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Comparative analysis of the fusion reactions 48Ti + 58Fe and 58Ni + 54Fe
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The experimental fusion excitation functions of the reactions 48Ti + 58Fe and 58Ni + 54Fe, measured down
to the low sub-barrier energies, are described within the quantum diffusion approach and the universal fusion
function representation. For these systems, the s-wave capture probabilities are extracted from the experimental
excitation functions and are also analyzed. An enhancement of the sub-barrier fusion cross section observed in
the 48Ti + 58Fe reaction in comparison to the relatively close system 58Ni + 54Fe is explained.
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I. INTRODUCTION

Heavy-ion fusion near and below the Coulomb barrier
is attracting experimental and theoretical interest [1,2]. This
study is particularly important for the synthesis of superheavy
elements at near barrier energies [3–5] and for the astrophysical
reactions at sub-barrier energies [1,2]. The nature of the
fusion hindrance phenomenon in the reactions with various
medium-light and heavy nuclei, where at deep sub-barrier
energies the fusion cross sections drop faster than coupled-
channels calculations, is not yet completely understood [2,6].
An experimental study of the 48Ti + 58Fe reaction at sub-
barrier energies, at which no data existed previously, and
a comparison with relatively close system 58Ni + 54Fe have
been recently performed in Ref. [7]. The difference of the two
systems in nuclear structure is notable. Indeed, 48Ti + 58Fe
are soft and have the low-lying quadrupole excitation states.
Instead, 58Ni + 54Fe are closed-shell nuclei and are rather
rigid. The octupole vibrational states are high in energy and
hardly excited, in all cases. As observed, the fusion cross
sections in the 58Ni + 54Fe reaction decrease very steeply
toward the lowest energies. The coupled-channels calculations
performed with CCFULL [7] reproduce the experimental data
for the 48Ti + 58Fe reaction, but strongly overestimate the cross
sections below �200 μb for the 54Fe + 58Ni reaction. So,
the fusion hindrance effects show up already at the level of
relatively large cross sections [8]. Note that in the 48Ti + 58Fe
reaction, the two-neutron transfer channel with a positive Q2n

value (Q2n = 1.4 MeV) has been ignored.
Applying the quantum diffusion approach [9–13] (Sec. IV),

the universal fusion function representation [14–16] (Sec. II),
and capture probabilities extracted from the experimental
excitation functions (Sec. III), we try to answer the question
how the quadrupole deformation effect influences the sub-
barrier capture cross section in the reactions 48Ti + 58Fe and
58Ni + 54Fe at near and sub-barrier energies. We will show
why the influence of positive Q2n-value neutron transfer does
not play a role in the 48Ti + 58Fe reaction. For these reactions,
the S and L factors, and the barrier distributions will be also
discussed. The S-factor and L-factor representations of the
measured cross sections have been introduced in Ref. [6]

to show the fusion hindrance effect without invoking model
calculations.

II. EXPERIMENTAL REDUCED FUSION (CAPTURE)
CROSS SECTIONS

To analyze the fusion cross sections σf (Ec.m.) in the
reactions with different Coulomb barrier heights Vb and radii
Rb calculated in the case of spherical nuclei, it is useful to
compare the dimensionless quantities

σf → F (x) = 2Ec.m.σf (Ec.m.)/
(
h̄ωbR

2
b

)
versus

Ec.m. → x = (Ec.m. − Vb)/(h̄ωb)

[14–16] instead of the excitation functions. Here, ωb and μ are
the frequency of an inverted oscillator approximated the barrier
and the reduced mass of the system, respectively. In this way
the geometrical and barrier hight effects can be eliminated.
This reduction method is suggested by Wong’s formula

σf (Ec.m.) = h̄ωbR
2
b

2Ec.m.

ln[1 + exp(2π [Ec.m. − Vb]/(h̄ωb))]

for the fusion cross section [17]. This analytic expression is
derived by approximating the barrier by an inverse parabola
and neglecting the variation of the barrier radius with angular
momentum. In this case

F (x) → F0(x) = ln[1 + exp(2πx)].

It is the same function for any fusion reaction. For this reason,
it is called the universal fusion function (UFF).

In the reactions, where the capture and fusion cross
sections coincide [σf (Ec.m.) = σcap(Ec.m.)], the comparison of
experimental data with the universal fusion function [14–16]
allows us to conclude about the role of static deformations
of the colliding nuclei and the nucleon transfer between them
in the capture cross section. Indeed, the universal function
disregards these effects. To obtain the values of Vb, Rb, and
ωb, we calculate the nucleus-nucleus interaction potential. The
same potential is used within the quantum diffusion approach
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FIG. 1. The experimental reduced fusion excitation functions
2Ec.m.

h̄ωbR2
b

σcap(Ec.m.) [7,8] (symbols) and the universal fusion function

F0 = ln(1 + exp[2π (Ec.m. − Vb)/(h̄ωb)]) (solid line) vs Ec.m.−Vb

h̄ωb
for

the reactions indicated. The experimental data have uncertainty bars
because of the uncertainties of experimental σcap(Ec.m.) and Ec.m..

[9–13] (see Sec. IV). The Vb = 91.8 MeV, h̄ωb = 3.3 MeV,
Rb = 11.02 fm and Vb = 72.3 MeV, h̄ωb = 3.1 MeV, Rb =
11.08 fm are obtained for the 54Fe + 58Ni and 48Ti + 58Fe
systems, respectively. The experimental data have uncertainty
bars because of the uncertainties of experimental σcap(Ec.m.)
and Ec.m.. The experimental uncertainties are evaluated in the
following way. At given average Ec.m.[σcap(Ec.m.)], we perform
the calculations with the maximum, minimum, and average
σcap(Ec.m.)[Ec.m.] (Fig. 1).

For the 54Fe + 58Ni reaction with almost spherical nuclei
and without neutron transfer (the negative Qxn values), the
experimental cross sections are more closer to the universal
fusion function (Fig. 1). For the 48Ti + 58Fe reaction with soft
nuclei and with the two-neutron transfer (the positive Q2n

value), one can clearly see that the reduced cross sections
strongly deviate from those for the 54Fe + 58Ni reaction
and from the universal fusion function (Fig. 1). So, the

experimental reduced excitation function of the 48Ti + 58Fe
reaction shows a large enhancement with respect to the 54Fe +
58Ni reaction at sub-barrier energies. This difference of the
experimental reduced excitation functions is probably caused
by the deformation or/and the neutron transfer effects.

III. CAPTURE PROBABILITIES EXTRACTED FROM
THE EXPERIMENTAL CROSS SECTIONS

Shifting the energy by the rotational energy ER(J ) =
h̄2J (J+1)

2μR2
b

[18], one can approximate the angular momen-

tum J dependence of the transmission (capture) probability
Pcap(Ec.m.,J ), at a given Ec.m.:

Pcap(Ec.m.,J ) ≈ Pcap(Ec.m. − ER(J ),J = 0). (1)

If we use the formula for the capture cross section, convert the
sum over the partial waves J into an integral, and express J
via the variable E = Ec.m. − ER(J ), we obtain the following
simple expression:

σcap(Ec.m.) = πR2
b

Ec.m.

∫ Ec.m.

0
dEPcap(E,J = 0). (2)

Multiplying this equation by Ec.m./(πR2
b) and differentiating

over Ec.m., one obtains [18]

Pcap(Ec.m.,J = 0) = 1

πR2
b

d[Ec.m.σcap(Ec.m.)]

dEc.m.

. (3)

One can see that d[Ec.m.σcap(Ec.m.)]
dEc.m.

has a meaning of the s-wave
transmission in the entrance channel. Therefore, the s-wave
capture probability can be extracted with a satisfactory accu-
racy from the experimental capture cross sections σcap(Ec.m.)
at energies near and below the Coulomb barrier. Note that at
energies considered the dependence of the Coulomb barrier
radius on the angular momentum is very weak.

The experimental s-wave capture probabilities are extracted
with a two-point difference formula:

Pcap(Ec.m.,J = 0) ≈ 1

πR2
b

(
Ec.m. + �Ec.m.

2

)
σcap

(
Ec.m. + �Ec.m.

2

) − (
Ec.m. − �Ec.m.

2

)
σcap

(
Ec.m. − �Ec.m.

2

)
�Ec.m.

.

The Pcap(Ec.m.,J = 0) is obtained as the incremental ratio for
successive pairs of experimental energy points of the of the
excitation function. At deep sub-barrier energies the differ-
ence between the experimental points about 0.5 MeV. The
experimental uncertainties are evaluated in the same way as
for the UFF. In Figs. 2 and 3, the extracted capture probabilities
Pcap(E,J = 0) demonstrate the influence of the deformation
or/and the neutron transfer effects on the capture (fusion)
excitation function. In the 54Fe + 58Ni reaction with the closed
shell nuclei and with the negative Q2n values for neutron
transfer, the capture probability exhibits a steep falloff at low
energies. Conversely, in the 48Ti + 58Fe reaction with the soft

nuclei and with the positive Q2n value for neutron transfer, the
capture probability has a smaller slope at sub-barrier energies
(Fig. 3).

As follows from the extracted s-wave capture probabili-
ties (Figs. 2 and 3), Pcap(58Ni + 54Fe) ≈ Pcap(48Ti + 58Fe) at
energies from Ec.m. − Vb ≈ 0 MeV to Ec.m. − Vb ≈ 8 MeV
and there are discrepancies between Pcap(58Ni + 54Fe) and
Pcap(48Ti + 58Fe) at energies Ec.m. − Vb > 8 MeV. Firstly
the extracted Pcap increases with Ec.m. above the Coulomb
barrier and after it starts to decrease. One should think
about the experimental reasons for such deviations and
behavior.
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FIG. 2. The extracted (symbols) and calculated (lines) s-wave
capture probabilities versus Ec.m. for the reactions indicated. The
experimental Pcap is obtained as the incremental ratio for the
successive pairs of experimental points. The used experimental
capture (fusion) excitation functions are from Refs. [7,8]. The
experimental data have uncertainty bars because of the uncertainties
of experimental σcap(Ec.m.) and Ec.m..

IV. CALCULATIONS WITHIN THE QUANTUM
DIFFUSION APPROACH

A. Model

In the quantum diffusion approach [9–13] the collisions
of nuclei are described with the single relevant collective
variable: the relative distance between the colliding nuclei.
This approach takes into consideration the fluctuation and
dissipation effects in collisions of heavy ions which model the
coupling with various channels (for example, the noncollective
single-particle excitations, low-lying collective dynamical
modes of the target and projectile). We have to mention
that many quantum-mechanical and non-Markovian effects
accompanying the passage through the potential barrier are
taken into consideration in our formalism [9–13]. The nuclear
deformation effects are taken into account through the depen-
dence of the nucleus-nucleus potential on the deformations and

FIG. 3. The extracted (symbols connected by lines) s-wave
capture probabilities versus Ec.m. − Vb for the reactions indicated.
The experimental Pcap is obtained as the incremental ratio for the
successive pairs of experimental points. The used experimental
capture (fusion) excitation functions are from Refs. [7,8].

mutual orientations of the colliding nuclei. With this approach
many heavy-ion capture reactions at energies above and well
below the Coulomb barrier have been successfully described
[9–13].

The capture cross section is a sum of partial capture cross
sections [9,10]

σcap(Ec.m.) =
∑

J

σcap(Ec.m.,J )

= πλ2
∑

J

(2J + 1)
∫ π/2

0
dθ1 sin(θ1)

∫ π/2

0
dθ2

× sin(θ2)Pcap(Ec.m.,J,θ1,θ2), (4)

where λ2 = h̄2/(2μEc.m.) is the reduced de Broglie wave-
length, μ = m0A1A2/(A1 + A2) is the reduced mass (m0 is
the nucleon mass), and the summation is over the possible
values of angular momentum J at a given bombarding energy
Ec.m.. Knowing the potential of the interacting nuclei for each
orientation, one can obtain the partial capture probability Pcap

which is defined by the passing probability of the potential
barrier in the relative distance R coordinate at a given J . The
value of Pcap is obtained by integrating the propagator G from
the initial state (R0,P0) at time t = 0 to the final state (R,P )
at time t (P is a momentum):

Pcap = lim
t→∞

∫ rin

−∞
dR

∫ ∞

−∞
dP G(R,P,t |R0,P0,0)

= lim
t→∞

1

2
erfc

[−rin + R(t)√
�RR(t)

]
. (5)

The second line in Eq. (5) is obtained by using
the propagator G = π−1| det �−1|1/2 exp(−qT �−1q) [qT =
[qR,qP ], qR(t) = R − R(t), qP (t) = P − P (t), R(t = 0) =
R0, P (t = 0) = P0, �kk′(t) = 2qk(t)qk′(t), �kk′(t = 0) = 0,
k,k′ = R,P ] calculated calculated in Ref. [19] for the inverted
oscillator, which approximates the nucleus-nucleus interaction
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potential V (nuclear + Coulomb + centrifugal potentials) in
the variable R and has the frequency ω = ω(Ec.m.) depending
on the bombarding energy Ec.m. and internal turning point rin.
At each sub-barrier energy Ec.m., the value of ω is defined
from the condition of equality of the classical actions of the
approximated and realistic potential barriers of the same height
at given J . At bombarding energies above the Coulomb barrier
V (Rb) at the position R = Rb, ω = (|∂2V/∂R2|R=Rb

/μ)
1/2

.
As found at Ec.m. > V (Rb), the capture cross section weakly
depends on ω. This approximation is well justified for the
reactions and energy range, which are here considered [9–13].
Finally, one can find the expression for the capture probability

Pcap = 1

2
erfc

[(
πs1(γ − s1)

2h̄μ
(
ω2

0 − s2
1

)
)1/2

μω2
0R0/s1 + P0

[γ ln(γ /s1)]1/2

]
, (6)

where γ is the internal-excitation width, ω2
0 = ω2{1 −

h̄λ̃γ /[μ(s1 + γ )(s2 + γ )]} is the renormalized frequency in
the Markovian limit, the value of λ̃ is related to the strength of
linear coupling in coordinates between collective and internal
subsystems. The si are the real roots (s1 � 0 > s2 � s3) of the
following equation:

(s + γ )
(
s2 − ω2

0

) + h̄λ̃γ s/μ = 0. (7)

The details of the used formalism are presented in [9,10].
We have to mention that most of the quantum-mechanical,
dissipative effects and non-Markovian effects accompanying
the passage through the potential barrier are taken into
consideration in our formalism [9,10]. For example, the
non-Markovian effects appear in the calculations through the
internal-excitation width γ .

As shown in [9,10], the nuclear forces start to play a role
at Rint = Rb + 1.1 fm where the nucleon density of colliding
nuclei approximately reaches 10% of the saturation density.
If the value of rex corresponding to the external turning point
is larger than the interaction radius Rint, we take R0 = rex

and P0 = 0 in Eq. (6). For rex < Rint, it is naturally to start
our treatment with R0 = Rint and P0 defined by the kinetic
energy at R = R0. In this case the friction hinders the classical
motion to proceed towards smaller values of R. If P0 = 0
at R0 > Rint, the friction almost does not play a role in the
transition through the barrier. Thus, two regimes of interaction
at sub-barrier energies differ by the action of the nuclear forces
and the role of friction at R = rex.

Besides the parameters related to the nucleus-nucleus
potential, two parameters h̄γ = 15 MeV and the friction co-
efficient h̄λ = −h̄(s1 + s2) = 2 MeV are used for calculating
the capture probability in reactions with deformed actinides.
The value of λ̃ is set to obtain this value of h̄λ. The most
realistic friction coefficients in the range of h̄λ ≈ 1–2 MeV
are suggested from the study of deep inelastic and fusion
reactions [20]. These values are close to those calculated
within the mean field approach [21]. All calculated results
presented are obtained with the same set of parameters and are
rather insensitive to a reasonable variation of them [9,10]. All
parameters of the model are set as in Ref. [9]. All calculated
results are obtained with the same set of parameters and are
rather insensitive to the reasonable variation of them [9,10].
To calculate the nucleus-nucleus interaction potential V (R),

we use the procedure presented in Refs. [9–13]. For the
nuclear part of the nucleus-nucleus potential, the double-
folding formalism with the Skyrme-type density-dependent
effective nucleon-nucleon interaction is used. The parameters
of the nucleus-nucleus interaction potential V (R) are adjusted
to describe the experimental data at energies near the Coulomb
barrier [Vb = V (Rb)] corresponding to spherical nuclei.

Following the hypothesis of Ref. [22], we assume that
the sub-barrier capture in the reactions under consideration
mainly depends on the two-neutron transfer with the positive
Q2n value. Our assumption is that, before the projectile is
captured by the target-nucleus (just before the crossing of
the Coulomb barrier), which is a slow process, the 2n transfer
(Q2n > 0) occurs and leads to the population of the first excited
collective state in the recipient nucleus at Q2n � E2+ or of the
ground state in the recipient nucleus at Q2n < E2+ [23]. Here,
E2+ is the energy of the first excited 2+ state. The donor
nucleus remains in the ground state. The absolute values of
the quadrupole deformation parameters β2 in the first 2+ state
of even-even deformed nuclei are taken from Ref. [24]. For
the nuclei deformed in the ground state, the β2 in the first
excited collective state is similar to that in the ground state.
For instance, β2(56Fe) = 0.24 and β2(58Fe) = 0.26 [24]. For
the double magic and semimagic nuclei, we take β2 = 0 or
0.05 in the ground state. For example, β2(58Ni) = 0.05 [10]
and β2(50Ti) = β2(54Fe) = 0.

The motion to N/Z equilibrium starts in the system before
the capture occurs because it is energetically favorable in
the dinuclear system in the vicinity of the Coulomb barrier.
For the reactions under consideration, the average change of
mass asymmetry is related to the two-neutron transfer. In these
reactions, Q2n > Q1n and during the capture the 2n transfer
is more probable than 1n transfer. After the 2n transfer the
mass numbers, the deformation parameters of the interacting
nuclei, and, correspondingly, the height Vb and shape of the
Coulomb barrier change. Then one can expect an enhancement
or suppression of the capture. If after the neutron transfer
the deformations of interacting nuclei increase (decrease), the
capture probability increases (decreases). If after the transfer
the deformations of interacting nuclei do not change, there is
no effect of the neutron transfer on the capture. This scenario
was verified in the description of many reactions [9–13].

B. Capture probabilities and cross sections

In Figs. 2 and 4, one can see a good agreement between
the calculated and the experimental capture probabilities
and cross sections in the 48Ti + 58Fe reaction (lower part)
with the positive Q values for neutron transfer and in the
58Ni + 54Fe reaction (upper part) with negative Q values
for neutron transfer. The theoretical calculations describe
the strong deviation of the slopes of excitation functions
in the reactions 58Ni + 54Fe and 48Ti + 58Fe at sub-barrier
energies. However, the observed capture enhancement in the
48Ti + 58Fe reaction is not related to the two-neutron transfer
effect. After 2n transfer (0 < Q2n < E2+ = 1.55 MeV) in this
reaction [before capture (fusion)] 48Ti + 58Fe → 50Ti + 56Fe
the deformations of nuclei decrease because they approach the
closed shells and the height of the Coulomb barrier increases.
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FIG. 4. Calculated fusion (capture) cross sections vs Ec.m. (solid
lines) for the indicated reactions. The experimental data (symbols)
are from Refs. [7,8]. The experimental data have uncertainty bars
because of the uncertainties of experimental σcap(Ec.m.) and Ec.m..

As a result, the transfer suppresses the capture process at
sub-barrier energies. Thus, the relative enhancement of the
sub-barrier fusion cross sections in the 48Ti + 58Fe reaction
with respect to those in the 58Ni + 54Fe reaction is not related
to the transfer effect. The observed fusion enhancement arises
due to the larger deformation of 56,58Fe with respect to one of
54Fe, i.e., the observed effect is purely the deformation effect.

Note that in the reactions 58Ni + 54Fe and 48Ti + 58Fe the
calculated s-wave capture probabilities are almost equal to
unity at Ec.m. > Vb + 8 MeV (Fig. 2). It is not clear why the
extracted s-wave capture probabilities at this energy range are
considerably smaller than unity (about 2 times). The additional
experimental and theoretical studies of the normalizations
of the capture probabilities and, correspondingly, the cross
sections are necessary.

C. S factors

At energies below the Coulomb barrier, where the cross
section drops rapidly with decreasing energy, it is more

convenient to discuss the astrophysical S factor,

S(Ec.m.) = Ec.m.σfus(Ec.m.) exp[2π (η − η0)], (8)

rather than the fusion excitation function. Here, η(Ec.m.) =
Z1Z2e

2
√

μ/(2h̄2Ec.m.) is the Sommerfeld parameter
[58Ni + 54Fe(η0 = 63.55) and 48Ti + 58Fe(η0 = 54.57)],
η0 = η(Ec.m. = Vb), and Z1 and Z2 are the charge numbers
of projectile and target nuclei, respectively. The Gamow
factor exp[−2πη] accounts for some part of the strong energy
dependence of the fusion cross section. The S factor is often
employed to extrapolate the measured cross section to low
energy in the astrophysical reactions. For the medium-heavy
systems with Z1Z2[A1A2/(A1 + A2)]1/2 > 1500, the Q
value for the complete fusion is negative. This means that
the fusion cross section and, correspondingly, S factor must
vanish at deep sub-barrier energies, Ec.m. < −Q. On the
other hand, the S factor increases with decreasing energy
above and near the Coulomb barrier. Therefore, the S factor
must have a maximum. At energies below the Coulomb
barrier, the experimental S factor exhibits a clear maximum
in some reactions, which is taken as a signature of the fusion
hindrance [6].

Assuming that the capture cross section is equal to the
fusion cross section, we calculate the astrophysical S factor
presented in Fig. 5. A good agreement of the calculated
excitation function with the experimental data leads to a good
description of the S factor as well. However, one can see
slightly different behaviors of S factors for these two reactions.
In the case of the 58Ni + 54Fe reaction, the S factor has a
well-pronounced maximum. After this maximum the S factor
decreases with decreasing Ec.m. and then starts to increase.
Note, that a similar behavior has been revealed in Ref. [25] by
extracting the S factor from the experimental data for lighter
systems. In the quantum diffusion approach the existence of the
maximum-minimum in the S factor is related to the change of
the regime of interaction (the turning-off the nuclear forces and
friction) at sub-barrier energies [9]. As the nuclei 58Ni + 54Fe
are almost spherical, this change occurs in a certain narrow
interval of sub-barrier energy. In the case of the 48Ti + 58Fe
reaction, the maximum of the S factor is not clearly observed.
The large deformation of heavy nucleus leads to different
turning points depending on the mutual orientation of colliding
nuclei (or to a large energy interval where the change of the
regime of interaction occurs). As a result, the maximum of
the S factor could be slightly expressed or even vanished.
However, more experimental data at low energies are needed
to confirm our predictions.

D. L factors

An alternative indirect representation of the measured cross
section uses the so-called L factor, the logarithmic derivative
of the energy-weighted cross section, namely,

L(Ec.m.) = d ln[Ec.m.σcap(Ec.m.)]

dEc.m.

.

It is a convenient way of characterizing the steep falloff of
the measured cross sections [2,6]. One can obtain the relation
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FIG. 5. The calculated (lines) and experimental (symbols [7,8])
astrophysical S factor vs Ec.m. for the indicated reactions. The
experimental data have uncertainty bars because of the uncertainties
of experimental σfus(Ec.m.) and Ec.m..

between S factor and L factor:
dS(Ec.m.)

dEc.m.

= S(Ec.m.)[L(Ec.m.) − πη/Ec.m.].

When the S factor reaches a maximum ( dS
dEc.m.

= 0), the L
factor will have reached a value L = LCS = πη/Ec.m. that
exceeds the expectations based on the standard Woods-Saxon–
based coupled-channels calculations [2,6]. Note that the s-
wave capture probability and L factor are related with each

FIG. 6. The calculated (lines) and experimental (symbols [7,8])
logarithmic derivatives of the excitation functions for the indicated
reactions. The experimental L factor is obtained as the incremental
ratio for successive pairs of experimental energy points of the
of the excitation function. In the calculations, �Ec.m. = 0.4 MeV
(dashed lines) and �Ec.m. = 0.8 MeV (solid lines) are used. The
experimental data have uncertainty bars because of the uncertainties
of experimental σcap(Ec.m.) and Ec.m..

other:

L(Ec.m.) = πR2
b

Ec.m.σcap(Ec.m.)
Pcap(Ec.m.,J = 0).

In Fig. 6, we compare the calculated and the experimental

L(Ec.m.) ≈ ln
[(

Ec.m. + �Ec.m.

2

)
σcap

(
Ec.m. + �Ec.m.

2

)] − ln
[(

Ec.m. − �Ec.m.

2

)
σcap

(
Ec.m. − �Ec.m.

2

)]
�Ec.m.

factors. The logarithmic slopes of the excitation functions have
a steep rise in the barrier region with decreasing energy. Then,
the L(Ec.m.) has a very narrow maximum. With the smaller
energy increment this maximum becomes more pronounced.
The existence of the maximum of experimental L(Ec.m.)
is clearly seen for the 48Ti + 58Fe reaction, while for the
58Ni + 54Fe reaction the maximum of L(Ec.m.) is not observed.

As seen, the experimental points are very close to the region
of the maximum. We hope that the further experimental data
of fusion cross section at lower energies will confirm our
prediction of the maximum of L(Ec.m.) for the 58Ni + 54Fe
reaction at an energy about 6 MeV below the Coulomb barrier.
For the systems under consideration, we did not find the
fusion hindrance effects and the existence of the maximum
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in the L factor is related to the change of the regime of interaction at the sub-barrier energies.

E. Barrier distributions

The barrier distribution is defined as [26]

BD(Ec.m.) = d2[Ec.m.σcap(Ec.m.)]/dE2
c.m. = σcap(Ec.m.)Ec.m.

(
dL(Ec.m.)

dEc.m.

+ [L(Ec.m.)]
2

)
. (9)

In Fig. 7, the distributions BD are extracted from the experimental (with �Ec.m. ≈ 1 MeV [7,8]) and theoretical excitation
functions employing a three-point difference approximation [27]

BD(Ec.m.) ≈ 2Ec.m.σcap(Ec.m.) − Ec.m.σcap(Ec.m. + �Ec.m.) − Ec.m.σcap(Ec.m. − �Ec.m.)

(�Ec.m.)2
. (10)

It is clear that with a small energy step �Ec.m. one can
approximate the analytical derivative better. However, a large
�Ec.m. reduces the experimental uncertainty of BD [27]. In
Fig. 7, the calculated BD have one well-pronounced maximum

FIG. 7. The calculated (lines) and experimental (symbols [7,8])
fusion barrier distributions BD [Eq. (10)] for the indicated reactions.
For the calculated BD, �Ec.m. = 0.4 MeV (dashed lines) and
�Ec.m. = 1.0 MeV (solid lines) are used. For the extraction of
the experimental BD, the energy step is �Ec.m. ≈ 1 MeV. The
experimental data have uncertainty bars because of the uncertainties
of experimental σcap(Ec.m.) and Ec.m..

at Ec.m. = Vb as in the experiments [7,8] and perfectly fits the
experimental data. It is seen that in the theoretical calculations
Vb = 72.3 and 91.8 MeV in the reactions 48Ti + 58Fe and
58Ni + 54Fe, respectively. The increase of the deformations of
colliding nuclei causes a larger width of barrier distribution.
There is no structure at low energies below the main peak
of the barrier distribution. At deep sub-barrier energies, the
L factor is a more sensitive tool for the excitation function
analyses than the BD. The term [L(Ec.m.)]2 and the factor
σcap(Ec.m.)Ec.m. in Eq. (9) hide any irregularity of the slope in
the barrier distribution.

Note that the extracted values of BD are very sensitive
to the error-bars in σcap [28]. These error-bars and their
dependence on energy perhaps create random deviations of
experimental points from the calculated curves at Ec.m. > Vb

in Fig. 7. In Ref. [28] it has been shown that the errors are
decreased through the use of a larger energy spacing in the
high energy range (an optimal energy grid) and the fluctuations
of the experimental barrier distribution at energies above the
Coulomb barrier are lost.

V. SUMMARY

The quantum diffusion approach, the universal fusion
function representation, the extracted capture probabilities
from the experimental excitation functions are applied to study
the fusion excitation functions in the reactions 48Ti + 58Fe and
58Ni + 54Fe. The experimentally observed sub-barrier fusion
enhancement in the 48Ti + 58Fe reaction with respect to the
58Ni + 54Fe reaction is explained by the deformation effect.

With the quantum diffusion approach both reactions are
described well. The larger deformation of the 48Ti + 58Fe
system washes out the maximum of the S factor, while for
the 58Ni + 54Fe system with the smaller deformation the
maximum is well pronounced in the experimental data. A
good agreement of the calculated and experimental L factors
is obtained as well. The existence of a maximum in the L
factor is predicted in the 58Ni + 54Fe reaction at energy about
6 MeV below the Coulomb barrier. The existence of the
extremal points in the S and L factors is related to the change
of the regime of the interaction at sub-barrier energies. The
oscillations of BD at energies above the barrier do not exist in
our calculations.
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