transformed to a linear algebraic
equation based on the Lippmann–Schwinger equation, and
then the eigenvalues are sought by checking the solvability
condition of the equation as a function of a single-particle
energy [18–22].

Each approach has both advantages and disadvantages.
For the matrix diagonalization method, the method itself is
conceptually simple and one can apply it easily even when
two single-particle energies are nearly degenerate in energy at
a level-crossing point. A disadvantage of this method, however,
is that it is not easy to obtain an efficient basis to represent
single-particle wave functions. The two-center oscillator basis
is efficient, but this basis involves confluent hypergeometric
functions and thus it may not be easy to construct the basis. The
deformed oscillator basis is straightforward to use, but a large
number of basis states is required at large separation distances

of two potential wells. This problem can be avoided by using
the nonorthogonal two-center basis, but calculations with such
basis may suffer from a numerical instability at short distances
due to the over-completeness of the basis [23]. Moreover, with
these basis functions, it is not straightforward to compute
matrix elements of a spin-orbit potential in single-particle
potentials when they are shifted from the origin.

In contrast, a spin-orbit potential is easily evaluated with the
second approach, at least when the potential is spherical, since
with this approach one first calculates the matrix elements of
a potential centered at the origin. Also, the linear algebraic
equations may be solved easily due to its simple structure
originated from the separable representation of a two-center
potential. A disadvantage of this approach, however, is that
a care must be taken when two single-particle energies are
close to each other in seeking the solvability condition of the
equation. One also has to use different treatments for bound
states and scattering states because of the different boundary
conditions of the wave functions [19]. Another point is that the
matrix elements of a Green’s function have to be constructed
at each energy, which may be time consuming if many basis
states are included in a calculation, even though one may be
able to resort to a recurrence formula [19,20].

In this paper, we propose a method for the two-center shell
model, which combines good aspects of the previous two
approaches. In this new method, we directly diagonalize a
single-particle Hamiltonian, in which a two-center potential
is expanded on a harmonic-oscillator basis as in the second
method. In this way, a spin-orbit potential can be evaluated in a
straightforward manner. Also, by diagonalizing a Hamiltonian
matrix, one can easily obtain eigenfunctions even at a level-
crossing point, as in the first method. A similar method has
been employed in Ref. [24], but for a single-center potential.
In this paper, for simplicity, we consider two spherical single-
particle potentials shifted at two different positions, so that the
resultant two-center potential has an axially symmetric shape.
To expand single-particle wave functions, we then employ
a harmonic-oscillator basis for the direction perpendicular
to the symmetric axis while we use eigenfunctions of a
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FIG. 1. A schematic view of a two-center potential given by
Eq. (1).

one-dimensional single-particle two-center potential well as
a basis for the direction along the symmetric axis. Such basis
is efficient both at large and small separation distances, and
yet it is easy to handle in evaluating several matrix elements.

The paper is organized as follows: In Sec. II, we formulate
our new method for the two-center shell model. We apply the
method in Sec. III to a system with two 16O nuclei. To this
end, we use a two-center single-particle potential with two
shifted spherical Woods–Saxon potentials. We shall compare
the results with calculations with a harmonic-oscillator basis
and discuss the efficiency of our method. We finally summarize
the paper in Sec. IV.

II. APPROACH TO TWO-CENTER SHELL MODEL

A. General formalism

We consider a single-particle motion of a particle with mass
m in a potential which consists of two potential wells located
at z1 and z2 on the z axis (see Fig. 1):

V (r) = V1(r − z1ez) + V2(r − z2ez), (1)

where ez is the unit vector in the z direction. We first notice
that the shifted potentials can be expressed as [18,19],

Vs(r − zsez) = e−ip̂zzs/h̄Vs(r)eip̂zzs/h̄ (s = 1,2), (2)

where p̂z is the usual momentum operator for the z direction.
The idea of the separable expansion method [18–20] is to
expand the potentials Vs on some basis as

Vs(r) =
∑
α,α′

|�α〉〈�α|Vs |�α′ 〉〈�α′ | (3)

≡
∑
α,α′

|�α〉V (s)
αα′ 〈�α′ |, (4)

where {|�α〉} is a set of the basis functions (one could use
different basis sets between V1 and V2, but here we use the same
basis in order to simplify the notation). The single-particle
potential (1) then reads

V =
∑
s=1,2

∑
α,α′

e−ip̂zzs/h̄|�α〉V (s)
αα′ 〈�α′ |eip̂zzs/h̄. (5)

In Refs. [18–20], the Schrödinger equation with the
potential given by Eq. (5); that is,(

p2

2m
+ V (r) − E

)
�(r) = 0, (6)

where � is a single-particle wave function, is first transformed
to the Lippmann–Schwinger equation. For a bound state, it
reads

|�〉 = 1

E − p2

2m

V |�〉 = G0(E)V |�〉, (7)

where

G0(E) = 1

E − p2

2m

, (8)

is the Green’s function. From this equation, one obtains

∑
s ′

∑
β

[
δs,s ′δα,β −

∑
α′

〈�α|G0(E)eip̂z(zs−zs′ )|�α′ 〉V (s ′)
α′β

]
xβs ′

= 0, (9)

with xαs ≡ 〈�α|eip̂zzs/h̄|�〉. The eigenvalues E can be found
by requiring that the determinant of the matrix in Eq. (9)
vanishes at E [18–20].

This method has been employed in several applications in
the past. For instance, the author of Ref. [22] used this method
to discuss the two-center problem with arbitrarily oriented
deformed potentials. It was also applied in Ref. [19] to a
problem of nucleon emission in heavy-ion collisions. However,
as we have mentioned in the previous section, this method may
have a difficulty when two eigenenergies are close to each
other.

We therefore attempt to solve directly the Schrödinger
equation (6) with the separable representation of the single-
particle potential (5). To this end, we expand the single-particle
wave function � on a basis as

|�〉 =
∑

k

Ck|�̃k〉, (10)

where the basis set {|�̃k〉} is in general different from the basis
set {|�α〉} for the potential. Using Eq. (5), one then obtains∑

k,k′
Hkk′Ck′ = ECk, (11)

with Hkk′ = Tkk′ + Vkk′ , where Tkk′ and Vkk′ are given by

Tkk′ = 〈�̃k| p2

2m
|�̃k′ 〉, (12)

and

Vkk′ =
∑
s=1,2

∑
α,α′

〈�̃k|e−ip̂zzs/h̄|�α〉V (s)
αα′ 〈�α′ |eip̂zzs/h̄|�̃k′ 〉,

(13)

respectively. The eigenvalues and the eigenfunctions are
obtained by numerically diagonalizing the Hamiltonian matrix
{Hkk′ }. Notice that they can be obtained at once in this method,
both for bound and continuum states, once the Hamiltonian
matrix is constructed, whereas the matrix elements need to be
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constructed at each E in the previous method. Note also that
this method can easily be applied even in a situation when two
eigenvalues are close to each other. In general, one obtains
both negative- and positive-energy states by the diagonalizing
procedure. The positive wave functions so obtained well
represent the inner part of scattering wave function at the same
energy, even though the outer part reflects the properties of the
basis functions and thus may not be well described. See, e.g.,
Ref. [25].

B. Harmonic-oscillator basis

In this paper, we consider a spherical central potential
together with a spin-orbit potential for each of the potential
wells Vs . To be more specific, we consider a potential in a
form of

Vs(r) = V
(s)

0 (r) + V
(s)

ls (r)l · s, (14)

where l = r × p/h̄ and s are the orbital and the spin angular
momenta, respectively, and V

(s)
0 (r) and V

(s)
ls (r) are assumed

to depend only on r = |r|. For this problem, we particularly
employ a harmonic-oscillator basis in the general formalism
presented in the previous section. In the cylindrical coordinate,
this basis is given by [26]

�α(r) = �nznρ�ms
(r) = φnz

(z)ψ (�)
nρ

(ρ)
ei�φ

√
2π

χms
, (15)

where ρ = (x2 + y2)1/2 with x = ρ cos φ and y = ρ sin φ.
Here, χms

is the spin wave function, ms and � being the
z component of the spin and the orbital angular momenta,
respectively. The functions φnz

(z) and ψ (�)
nρ

(ρ) in Eq. (15) are
given by

φnz
(z) =

√
1√

π2nznz!
b

−1/2
0 e

− z2

2b2
0 Hnz

(z/b0), (16)

ψ (�)
nρ

(ρ) =
√

nρ!

(nρ + �)!

√
2

b0

(
ρ

b0

)�

e
− ρ2

2b2
0 L(�)

nρ

(
ρ2/b2

0

)
,

(17)

respectively, where Hnz
and L(�)

nρ
are the Hermite polyno-

mials and the associated Laguerre polynomials, respectively.
b0 = √

h̄/(mω0) is the oscillator length, with which the basis
function satisfies the equation

[
p2

2m
+ 1

2
mω2

0(ρ2 + z2) − εnznρ�

]
�nznρ�ms

(r) = 0, (18)

with εnznρ� = (nz + 2nρ + � + 3/2)h̄ω0. Notice that we em-
ploy the same oscillator length for the z and ρ directions, since
the potentials (14), are both spherical. The matrix elements of
the potentials with this basis are given in the Appendix.

For the basis for the wave functions, �̃k , we use the same
harmonic-oscillator basis as in Eq. (15) for the ρ direction
(with the same oscillator length b0) while we use a different
function φ̃ñz

(z), which is to be specified below, for the z

direction. That is, the basis for the wave functions reads

�̃k(r) = �̃ñzñρ �̃m̃s
(r) = φ̃ñz

(z)ψ (�̃)
ñρ

(ρ)
ei�̃φ

√
2π

χm̃s
. (19)

The overlap integrals in the matrix elements for the single-
particle potentials, Eq. (13), are then given by

〈�̃k|e−ip̂zzs/h̄|�α〉= δnρ,ñρ
δ�,�̃δms,m̃s

∫ ∞

−∞
dzφ̃ñz

(z)φnz
(z−zs),

(20)

where we have assumed that the basis function φ̃n(z) is
a real function of z. If one takes the harmonic-oscillator
basis (16) for φ̃n(z) (but with an oscillator length different
from b0), these overlap integrals can be computed analytically
[27–30]. Instead, we here use the eigenfunctions for the
one-dimensional central potential,

Vz(z) = V
(1)

0 (|z − z1|) + V
(2)

0 (|z − z2|), (21)

which satisfy the one-dimensional Schrödinger equation of(
− h̄2

2m

d2

dz2
+ Vz(z) − εz

)
φ̃ñz

(z) = 0. (22)

Here, we use only the central part of the three-dimensional
potential, Eq. (14). We solve this equation numerically with
the Numerov method [31] in order to obtain the basis functions
φ̃ñz

(z). The continuum states may be discretized by imposing
the box boundary condition at z = ±zbox.

III. APPLICATION TO 16O + 16O SYSTEM

We now apply the method for the two-center shell model
to an actual problem. For this purpose, we consider neutron
single-particle states in the 16O + 16O system [8,12,18]. The
two potential wells, Eq. (14), are then identical to each other;
that is, V1(r) = V2(r). For these potential wells, we employ
the Woods–Saxon form; that is,

V1(r) = V2(r) = V0

(
1 − κ(l · s)

1

r

d

dr

)

×
[

1 + exp

(
r − R

a

)]−1

. (23)

We use the same values for the parameters as those
in Ref. [19], that is, V0 = −50.2 MeV, R = 1.24 × 161/3

fm, κ = 0.524 fm2, and a = 0.63 fm, together with m =
939.6 MeV/c2.

We take into account the volume conservation condition
in a similar way as in Refs. [17,21]. That is, the parameters
V0 and R in the Woods–Saxon potential (23) are adjusted at
each separation distance z = |z1 − z2| so that the two-center
potential given by Eq. (1) is smoothly connected to a one-center
potential for the 32S nucleus as the separation distance is
decreased to zero. For this purpose, we assume the same
Woods–Saxon potential for 32S as in Eq. (23) with the same
value of κ and a, while the radius parameter is modified to
R = 1.24 × 321/3 fm. For this potential, the depth parameter
V0 is slightly adjusted to be V0 = −51.823 MeV so that
the volume conservation condition is satisfied (see below).
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To determine the value of the parameters at intermediate
distances, we interpolate the parameters V0 and 1/R between
those at z = 0 and z = ∞ [17,21]; that is,

V0 = (1 − x)V0(32S) + xV0(16O), (24)

1

R
= (1 − x)

1

R(32S)
+ x

1

R(16O)
, (25)

where V0(32S) and R(32S) are the depth and the radius
parameters for the 32S nucleus, respectively, while V0(16O)
and R(16O) are those for the 16O nucleus. The value of x is
determined by imposing the volume conservation condition
given by∫

d rθ [W0 − Ṽ0(r; z1,z2)]Ṽ0(r; z1,z2) = const., (26)

with

Ṽ0(r; z1,z2) ≡ V
(1)

0 (|r − z1ez|) + V
(2)

0 (|r − z2ez|), (27)

where we take only the central part of the potential [21].
In Eq. (26), θ is a step function and W0 is a constant, for
which we take −12 MeV so that the value of W0 is around
the Fermi energy for the 32S nucleus. Notice that, in contrast
to Refs. [17,21], we take into account in Eq. (26) the effect of
finite surface diffuseness by evaluating the volume integral of
the potential. We find that this is important in order to keep the
depth parameter in a Woods–Saxon potential similarly to each
other between 16O and 32S. Notice also that we interpolate the
inverse of the radius parameter, 1/R, rather than the radius
parameter itself. We find that this scheme is more convenient
for our purpose because, at large distances z, the interpolation
with R with the volume conservation of Eq. (26) tends to lead
to a wider and shallower potential than the potential given by
Eq. (23), which however has the same volume integral as each
other. This problem seems to disappear if the interpolation is
carried out with the parameter 1/R rather than R.

The top panel of Fig. 2 shows the neutron single-particle
energies so obtained as a function of the separation distance
z between the two potential wells, which are placed at
z1 = −z/2 and z2 = z/2, respectively. The z dependence of
the depth and the radius parameters in the Woods–Saxon
potentials are also shown in the middle and the bottom
panels, respectively. Since the two-center potential is axially
symmetric around the z axis, and also it is symmetric with
respect to the parity transformation, the z component of the
total angular momentum, jz = � + ms , as well as the parity π ,
are good quantum numbers to characterize the single-particle
states. In the figure, the positive- and negative-parity states
are indicated by the solid and the dashed lines, respectively.
To obtain these energies, we expand each potential on the
harmonic-oscillator potential within 12 major shells, for which
the frequency of the harmonic oscillator is taken to be
h̄ω0 = 41 × 16−1/3 MeV. We have confirmed that the results
do not change significantly even when a larger number of
basis states are taken into account. For the expansion of the
single-particle wave functions, we include the eigenfunctions
given by Eq. (22) up to εz = 20 MeV, where the continuum
states are discretized with the box boundary condition, with
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FIG. 2. (a) Neutron single-particle energies for the 16O + 16O
system as a function of the separation distance between the two
16O nuclei. The solid and the dashed lines indicate the ener-
gies for the positive- and the negative-parity states, respectively.
(b) The dependence of the depth parameter V0 in the Woods–Saxon
potential on the separation distance as determined from the volume
conservation condition given by Eq. (26). (c) The same as the panel
(b), but for the radius parameter, R.

the box size of zbox = z/2 + 10 fm. As one can see, well-
known features of single-particle energies in a symmetric
two-center potential [12,18,19] are well reproduced also in
this calculation. That is, at large separation distances, positive-
and negative-parity states are degenerate in energy, because
they correspond to the symmetric and the antisymmetric
combinations of the wave function for the same state in
the right and the left potential wells, respectively. As the
separation distance decreases, these states are bifurcated, and
the positive-parity (negative-parity) combination is converged
to one of the positive-parity (negative-parity) single-particle
states in the unified system in the limit of zero separation
distance. At the intermediate separation distances, one can see
a few avoided level crossings in a pair of single-particle states
with the same parity and jz.

The convergence feature of the calculation is shown by the
solid line with filled circles in Figs. 3 and 4. These are the
single-particle energies for the second and the fourth positive-
parity states with jπ

z = 1/2+ [see Fig. 2(a)], respectively,
at z = 3 fm (the upper panel) and at z = 10 fm (the lower
panel) as a function of the number of the basis states in
Eq. (19) for the z direction. For comparison, we also show
the results with a one-dimensional harmonic-oscillator basis
with a single center (the dashed line) and a double center (the
solid line with filled triangles). The former is obtained with the
oscillator length of bz = max(z,b0), where max(a,b) = a for
a � b and max(a,b) = b for a < b, while the latter uses the
same oscillator length as the one used to expand the potential.
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FIG. 3. The single-particle energy for the second positive-parity
state with jπ

z = 1/2+ as a function of the number of basis states in
Eq. (19) for the z direction. The upper and the lower panes show
the result at the separation distance of z = 3 fm and z = 10 fm,
respectively. The solid lines with filled circles indicate the results
with the eigensolutions for the one-dimensional two-center potentials
given by Eq. (22), while the dashed lines and the solid lines with filled
triangles show the results with one-center and two-center harmonic-
oscillator bases, respectively.

Notice that the latter basis can be constructed analytically
with confluent hypergeometric functions [11]. As expected,
the convergence is fast for this calculation, while a similar
good convergence is achieved also with a two-center harmonic-
oscillator basis. That is, the energy is almost converged by
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FIG. 4. Same as Fig. 3, but for the fourth positive-parity state
with jπ

z = 1/2+.

including only a few eigenfunctions in the z direction, both
at z = 3 fm and z = 10 fm. In contrast, the convergence is
considerably slow with the single-center harmonic-oscillator
basis, especially at large separation distances. Evidently, the
method proposed in this paper provides a powerful way to
solve the two-center shell model with arbitrary finite-depth
potential wells.

IV. SUMMARY

We propose a method to solve the eigenvalue problem for a
single-particle motion in a two-center potential. This method
combines the separable representation for the single-particle
potential with the usual matrix diagonalization. To this end,
we have expanded the potential on a harmonic-oscillator basis
while the single-particle wave functions on the combined
basis of a harmonic oscillator and eigenfunctions of a one-
dimensional two-center potential. In this way, the method
can be applied easily and efficiently even to a situation with
two close single-particle energies. Also, with this method
both bound and resonance states can be obtained in a single
framework.

In this paper, we consider a two-center potential which
consists of two shifted spherical Woods–Saxon potentials.
It would be an interesting future problem to extend the
present approach to a two-center potential with deformed
potentials [17,22]. Such an extension would be useful in order
to understand the reaction dynamics for hot fusion reactions
to synthesize superheavy elements, in which 48Ca beams are
used together with a deformed actinide target nucleus [32,33].
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APPENDIX: MATRIX ELEMENTS OF HAMILTONIAN
WITH THE HARMONIC-OSCILLATOR BASIS

In this Appendix, we present matrix elements of the
Hamiltonian with a spherical potential (14) with the harmonic-
oscillator basis (15) in cylindrical coordinates. To this end, we
closely follow Sec. IV-C in Ref. [26].

1. Central potential

We first consider the central part of the potential, V
(s)

0 (r).
Its matrix elements read

〈�α|V (s)
0 |�α′ 〉

= δ�,�′δms,m′
s

∫ ∞

−∞
dz

∫ ∞

0
ρdρV

(s)
0 (r)φnz

(z)φn′
z
(z)

×ψ (�)
nρ

(ρ)ψ (�′)
n′

ρ
(ρ), (A1)

with r = (ρ2 + z2)1/2.

2. Spin-orbit potential

We next consider the spin-orbit potential V
(s)

ls (r)l · s. We
first note that the basis function |�α〉 is an eigenfunction of
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lz and sz as

lz�α = 1

i

∂

∂φ
�α = ��α, (A2)

sz�α = ms�α. (A3)

We also notice that

l · s = 1
2 (l+s− + l−s+) + lzsz, (A4)

with s± = sx ± isy and

l± = lx ± ily (A5)

= ∓e±iφ

(
ρ

∂

∂z
− z

∂

∂ρ
± z

ρ

1

i

∂

∂φ

)
. (A6)

Since s+χ↓ = χ↑, s−χ↑ = χ↓, and∫ 2π

0

e−i�φ

√
2π

(∓e±iφ)
ei�′φ
√

2π
= ∓δ�,�′±1, (A7)

one obtains

〈
�nznρ�ms

∣∣V (s)
ls (r)l · s

∣∣�n′
zn

′
ρ�′ms

〉 = δ�,�′ × �ms

∫ ∞

−∞
dz

∫ ∞

0
ρdρV

(s)
ls (r)φnz

(z)φn′
z
(z)ψ (�)

nρ
(ρ)ψ (�′)

n′
ρ

(ρ), (A8)

〈
�nznρ�↓

∣∣V (s)
ls (r)l · s

∣∣�n′
zn

′
ρ�′↑

〉 = −1

2
δ�,�′+1

∫ ∞

−∞
dz

∫ ∞

0
ρdρV

(s)
ls (r)φnz

(z)ψ (�)
nρ

(ρ)

(
ρ

∂

∂z
− z

∂

∂ρ
+ z

ρ
�′

)
φn′

z
(z)ψ (�′)

n′
ρ

(ρ),

(A9)〈
�nznρ�↑

∣∣V (s)
ls (r)l · s

∣∣�n′
zn

′
ρ�′↓

〉 = 1

2
δ�,�′−1

∫ ∞

−∞
dz

∫ ∞

0
ρdρV

(s)
ls (r)φnz

(z)ψ (�)
nρ

(ρ)

(
ρ

∂

∂z
− z

∂

∂ρ
− z

ρ
�′

)
φn′

z
(z)ψ (�′)

n′
ρ

(ρ).

(A10)

3. Kinetic energy

The matrix elements for the kinetic energy for the z direction is computed as

〈�α| p2
z

2m
|�α′ 〉 = − h̄2

2m
δnρ,n′

ρ
δ�,�′δms,m′

s

∫ ∞

−∞
dzφnz

(z)
d2φn′

z
(z)

dz2

= h̄2

2m
δnρ,n′

ρ
δ�,�′δms,m′

s

∫ ∞

−∞
dz

dφnz
(z)

dz

dφn′
z
(z)

dz
. (A11)

Here, we keep the matrix elements in a general form, so that the formula can be applied also to Eq. (12) with Eq. (19).
To evaluate the matrix elements for the kinetic energy for the ρ direction, we use the Schrödinger equation of(

p2
x + p2

y

2m
+ 1

2
mω2

0ρ
2 − εnρ�

)
�α(r) = 0, (A12)

with εnρ� = (2nρ + � + 1)h̄ω0. This leads to

〈�α|p
2
x + p2

y

2m
|�α′ 〉 = εnρ�δα,α′ − δnz,n′

z
δ�,�′δms,m′

s

∫ ∞

0
ρdρ

(
1

2
mω2

0ρ
2

)
ψ (�)

nρ
(ρ)ψ (�′)

n′
ρ

(ρ). (A13)
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