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The instability of hot asymmetric nuclear matter with respect to bulk density distortions is considered. The
equation of state of the extended Thomas-Fermi approximation is used. The origin of the anomalous dispersion
and the influence of the Fermi-surface distortion effects on the bulk and isospin instabilities in homogenous nuclear
matter are investigated. It is shown that the development of both instabilities is reduced significantly due to the
Fermi-surface distortion effects. The dependence of the bulk instability on the temperature and on the multipolarity
of the particle density distortions are shown for the nucleus of 208Pb. The dependence of the formation of the
decay modes (fission or multifragmentation) of the nuclei on the temperature and the Fermi-surface distortion
effects are demonstrated. It is shown that in the case of low temperatures the preferable mode for the bulk
instability is binary fission. For higher temperatures, the preferred modes are the multifragmentations for small
clusters. The number of clusters increases with increasing temperature.
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I. INTRODUCTION

Diluted nuclear matter is unstable with respect to particle
density fluctuations. One expects that such a kind of bulk
instability plays a significant role in internal clusterization
and multifragmentation in heavy-ion collisions. The bulk
instability of nuclear matter was studied earlier in Refs. [1–8]
where the different aspects of the nuclear equation of state
(EOS) were taken into consideration.

We note, however, that in actual nuclear processes (heavy-
ion reactions, nuclear fission, etc.), the development of
instability depends not only on the equation of state, but also
on the dynamic effects, such as the dynamic Fermi-surface
distortions (FSDs). In particular, the FSD effects lead to
collisional relaxation on the distorted Fermi surface and to
non-Markovian motion in a viscous nuclear Fermi liquid [9].
In the present paper, we mainly focus on these aspects in
studying bulk instability considering the regimes of frequent
and rare internucleon collisions.

Some specific difficulties appear in the theoretical descrip-
tion of the instability in an arbitrary dilute many-body system
due to the necessity to consider the small density fluctuations
around a nonequilibrium state of the system. Usually the
nonequilibrium state can be fixed through the introduction of
a formal constrained field [10]. Note also that in considering
the development of bulk instability in a homogeneous nuclear
matter one has to use an EOS, which is extended to include the
gradient terms of particle density ρ. That is because the particle
density perturbations δρ(r,t) are, in general, nonhomogeneous
ones. In the present paper we use the EOS, which is based
on the semiclassical extended Thomas-Fermi approximation
(ETFA), for the internal kinetic energy of the nucleons and the
potential energy due to the Skyrme effective nucleon-nucleon
interaction. The inclusion of the gradient terms in the EOS
leads to a specific effect of the anomalous dispersion which
plays a significant role in the description of the instability
growth rate in nuclear matter.

The present paper is an extension of our previous work [7]
where the general concept of the Fermi motion effects was

adopted in studying the bulk instability of nuclear matter. In
the present paper we generalize our approach for both the
spinodal (bulk) and the isospin instabilities and carry out
numerical calculations employing commonly used Skyrme
interactions. We pay special attention to the derivation of
the stiffness coefficients, such as the incompressibility and
isospin symmetry coefficients, beyond the equilibrium point
by employing the variational Euler-Lagrange procedure. We
analyze the occurrence of the anomalous dispersion in both
the isoscalar and the isovector channels. We consider the
temperature dependence of the instability growth rate for the
bulk mode. We also study the dependence of the instability
growth rate on the multipolarity of the nuclear density
distortions in hot nuclei with increasing temperature. The
last aspect is important since an increase in the temperature
strongly reduces the Fermi-surface distortion effects and
the relaxation processes and thereby the growth of instabilities.
We point out that the use of the Skyrme interaction with
parameters adjusted to reproduce the ground-state properties of
the nuclei within the mean-field model is a reasonable approx-
imation for our purposes. In fact, the effective interaction is
modified only slightly (by a few percent) in a wide temperature
range of T = 0−20 MeV [11,12].

In Sec. II we describe the fluid dynamic approach to the
instability of nuclear matter by using the extended EOS,
which includes the gradient corrections to the energy density
functional. The approach is based on the extended Thomas-
Fermi approximation and the effective Skyrme interactions.
In Sec. III we provide numerical results for the instability
growth rate and its dependence on the temperature and
the multipolarity of the particle density perturbations. Our
conclusions are given in Sec. IV.

II. BULK INSTABILITY OF ASYMMETRIC
NUCLEAR MATTER

We consider the r-dependent density fluctuations δρ(r,t)
around an arbitrary nonequilibrium density ρ0 = const of a
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homogeneous nuclear matter. Following the Euler-Lagrange
method, the nonequilibrium particle density ρ0 can be fixed
by introducing a formal constrained field into the relevant
variational procedure for the total energy E of a many-
body system. Employing this method to nuclear matter and
assuming the possible r dependence of the particle density ρ,
we write its total energy as

E =
∫

d r εtot[ρ], εtot[ρ] = εkin[ρ] + εpot[ρ], (1)

where εkin[ρ] and εpot[ρ] are the r-dependent kinetic- and
potential-energy densities of nuclear matter which are derived
below. An arbitrary density ρ0 is then given by the following
variational Euler-Lagrange equation,

δ

δρ

[∫
d r(εtot[ρ] − ξρ)

]∣∣∣∣
ρ=ρ0

= 0, (2)

where −ξρ is the constrained field and ξ is the Lagrange
multiplier of the Euler-Lagrange method. Below we use the
density ρ0 as an independent variable, and Eq. (2) is considered
as a derivation of the Lagrange multiplier ξ only. The inclusion
of the constrained field in the variational procedure of Eq. (2)
plays an important conceptual role because it allows us
to consider the adiabatic stiffness coefficients beyond the
equilibrium point.

In evaluating the potential-energy density εpot[ρ] in Eq. (1),
we adopt the Skyrme-type effective nucleon-nucleon interac-
tion in the following standard form [13–15]:

v12 = t0
(
1 + x0P

σ
12

)
δ(r1 − r2)

+ 1

2
t1

(
1 + x1P

σ
12

)[←
k

2

12 δ(r1 − r2) + δ(r1 − r2)�k2
12

]
+ t2

(
1 + x2P

σ
12

) ←
k12 δ(r1 − r2)�k12

+ 1

6
t3

(
1 + x3P

σ
12

)
ρν

(
r1 + r2

2

)
δ(r1 − r2)

+ iW0

←
k12 δ(r1 − r2)(σ 1 + σ 2) × �k12. (3)

where ti , xi, ν, and W0 are the parameters of the interaction,
P σ

12 is the spin-exchange operator, σ i is the Pauli spin operator,

�k12 = −i( �∇1 − �∇2)/2, and
←
k12 = −i(

←∇1 −
←∇2)/2. Here, the

right and left arrows indicate that the momentum operators act
on the right and on the left, respectively.

In a Fermi liquid, the linearized equation of motion for small
variations δρ = ρ − ρ0 of the particle density near arbitrary ρ0

can be written as, see Refs. [7,9],

m
∂2

∂t2
δρ = ∇ρ0 ∇ δE

δρ
+ ∇ν∇μP ′

νμ. (4)

The equation of motion (4) is obtained from the kinetic
equation for Wigner’s distribution function f ≡ f (r, p; t) and
includes both the relaxation phenomena and the Fermi-surface
distortion effects [9]. The pressure tensor P ′

νμ in Eq. (4) is
caused by the dynamic distortions of the Fermi surface, see
Refs. [9,16,17]. We point out that the constrained field −ξρ
does not contribute to the equation of motion (4) since ξ =
const.

Note that the total energy E of the homogeneous nuclear
matter in Eq. (4) is written beyond the point ρ0 = const. where
the particle density ρ = (r,t) becomes r dependent. To take
this fact into consideration, we use the ETFA for the kinetic-
energy density εkin[ρ] (see Refs. [18,19]) and the density-
dependent Skyrme interaction for the potential-energy density
εpot[ρ] [20], which include the gradient terms ∼∇ρ. Since the
values εkin[ρ] and εpot[ρ] contain the gradients of the particle
density, the evaluation of the functional derivative δE/δρ in
Eq. (4) must have the form

δE

δρ
=

[
∂

∂ρ
− ∇ ∂

∂(∇ρ)
+ ∇2 ∂

∂(∇2ρ)

]
εtot[ρ]. (5)

We consider an asymmetric nuclear matter with asymmetry
parameter X = (N − Z)/(N + Z), where N and Z are the
number of neutrons and protons, respectively. We introduce
the isoscalar density ρ+ = ρn + ρp and the neutron excess
(isovector) density ρ− = ρn − ρp = Xρ+, where ρn is the
neutron density and ρp is the proton density. Below we restrict
ourselves to the commonly used case of a small isospin
asymmetry X � 1, which allows one, in particular, to derive
the isospin symmetry energy and is sufficient for all existing
nuclei. Since ρ− � ρ+, the total energy density εtot[ρ] can
be reduced to the following convenient form, see Appendix,
Eqs. (A2) and (A3),

εtot[ρ] = A1(ρ+) + A2(ρ+) ρ2
− + [B1(ρ+) + C1(ρ+,ρ−)]

× (∇ρ+)2 + B2(ρ+)(∇ρ−)2

+D1(ρ+,ρ−)∇2ρ+, (6)

where the density-dependent functions Ai(ρ), Bi(ρ), C1(ρ),
and D1(ρ) are given in Appendix Eq. (A3). The expression
(6) is written up to the second order in X. The higher-order
correction ∼X4 is negligible in practically all interesting cases.

Using Eqs. (1) and (5), taking pressure tensor P ′
νμ from

Ref. [9], and assuming δρ ∼ exp[i(qr − ωt)], the equation of
motion (4) is transformed to the following form:

− m ω2 δρ± = [C±(ρ0) − PF,±(ρ0)] ∇2δρ±
−FS,±(ρ0) ∇2∇2δρ±. (7)

Here, the transport coefficients C± and PF,± are given by

C+(ρ0) = K(ρ0)

9
, C−(ρ0) = 2Csym(ρ0),

PF,±(ρ0) = 4

3

iωτ±
1 − iωτ ±

(
P0

ρ0

)
, (8)

where P0 is the pressure P0 = ρ0 p2
F /5 m, pF is the Fermi

momentum, and τ± is the relaxation time, which can be
different for isoscalar and isovector channels [21]. The
transport coefficients FS,± in Eq. (7) are the coefficients of
the anomalous dispersion which play a significant role in the
case of short-wavelength density fluctuations.

Taking into account the finite temperature, we use the
adiabatic (isentropic) [22] values of transport coefficients in
Eq. (7). Using Eqs. (7) and (A4) and (A5) of the Appendix,
one obtains for the isoscalar mode the incompressibility
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coefficient,

K(ρ0) = 10 α
h̄2

2m
ρ

2/3
0 + 27

4
t0ρ0 + 9

16
(2 + ν)(1 + ν)t3ρ

1+ν
0

+ 10 α

(
3t1 + 5t2

4
+ t2x2

)
ρ

5/3
0

+X2

[
10

9
α

h̄2

2m
ρ

4/3
0 + 3

8
ν(ν − 1)t3

(
x3 + 1

2

)
ρν+1

0

− 10

9
α

(
t2

2
+ 5t2x2 − 3t1x1

8

)
ρ

5/3
0

]
,

(9)

and the isoscalar coefficient of the anomalous dispersion,

FS,+(ρ0)

= 1

2

h̄2

2m
η +

[
1

6
t1 − 25

72
t2

(
1 + 4

5
x2

)]
ρ0

−X2

{
1

2

h̄2

2m
η + 1

72

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
ρ0

}
, (10)

where α = (3/5) (3 π2/2)2/3.
Similarly, for the isovector mode one has the coefficient

Csym of the isospin symmetry,

Csym(ρ0) = 5

9
α

h̄2

2m
ρ

2/3
0 − t0

4

(
x0 + 1

2

)
ρ0

− t3

24

(
x3 + 1

2

)
ρν+1

0

+ 5

9
α

(
t2

2
+ 5t2x2 − 3t1x1

8

)
ρ

5/3
0 , (11)

and the isovector coefficient FS,− of the anomalous dispersion,

FS,−(ρ0) = 1

2
η

h̄2

2m

−
[

t1

24

(
1 + 5x1

2

)
+ t2

18

(
1 + 19x2

8

)]
ρ0. (12)

Below, we present the results of the numerical calculations
of the incompressibility coefficient K(ρ0) and the symmetry
energy coefficient Csym(ρ0) for the SkM∗ [20], Sly203b [15],
and the more modern KDE0v1 [23] Skyrme interactions. We
note that the KDE0v1 interaction was determined by a fit to
the extensive data on binding energies, charge radii of nuclei,
single-particle spin-orbit splitting, and for the first time the
inclusion of the radii of valence single-particle neutron orbits
and the energies of the isoscalar giant monopole resonances in
the nuclei. Also included in the fit are additional constraints,
such as the Landau stability conditions, the positive derivative
of the symmetry energy, L = 3ρ dCsym/dρ at large particle
density ρ [24,25], and a minimal value for the enhancement
factor κ of the energy-weighted sum rule of the isovector
giant dipole resonance. It is important to point out that
240 Skyrme interactions, published in the literature, were
analyzed by an independent group [26] for their ability to pass
constraints relating to experimental data on the properties of
nuclear matter and their derivatives, such as incompressibility

TABLE I. Values of the Skyrme parameters and the correspond-
ing physical quantities of nuclear matter for the SkM∗, KDE0v1, and
Sly230b interactions.

Parameters SkM∗ KDE0v1 Sly230b

t0 (MeV fm3) −2645.00 −2553.0843 −2488.91
t1 (MeV fm5) 410.00 411.6963 486.82
t2 (MeV fm5) −135.00 −419.8712 −546.39
t3 (MeV fm3(1+ν)) 15595.00 14603.6069 13777.0
x0 0.0900 0.6483 0.8340
x1 0.0000 −0.3472 −0.3438
x2 0.0000 −0.9268 −1.0
x3 0.0000 0.9475 1.3539
W0 (MeV fm5) 130.00 124.4100 122.69
ν 0.16667 0.1673 0.166667
E/A 15.78 16.23 15.972
K (MeV) 216.7 227.54 229.90
ρeq (fm−3) 0.160 0.165 0.160
m∗/m 0.79 0.74 0.695
Csym (MeV) 30.03 34.58 32.01
L (MeV) 45.78 54.69 45.97
κ 0.53 0.23 0.25
Tcrit (MeV) 14.62 14.74 14.67

coefficient K , symmetry energy coefficient Csym, and its
slope L, effective-mass m∗/m, and observational data of
neutron stars. Only the KDE0v1, LNS, NRPAR, SKRA, and
SQMC700 interactions passed the test. These five interactions
were then tested in Ref. [27] for their ability to reproduce
binding energies and fission barriers of the nuclei. Only
KDE0v1 passed the test. We add that, although Skyrme
parametrizations are not expected, in general, to reproduce
data for which they were not fitted, the neutron star and fission
barrier data that are reproduced by the KDE0v1 interaction
were not included in the fit. We note that, although the LNS,
NRPAR, SKRA, and SQMC700 were fitted to a wide range of
data for the equations of state, we have adopted the KDE0v1
interaction for its ability to reproduce properties of finite
nuclei, a reasonable approximation for our purposes. In Table I
we present the values of the Skyrme parameters for the SkM∗,
KDE0v1, and Sly230b interactions and the corresponding
physical quantities of nuclear matter at saturation density ρeq.

Note that, in general, the transport coefficients K, Csym,
and FS,± in the equations of motion (7) are temperature
dependent. This can be seen in a transparent way by nor-
malizing the density ρ0 to the equilibrium density ρeq(T )
and using the dimensionless ratio ρ0/ρeq(T ) as a variable. To
avoid any misunderstanding, we point out that the particle
density ρ0 is an independent variable which is fixed by
the Lagrange multiplier ξ in the variational Euler-Lagrange
Eq. (2). In the case of ξ = 0 and zero-temperature T = 0, the
variational Eq. (2) provides the actual equilibrium state with
the saturation density ρ0 = ρeq(T = 0). In a heated system at
T 
= 0 and below the phase-separation point, the equilibrium
density ρeq(T ) is derived by the equilibrium condition for the
pressure P (ρ,T ) = 0, where P (ρ,T ) = ρ2∂F (ρ,T )/∂ρ and
F (ρ,T ) is the free energy. For higher temperatures above
the point of the phase separation, the value of ρeq(T ) is
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FIG. 1. The density dependence of the incompressibility coeffi-
cient K(ρ0) for different temperatures T = 0, 8, and 14 MeV (shown)
for Skyrme interactions SkM∗ (dotted lines), KDE0v1 (solid lines),
and SLy230b (dashed lines).

obtained from the interphase equilibrium condition [22]. The
temperature dependence of the equilibrium density ρeq(T ) can
be approximated as ρeq(T ) = ρeq(T = 0)(1 − 1.6 × 10−3T 2),
where temperature T is taken in MeV, see Ref. [28]. In
Figs. 1 and 2, we show the density dependence of the
incompressibility K and the symmetry energy coefficient Csym,
respectively, for different temperatures T for three sets of
Skyrme forces SkM∗, KDE0v1, and Sly230b.

From Fig. 1, the instability regime where K < 0 is shifted
to higher values of the ratio ρ0/ρeq(T ) with increasing
temperature T can be seen. The stable mode disappears at
the critical temperature Tcrit = 14 to 15 MeV where K = 0 at
ρ0/ρeq(T ) = 1, see Table I.

Figure 2 shows that the dependence of the symmetry energy
coefficient Csym(ρ0) on the particle density ρ0 is strongly
sensitive to the choice of the Skyrme interactions. In contrast
to the behavior of the incompressibility coefficient K(ρ0) in
Fig. 1, the ρ dependence of the symmetry energy coefficient
Csym(ρ0) is completely different for the SkM∗, KDE0v1, and
Sly230b interactions. This fact was noted earlier in Ref. [14].
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FIG. 2. The same as in Fig. 1 but for symmetry energy coefficient
Csym.

In the case of the SkM∗ interaction, the symmetry energy
coefficient Csym(ρ0) is a nonmonotonic function of the density,
and it disappears in a superdense nuclear matter. In this case,
the symmetry energy coefficient Csym(T ) and thereby the
isospin stability of Fermi liquid decreases with temperature for
the dilute regime at ρ0/ρeq(T ) � 1. This behavior is reversed
for the superdense regime at ρ0/ρeq(T ) � 2. For the KDE0v1
and Sly230b interactions, the symmetry energy coefficient
Csym(ρ0) is an increasing function of particle density, and the
nuclear matter does not reach the instability regime. Thus,
the density dependence of the symmetry energy coefficient
Csym(ρ0) and the occurrence of the isospin instability are
sensitive to the Skyrme interaction parametrization.

III. FERMI-SURFACE DISTORTION AND RELAXATION
EFFECTS ON THE GROWTH OF BULK INSTABILITY

The solutions of the equations of motion (7) are signifi-
cantly different for the stable and unstable modes. Focusing
on the unstable modes K < 0 (or Csym < 0), we introduce
a growth rate of instability � = −i ω (� is real, � > 0) and
obtain from Eqs. (7) the following dispersion relations:

�2
± = |u1,±|2 q2 − ζ (�±) q2 − κs,± q4, (13)

where u1,+ = √
K/9m, u1,− = √

2Csym /m, and κs,± =
(2/m)FS,±. In the case of the stable modes at K > 0 and
Csym > 0, the values u1,+ and u1,− are the first sound velocities
of the isoscalar and the isovector modes, respectively. The
quantity ζ (�±) in Eq. (13) occurs due to the Fermi-surface
distortion effect, and it is given by, see also Ref. [7],

ζ (�±) = 4

3 m

�±τ±
1 + �±τ ±

P0

ρ0
. (14)

We have performed numerical calculations of the growth
rate �+ of the bulk instability for the Skyrme interaction
KDE0v1. The relaxation time was taken in the form, see
Ref. [29],

τ± = h̄β±/T 2, (15)

with β+ = 9.2, β− = 4.6 MeV [30] and we have used η = 4/9
for Weizsäcker’s correction in Eqs. (10) and (12). The bulk
density ρ0 of the unstable mode was taken as ρ0 = 0.3 ρeq(T ).

The nonmonotony behavior of the isoscalar instability
growth rate �+(q) as a function of the wave-number q is
caused by the anomalous dispersion term in Eq. (13). This
term provides the stability with respect to the short-wavelength
density fluctuations with increasing q. Comparing the dashed
line and solid line 2 in Fig. 3, one concludes that the presence
of the Fermi-surface distortion effects significantly reduces
the instability. This fact was noted earlier in Ref. [7]. As seen
from Fig. 3, the FSD effects are decreasing with increasing
temperature T . This is due to the increase in the smearing
of the Fermi surface with increasing T , and thereby the role
of the Fermi-surface distortions becomes weaker with T . The
left slopes of lines in Fig. 3 indicate the preference for nuclear
multifragmentation [an increase in �+(q) with increasing q],
whereas the right slopes are for the nuclear fission [an increase
in �+(q) with decreasing q]. With increasing temperature, a
point from the right slope of curve �(q) can appear on its left
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FIG. 3. The dependence of the isoscalar instability growth rate
�+(q) on the wave-number q (in units of kF = pF /h̄). The solid
curves are for the Fermi liquid for different temperatures (shown
near the solid curves in MeV) with bulk density ρ0 = 0.3 ρeq(T ) and
the relaxation parameter β = 9.2 MeV [see Eq. (15)]. The dashed
line is the result for the nonviscous liquid without the Fermi-surface
distortion effects at temperature T = 2 MeV. The calculations were
performed for the KDE0v1 interaction.

slope. Due to this fact, a nucleus which is unstable with respect
to the fission mode at low-temperature T can become unstable
for the multifragmentation mode at higher T .

Considering the isovector mode, we first note that, out of the
three parametrizations of Skyrme-type interaction considered
in this paper, an instability regime with Csym < 0 is reached
in a superdense nuclear matter for the SkM∗ interaction
(representing other interactions with a negative value of Csym

in a superdense matter). We add that the regime of superdense
matter can be of interest, in particular, for astrophysics. The
results of numerical calculations of the isovector growth rate
�−(q) for the Skyrme interaction SkM∗ are shown in Fig. 4. As
seen from Fig. 4, in contrast to Fig. 3 for �+(q), the isovector
growth rate �−(q) in a superdense nuclear matter is a steadily
increasing function of wave-number q. This is due to the fact
that the coefficient of the anomalous dispersion FS,− in Eq. (7)
changes sign from positive to negative in a superdense nuclear
matter due to the presence of the term ∼ρ0 in Eq. (12). Note
also that the Fermi-surface distortions have little effect on the
isovector growth rate � (q) (compare the dashed and solid
lines 2 in Fig. 4). This is similar to the case of zero sound
modes in stable nuclear matter [8] where the Fermi-surface
distortion effects do not strongly influence the characteristics
of the isovector excitations.

The dispersion relation (13) also determines the critical
value q±,crit of the wave number which is given by the
condition �±(q±,crit) = 0. The presence of the critical value
of wave-number q±,crit plays an important role in the case of
finite nuclei. For a finite nucleus the growth rate �+(q) depends
on the multipolarity L of the density distortions δρ± because
wave-number q = qL is fixed by the boundary conditions
which depend on the multipolarity L of the surface distortions
[31,32]. Considering a finite nucleus, the dispersion relation
(13) is completed by the boundary condition which can be

2

6
8

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

q kF

q
Ε F

FIG. 4. The dependence of the isovector instability growth rate
�−(q) on the wave-number q (in units of kf = pF /h̄). The solid
curves are for the Fermi liquid for different temperatures (shown
near the solid curves in MeV) with bulk density ρ0 = 6ρeq(T ) and
the relaxation parameter β = 4.6 MeV [see Eq. (15)]. The dashed
line is the result for the nonviscous liquid without the Fermi-surface
distortion effects at temperature T = 2 MeV. The calculations were
performed for the SkM∗ interaction.

taken similar to the classical form [31,32] as

m |u+|2ρ0 jL(qR0) = (L − 1) (L + 2) σ j ′
L(qr)/q R2

0

∣∣
r=R0

,

(16)

where R0 is the nuclear radius, σ is the surface tension
coefficient, and u+ is the zero sound velocity, see Refs. [7,9].
The secular Eq. (16) gives the eigenvalue of the wave-number
qL, and the instability growth rate �+(q) depends on the
position of qL in the interval of q = 0 − qcrit [33].

The eigenvalues qL of the secular Eq. (16) are temperature
dependent because the surface tension coefficient σ in Eq. (16)
is temperature dependent. In numerical calculations, we have
used the following expression for σ (T ), (see Refs. [34,35]):

σ (T ) = 1.1

(
T 2

crit − T 2

T 2
crit + T 2

)5/4

MeV fm−2. (17)

In Fig. 5 we have plotted the isoscalar instability growth
rate �+(L) as a function of the multipolarity L of the particle
density fluctuations for the nucleus of 208Pb for different
temperatures T . As seen from Fig. 5, the development of
instability is significantly different for different temperature
regimes. In the case of low temperatures (line T = 0.5), the
preferable mode is the binary fission (low multipolarity L = 2
is most unstable). For higher temperatures (lines T = 4 and
8), the more preferable unstable modes are the ones with high
multipolarity L which correspond to the multifragmentation
of the small clusters. The number of clusters [the interval of
accessible multipolarities L on the left slope of curve �+(L)]
increases with the further increasing temperature (compare
lines 4, 6, and 8 MeV in Fig. 5). Note also that the modes
with very high multipolarity L become overdamped having
�+(L) < 0. This is in agreement with the results of Fig. 3 and
reflects the fact that the eigenvalues qL are increasing with L.
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FIG. 5. The dependence of the isoscalar instability growth rate
�+(L) on the multipolarity L of the particle density fluctuations for
the nucleus of 208Pb for different temperatures. T = 0.5, 4, 6, and
8 MeV, which are shown near the curves. The calculations were
performed for the KDE0v1 interaction.

IV. SUMMARY AND CONCLUSIONS

We have considered the appearance and the development
of instabilities in an asymmetric nuclear matter in both the
isoscalar and the isovector channels. Our analysis is based on
the equations of motion for the quantum Fermi liquid in the
presence of the Fermi-surface distortion effects and the relax-
ation processes. We point out that a realistic description of the
unstable modes in a homogeneous nuclear matter requires the
extension of the equation of state by taking into consideration
the gradient corrections for the total energy functional. The
presence of the gradient corrections leads to the anomalous
dispersion term in the equation of motion and significantly
influences the behavior of the instability growth rate.

Studying the appearance of the bulk and isospin
instabilities, we have performed numerical calculations of
the dependence of the incompressibility coefficient K(ρ0)
and the symmetry energy coefficient Csym(ρ0) on the nuclear
density ρ0. To evaluate the values of K(ρ0) and Csym(ρ0) at
nonequilibrium density ρ0 
= ρeq we have applied the cranking
approach. The external cranking field was used in the form

which excludes the direct contribution of the cranking field
to the incompressibility coefficient K(ρ0) for the Skyrme
interactions SkM∗, KDE0v1, and Sly230b for different
temperatures and particle densities. We have established the
critical temperature Tcrit = 14 to15 MeV where the nuclear
matter becomes unstable at the equilibrium density ρeq(T ). A
peculiarity of the isovector mode is that the instability of the
nuclear matter with respect to the isovector density fluctuation,
i.e., regime Csym(T ) < 0, can occur in the superdense nuclear
matter only and depends significantly on the choice of the
Skyrme interaction parametrization, such as in the case
of SkM∗.

We have shown that the Fermi-surface distortion effects
strongly hinder the development of instabilities in nuclear
matter. The dependence of the instability growth rate �+(q) on
the wave-number q has a specific nonmonotonic behavior (see
Figs. 3 and 5) which is caused by the anomalous dispersion
term. Different slopes of the curve �+(q) reflect different
regimes (fission or multifragmentation) of instability, see also
Ref. [33]. To illustrate this fact, we have considered the
behavior of the instability growth rate �+(q) in the finite
nucleus of 208Pb for different multipolarities L of particle
density fluctuations and different temperatures T . The results
presented in Fig. 5 show that the fission mode (low L) is
preferable at low temperatures. The instability with respect
to multifragmentation (high L) increases with temperatures.
Moreover, one can expect that the yield of small fragments,
which correspond to the highest values of L, is strongly
increasing for high temperatures, see corresponding lines 4, 6,
and 8 MeV in Fig. 5.
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APPENDIX: SKYRME ENERGY FUNCTIONAL

In this paper we use the ETFA for the kinetic energy of nucleons and the Skyrme potential energy due to the internucleon
interactions. Assuming ρ− � ρ+ and using the standard form of the Skyrme interaction Eq. (3), we represent the total energy
density εtot[ρn,ρp] in the following form [20,36]:

εtot[ρ+,ρ−] = h̄2
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Here, t0, t1, t2, t3, x0, x1, x2, x3, and ν are the parameters of the Skyrme interaction, and η is the free Weizsäcker parameter of
the ETFA.

One can rewrite (A1) using the following notations in the form

εtot[ρ+,ρ−] = A1(ρ+) + A2(ρ+) ρ2
− + [B1(ρ+) + C1(ρ+,ρ−)](∇ρ+)2 + B2(ρ+)(∇ρ−)2 + D1(ρ+,ρ−)∇2ρ+, (A2)

where

A1(ρ+) = h̄2
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Using εtot[ρ] of the form of Eq. (A2), one can evaluate the functional derivatives δE/δρ± for the equations of motion (4),
which are significantly different for the isoscalar and isovector modes.

(i) Isoscalar mode,
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(ii) Isovector mode,

δE

δρ−
= 2 A2(ρ+) ρ− + (∇ρ+)2 ∂

∂ρ−
C1(ρ+,ρ−) + (∇2ρ+)

∂

∂ρ−
D1(ρ+,ρ−) − 2∇B2(ρ+) ∇ρ−,

δE

δρ−
=

(
δE

δρ−

)
ρ0

+ 2 [A2(ρ+)]0δρ− +
(

(∇ρ+)2 ∂2

∂ρ2−
C1(ρ+,ρ−)

)
ρ0

δρ− +
(

(∇ρ+)2 ∂2

∂ρ2−
D1(ρ+,ρ−)

)
ρ0

δρ−

− 2[∇B2(ρ+)]ρ0
· ∇δρ− − 2[B2(ρ+)]ρ0

∇2ρ−
δE

δρ−
=

(
δE

δρ−

)
ρ0

+ 2[A2(ρ+)]ρ0
δρ− − 2[B2(ρ+)]ρ0

∇2ρ−. (A5)

054613-7



V. M. KOLOMIETZ AND S. SHLOMO PHYSICAL REVIEW C 95, 054613 (2017)

We note that the first terms on the right-hand sides of Eqs. (A4) and (A5) do not contribute to the equation of motion (4)
because of the variational condition (2) and the chemical potentials μ± = const, namely,

μ+ = ∂E
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∣∣∣∣
V

=
(
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)
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∣∣∣∣
V

=
(
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δρ−

)
ρ0

= const. (A6)
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