
PHYSICAL REVIEW C 95, 054615 (2017)

Investigation of giant dipole resonances in heavy deformed nuclei with an extended
quantum molecular dynamics model

S. S. Wang (���),1,2 Y. G. Ma (���),1,3,* X. G. Cao (���),1 W. B. He (���),4

H. Y. Kong (���),1,2 and C. W. Ma (���)5

1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2University of Chinese Academy of Sciences, Beijing 100049, China

3Shanghai Tech University, Shanghai 200031, China
4Institute of Modern Physics, Fudan University, Shanghai 200433, China

5Institute of Particle and Nuclear Physics, Henan Normal University, Xinxiang 453007, China
(Received 19 January 2017; revised manuscript received 7 March 2017; published 18 May 2017)

The deformation evolution of giant dipole resonance (GDR), in the chains of Sm and Nd isotopes, are
investigated in the framework of an extended quantum molecular dynamics (EQMD) model. The mass number
dependence of resonance peak position (Em) in the major and minor axis directions of deformed nuclei as well
as the difference �Em between them are described in detail. The correlation between the splitting (�Em/Ēm) of
the GDR spectra and the deformation (β2) is further studied. The results confirm that �Em/Ēm is proportional to
β2. By comparing the calculation with the experimental data on photon absorption cross section σγ , it shows that
the EQMD model can quite well reproduce the shape of GDR spectra from spherical to prolate shape. The GDR
shapes in 134Sm, 136Sm, 138Sm, 130Nd, 132Nd, and 134Nd are also predicted. In addition, the symmetry energy
coefficient (Esym) dependence of GDR spectra of 150Nd is also discussed. It is found that the calculated GDR
spectrum in the EQMD model is perfectly consistent with the experimental results when Esym equals 32 MeV.
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I. INTRODUCTION

Giant dipole resonance (GDR) is the most prominent
characteristic in the excitation spectrum for all nuclei (except
for deuterons) in the nuclide chart, which has been regarded as
a specific probe for measuring the shape of a nucleus. Owing
to this fact, there is increasing interest in applications to the
dynamics of exotic nuclei. The relationship of the geometrical
and dynamical symmetries of α-clustering configuration with
the number and centroid energies of peaks in the GDR spectra
has been discussed in Refs. [1,2]. The evolution of GDR with
neutron excess for the neutron-rich oxygen isotopes has been
systematically measured in Ref. [3]. Additionally, because
deformation effects in GDR spectrum were first seen more than
50 yr ago in terms of a double-humped photon cross section
peak [4], it has been well established that the GDR peak is
split into two components owing to the different frequencies
of dipole oscillation along the major axis and minor axis in
heavy deformed nuclei [5–8].

A deformed nucleus provides an interesting testing ground
because there is a strong interplay between the structure of
the GDR and the ground-state deformation [9]. Many works
have been done both theoretically [10–17] and experimen-
tally [5,6,18–21] to investigate the effects of deformation
in GDRs in heavy deformed nuclei. Most of the studies
of the GDRs in deformed nuclei have been focused on the
dependence of the width at half maximum, peak position, and
strength of dipole resonance on deformation.

Various microscopic methods have been employed to
investigate the GDRs of deformed nuclei such as the random-
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phase approximation approach [10–13,22,23], time-dependent
Skyrme-Hartree-Fock method [14,16], time-dependent den-
sity functional theory [24], and phonon damping model [25].
The excitation of the GDRs in the experiment is induced
by inelastic scattering [26–28], photoabsorption [18–20,29],
γ decay [30], and so on. However, few studies have been
conducted about the GDRs in heavy deformed nuclei using a
dynamical method.

In this article, the extended quantum molecular dynamics
(EQMD) model [31] has been applied to study the GDRs in
Sm and Nd isotopes. The initial ground-state deformed nuclei
are boosted by imposing a dipole excitation to obtain the GDR
spectra. Both the brief introduction of the EQMD model and
the methods of calculating GDR spectrum are shown in Sec. II.
To check the reliability of our calculation, the evolution of
dipole moments in coordinator space and in momentum space
versus time are exhibited in Sec. III. The discussions, including
the mass number dependence of resonance width along the
major and minor axes, the comparison of the calculations with
the experimental measurement, and the effect of symmetry
energy coefficient on GDR are also carried out in this section.
Finally, Sec. IV gives the summary.

II. MODEL AND FORMALISM

A. Introduction of the EQMD model

The EQMD model was developed from the quantum
molecular dynamics (QMD) model [32–35] by adding the
so-called Pauli potential to the effective interaction and treating
the width of Gaussian wave packets for each nucleon as
a dynamical variable. The initial ground-state nuclei are
obtained at their minimum energy states, which are sufficiently
stable so that they can be considered as at the real ground
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states [31,36,37]. Thanks to the advantage, the EQMD model
has been successfully applied to study the GDR of the
α-clustering nuclei [1,2]. In this article, we use the EQMD
model to investigate the GDRs in heavy deformed nuclei. A
brief introduction of the EQMD model follows.

In the model, the total wave function of the system is
treated as a direct product of Gaussian wave packets of all
nucleons [31],

� =
∏

i

ϕ(ri), (1)

ϕ(ri) =
(

νi + ν∗
i

2π

)3/4

exp

[
−νi

2
(ri − Ri)

2 + i

h̄
Pi · ri

]
, (2)

where Ri and Pi are the centers of position and momentum
of the ith wave packet, respectively. The Gaussian width νi is
introduced using a complex as

νi ≡ 1

λi

+ iδi, (3)

where λi and δi denote the real and the imaginary parts. They
are dynamical variables in the process of initialization.

The effective interaction contains Skyrme, Coulomb, and
symmetry potential, as well as the Pauli potential:

Hint = HSkyrme + HCoulomb + Hsymmetry + HPauli. (4)

The simplest form is used for the Skyrme interaction,

HSkyrme = α

2ρ0

∫
ρ2(r)d3r + β

(γ + 1)ργ
0

∫
ργ+1(r)d3r,

(5)

with α = −124.3 MeV, β = 70.5 MeV, and γ = 2. They are
obtained by fitting the ground-state properties of the finite
nuclei.

For the Pauli potential, a very simple form is applied
by introducing a phenomenological repulsive potential which
inhibits nucleons of the same spin S and isospin T to come
close to each other in the phase space,

HPauli = cp

2

∑
i

(fi − f0)μθ (fi − f0), (6)

where cp denotes the strength of the Pauli potential, which
equals 15 MeV. For the other two parameters, we take f0 = 1.0
and μ = 1.3. fi is the overlap of a nucleon i with the same
spin S and isospin T as

fi ≡
∑

j

δ(Si,Sj )δ(Ti,Tj )|〈ϕi |ϕj 〉|2, (7)

and θ is the unit step function.
The symmetry potential is written as

Hsymmetry = Esym

2ρ0

∑
i,j �=i

∫
[2δ(Ti,Tj ) − 1]ρi(r)ρj (r)d3r, (8)

where Esym is the symmetry energy coefficient.
The stability of nuclei in the model description is very

important to study the structure effects of nuclei, for example
deformation structure. In the EQMD model, the energy-
minimum state is considered as the ground state of initial

nuclei. At the beginning, a random configuration is given to a
nucleus. Then the initial ground-state nuclei are obtained by
solving the damped equations of motion as

Ṙi = ∂H

∂Pi

+ μR
∂H

∂Ri

, Ṗi = − ∂H

∂Ri

+ μP
∂H

∂Pi

,

3h̄

4
λ̇i = −∂H

∂δi

+ μλ

∂H

∂λi

,
3h̄

4
δ̇i = ∂H

∂λi

+ μδ

∂H

∂δi

, (9)

where μR, μP, μλ, and μδ are damping coefficients. With
negative values of these coefficients, the system goes to its
(local) energy minimum point:

dH
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=
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[
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(
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� 0. (10)

B. Giant dipole resonance in deformed nuclei

To study the GDRs of the deformed nuclei that have an
ellipsoidal shape in the framework of EQMD model, we first
need to obtain the phase-space information of the ground-state
deformed nuclei, which have been proven and measured in
the experiments. Nevertheless, the fact is that not all of the
phase-space distributions of the initial nuclei obtained from
initialization with the EQMD model are ellipsoidal; it is
indispensable to select the deformed nuclei from all initial nu-
clei, whose deformations are consistent with the experimental
measurements. Here, the initial deformed nuclei are selected
by comparing the calculated deformation parameter β2 with
the experimental data. β2 is a parameter linked through the
symmetry-axis radius Rx and the radius R0 of the spherical
nucleus with the same mass in accordance with the following
relationship:

β2 =
√

4π

5

Rx − R0

R0
. (11)

Note that in the EQMD model, R0 is taken as the root-mean-
squared radius.

According to the macroscopic description of GDR given
by the Goldhaber-Teller model [38], the GDR is considered
as a coherent dipole oscillation of the bulk of protons and
neutrons along the opposite direction in an excited nucleus. In
this work, the initial nucleus is triggered by means of giving
a displacement between protons and nucleons at t = 0 fm/c,
and then a dipole excitation is triggered and evolved with
time. The dipole moments of the system in coordinator space
DG(t) and in momentum space KG(t) are defined, respectively,
as [1,2,39–41]

DG(t) = NZ

A
[RZ(t) − RN (t)], (12)

KG(t) = NZ

Ah̄

[
PZ(t)

Z
− PN (t)

N

]
, (13)
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where RZ(t)[PZ(t)] and RN (t)[PN (t)] are the centers of motion
of the protons and neutrons in coordinate (momentum) space,
respectively.

The strength of the dipole resonance of the system at energy
Eγ can be derived from the dipole moments DG(t), i.e.,

dP

dEγ

= 2e2

3πh̄c3Eγ

|D′′(ω)|2, (14)

where dP
dEγ

can be interpreted as the γ emission probability.

D′′(ω) is from the the Fourier transform of the second
derivative of DG(t) with respect to time; i.e.,

D′′(ω) =
∫ tmax

t0

D′′
G(t)eiωtdt. (15)

It needs to be noted that the evolution time can not be infinite
long in the realistic calculation and the Fourier transform in
the infinite time range is not reasonable owing to the GDR
spectrum having the natural width. Moreover, the different
final states affect only the width of GDR spectra, which
determine the effective width of the Fourier transform in
Eq. (15). However, they do not affect the peak position (Em)
of the resonance maximum. So we take tmax = 300 fm/c as
the final state in this work.

The peak of the GDRs in deformed nuclei splits two parts,
while there is only one single peak for the spherical nuclei.
In the EQMD model, we calculate the GDRs along the x
and z axes, respectively. In analogy to the superposition of two
noninterfering Lorentz lines for statically deformed nuclei (the
lower-energy line corresponds to oscillations along the major
axis and the higher-energy line along the minor) for fitting the
experimental data [6], we take the method of the superposition
of two GDR spectra to gain the total resonance strength in a
deformed nucleus. The formula is given as

dP

dEγ

=
2∑

i=1

(
dP
dEγ

)
mi

1 + (E2
γ −E2

mi )
2

E2
mi�

2
i

, (16)

where ( dP
dEγ

)m is the resonance strength maximum; Em is the
peak position of the resonance maximum, �i is the resonance
width at half-maximum, and i = 1,2 correspond to the
x- and z-axis resonance components of the deformed nucleus.
Note that the above three parameters are all obtained by fitting
the single GDR spectrum along two axis directions with the
Gaussian function, and the x axis corresponds to the major
axis, and the z axis is the minor axis of the nucleus in our
calculation.

III. RESULTS AND DISCUSSION

Nuclei in the region of mass number Z = 60 (Nd) and
Z = 62 (Sm) display a transition from spherical, at the neutron
number N close to 82, to prolate ellipsoidal shape. Considering
this, the chains of Nd and Sm isotopes are used to study the
deformation dependence of GDR spectra in the framework of
the EQMD model. The experimental data of photon absorption
cross sections σγ in the GDR range are extracted from Ref. [19]
for Sm isotopes and from Ref. [20] for Nd isotopes.

TABLE I. The deformation parameter β2, the experimental data
are from Ref. [42] and the calculation are based on Eq. (11).

Nuclei β2 β2

Exp. [42] Calcu.

130Nd 0.37 ± 0.09 0.3586 ± 0.0109
132Nd 0.349 ± 0.03 0.3485 ± 0.0139
134Nd 0.249 ± 0.025 0.2558 ± 0.007
142Nd 0.0917 ± 0.001 0.0941 ± 0.0136
144Nd 0.1237 ± 0.0006 0.1019 ± 0.0047
146Nd 0.1524 ± 0.0025 0.1497 ± 0.0182
148Nd 0.2013 ± 0.0037 0.2133 ± 0.0035
150Nd 0.2853 ± 0.0021 0.2733 ± 0.0173
134Sm 0.366 ± 0.026 0.3576 ± 0.0053
136Sm 0.293 ± 0.015 0.2846 ± 0.0116
138Sm 0.208 ± 0.017 0.2091 ± 0.0169
144Sm 0.0874 ± 0.001 0.0869 ± 0.0087
148Sm 0.1423 ± 0.003 0.1547 ± 0.0113
150Sm 0.1931 ± 0.0021 0.1861 ± 0.0097
152Sm 0.3064 ± 0.0027 0.315 ± 0.0157
154Sm 0.341 ± 0.002 0.3443 ± 0.0072

The deformation parameter β2 as one main parameter of
describing the deformed nuclei is treated as a probe to select
the ground deformed nuclei from all initial nuclei in this article.
In Table I, the β2 in the chains of Nd and Sm isotopes are
shown, including the experimental data from Ref. [42] and
the calculation based on Eq. (11). The statistical errors are
also attached for each nucleus in the table. From the table,
we can find the β2 of our calculations are very close to the
experimental values.

In this work, the collective motion is divided into two
directions along the x and z axes. The initial-state wave
function of the system is boosted by means of imposing a
dipole excitation at t = 0 fm/c. The time evolution of the
dipole moments of Sm isotopes in coordinator space (DG) and
in momentum space (KG) are shown in Figs. 1(a) and 1(b),
respectively. It is found that all the dipole oscillations are
symmetrical around DG(KG) = 0, except for that close to
the initial time. The resonance frequencies along the x-axis
direction are lower than those in z-axis direction. That is why a
deformed nucleus has two splitting peaks in its GDR spectrum.
The same situation occurs in the Nd isotopes.

The total GDR spectra are obtained from the superposition
of two GDR spectra along the x and z axes by Eq. (16).
The peak position (Em) of the resonance maximum and the
resonance width (�) are two indispensable parameters to get
the total resonance strength. That is one reason to show the
mass evolution of Em of GDRs in the chains of Sm and Nd
isotopes in Fig. 2(a). The open symbols denote the Em along
the x axis, which corresponds to the major axis of a deformed
nucleus. The solid symbols represent the Em in the z-axis
direction, corresponding to the minor axis of the deformed
nucleus. It can be seen that with the increasing of A, the
resonance Em in the z-axis direction first decreases and then
trends to increase. On the contrary, the resonance Em along
the x-axis direction gradually increases with the increasing of
A until the mass number equals to 142 in the chain of Nd
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FIG. 1. The time evolution of the dipole moments in coordinator
space (a) and in momentum space (b) for the chain of Sm
isotopes computed using Eqs. (12) and (13) with the EQMD model,
respectively. The solid lines denote the DG (KG) along the x axis and
the dashed lines correspond to that along the z axis. Dotted lines in
(a) and (b) (dark gray line) represent DG (KG) = 0.

isotopes and equals to 144 in the chain of Sm isotopes and
then gradually decreases. It is necessary to note that 142Nd
and 144Sm are magic nuclei. From Fig. 2(b), it can be easily
seen that the distance �Em between the resonance Em along

FIG. 2. (a) The peak position (Em) of GDRs along the x (open
symbols) and z axes (solid symbols) in Sm (black squares) and
Nd isotopes (purple circles), respectively. (b) The mass dependence
of the difference (�Em) between two GDR peak positions in two
decomposed directions for each Sm (black squares) and Nd (purple
circles) isotope.

FIG. 3. The correlation between �Em/Ēm and deformation
parameter β2 which is obtained by Eq. (11). Lines are the fitting
results. Black squares and purple circles denote the data in the chain
of Sm and Nd isotopes, respectively.

two axes first decreases with the increasing of A and then
increases, which can also be described as the less the deformed
a nucleus is, the closer the two resonance Em’s are. It confirms
that the splitting peak in the deformed nuclei results from the
deformation structure of the nuclei.

Furthermore, the correlation between �Em/Ēm and defor-
mation parameter β2 is shown in Fig. 3. Note that Ēm is the
mean resonance energy. Black squares denote the data of Sm
isotopes and purple circles denote that of Nd isotopes. β2 is
computed based on Eq. (11). Both solid and dashed lines are the
linear fitting results. The fitting parameters also are listed in the
figure. For the chain of Sm isotopes, the relationship between
�Em/Ēm and the deformation parameter is �Em/Ēm =
0.694 02β2 − 0.008 69; for the chain of Nd isotopes, the
relationship is �Em/Ēm = 0.538 45β2 + 0.028 72. It also
confirms that the splitting between the x- and z-axis modes
of the deformed nuclei is proportional to the deformation,
which has been described in detail in Ref. [8].

In Fig. 4, dipole strengths based on Eq. (14) for the separate
modes in the framework of the EQMD model are plotted with
different lines. It can be seen that the oscillations along the
x axis which denote the major axis of symmetry correspond
to the lower-energy state, and that along the y axis and z axis
which denote the minor axis of symmetry correspond to the
higher-energy state. For 142Nd and 144Sm, which are magic
nuclei, their resonance peaks along the three axes are so close
that the total GDR spectrum has a single hump. However, for
130Nd, 150Nd, 134Sm, and 154Sm, the resonance peaks along the
major axis are much smaller than those along the minor axis,
and the resonance spectra along the y axis and z axis nearly
overlap. Consequently, in an ellipsoid-deformed nucleus, the
total GDR spectrum has two humps. For the resonance spectra
along the y-axis direction, it is not perfectly identical to the
one along the z axis, which mostly results from the shape
fluctuation of the initial deformed nucleus in EQMD model.

The deformation evolution of the total GDR spectra along
the x- and z-axis directions in Sm and Nd isotopes are plotted
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FIG. 4. Dipole strengths in the Nd isotopes and Sm isotopes based
on Eq. (14). Solid lines denote modes along the x-axis direction,
dashed lines denote modes along the y-axis direction, and dash-dotted
lines denote modes along the z-axis direction.

in Fig. 5, where the deformation parameter β2 from Ref. [42]
is inserted in each panel. The lines denote our calculation by
Eq. (16) in the framework of the EQMD model, scaled by the
left y axis and the dots denote the experimental data, scaled
by the right y axis.

It needs to be pointed out that the photon absorption cross
sections σγ in the GDR range for 134Sm, 136Sm, 138Sm, 130Nd,
132Nd, and 134Nd are unknown in the experiment so far. We also
give their total GDR spectra by the superposition of two single
GDR spectrum along the x- and z-axis directions, according
to Eq. (16). From Fig. 5, one can see that the calculated GDRs
can perfectly reproduce the shape of the GDR spectra. For
example, the GDR spectra have two distinctly splitting peaks
in the region of strongly deformed nuclei, such as in 154Sm,
152Sm, 136Sm, 134Sm, 150Nd, 132Nd, and 130Nd, while there is
only one maximum value when the deformation of a nucleus
is very small, especially for the magic nuclei 144Sm and 142Nd.
Further, with the decreasing of the deformation of nuclei, the
GDR width also decreases, which occurs in both Sm and Nd
isotopes. All of these characteristics above have been observed
in the experiment. Additionally, it can also be seen that all of
the peak position, for the isotopic chain of Sm (A = 142–154)
and Nd (A = 140–150) isotopes, is well consistent with the
measured data. Therefore, the results not only confirm the
reliability of the methods and the model to study the GDR in
deformed nuclei, but also predict the shapes of GDR spectra in
Sm (A = 134,136,138) and Nd (A = 130,132,134) isotopes,
which is possible to be verified by experiments.

The dependence of the GDRs on symmetry energy coeffi-
cient (Esym) is also discussed for the heavy deformed nucleus

FIG. 5. The GDR spectra in the isotopic chain of Sm (A =
134–154) and Nd isotopes (A = 130–150). The lines denote the
calculation in the EQMD model (scaled by the left y axis). Dots
represent the experimental data (photon absorption cross sections
σγ , scaled by the right y axis). The deformation parameter β2 from
Ref. [42] is displayed in each panel.

of 150Nd in the EQMD model. The results are shown in Fig. 6.
The dots represent the measured data from the experiment,
which are the photon absorption cross sections σγ in the GDR
range, scaled by the right y axis. The calculations are plotted
as the different lines corresponding to different Esym, scaled
by the left y axis. From the figure, it is cleanly seen that with

FIG. 6. The dependence of the GDR spectra on symmetry energy
coefficient (Esym) in heavy deformed nuclei 150Nd. Dots show the
experimental data (photon absorption cross sections σγ , scaled by the
right y axis). The dashed line, solid line, and dotted lines correspond
to the calculating results (scaled by the left y axis) at Esym equal to
34, 32, and 30 MeV, respectively.
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the increasing of Esym from 30 to 34 MeV, the GDR spectra
of the system have the obvious trend of moving to the right;
i.e., the energy position of GDR is governed by the symmetry
energy. Meanwhile, one can find that the calculation is well
consistent with the experimental value at Esym = 32 MeV,
which demonstrates that 32 MeV is the best choice for the
symmetry energy coefficient to investigate the GDRs in heavy
deformed nuclei in the framework of the EQMD model.

IV. SUMMARY AND OUTLOOK

In summary, the deformation evolution of giant dipole
resonance, in the isotopic chains of Sm and Nd, has been
systematically studied under the framework of an extended
quantum molecular dynamics model. The discussions are
conducted about the mass dependence of resonance peak
position (Em) in the major and minor axis directions as
well as the difference �Em between them, respectively. The
�Em between the two resonance Em’s first decreases with
the increasing of A and then trends to increase. It confirms
that �Em is extremely sensitive to the deformation of a
nucleus. Moreover, the correlation between �Em/Ēm and the
deformation parameter (β2) is considered. For the isotopic
chain of Sm, �Em/Ēm = 0.694 02β2 − 0.008 69, and for the
isotopic chain of Nd, �Em/Ēm = 0.538 45β2 + 0.028 72. It
further confirms that the splitting of the GDR spectra along
the major axis and the minor axis is proportional to the
deformation of a nucleus. Additionally, by comparing the
calculation with the experimental data of photon absorption
cross section σγ , the results show that the EQMD model
can perfectly reproduce the shape of the GDR spectra. The
GDR spectra in 134Sm, 136Sm, 138Sm, 130Nd, 132Nd, and 134Nd

are also predicted in detail. Finally, the dependence of GDR
spectra of 150Nd on symmetry energy coefficient (Esym) are
considered. The results demonstrate that the calculation is well
consistent with the experimental results at Esym = 32 MeV.
It suggests that the EQMD model can be used to study the
configuration structure of deformed nuclei.

In light of the success for describing the deformed GDR
by the EQMD model, it is expected that it could also be
applied to treat the pygmy dipole resonance (PDR), which can
be considered as the oscillation between the weakly bound
neutron skin and the isospin neutral proton-neutron core for
neutron-rich nuclei. Previously, a traditional QMD model has
shown its capability to investigate PDR and GDR in Ni isotopes
by Coulomb excitation [40]; it is naturally expected that the
EQMD can do as good a job for the PDR study because more
reasonable ground-state nuclei could be obtained in the EQMD
initialization, in contrast to the traditional QMD initialization.
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