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Background: The neutrino-nucleus (νA) cross section is a major source of systematic uncertainty in neutrino-
oscillation studies. A precise νA scattering model, in which multinucleon effects are incorporated, is pivotal for
an accurate interpretation of the data.
Purpose: In νA interactions, meson-exchange currents (MECs) can induce two-nucleon (2N ) knockout from
the target nucleus, resulting in a two-particle two-hole (2p2h) final state. They also affect single nucleon (1N )
knockout reactions, yielding a one-particle one-hole (1p1h) final state. Both channels affect the inclusive strength.
We present a study of axial and vector, seagull and pion-in-flight currents in muon-neutrino induced 1N and 2N

knockout reactions on 12C.
Method: Bound and emitted nucleons are described as Hartree-Fock wave functions. For the vector MECs,
the standard expressions are used. For the axial current, three parametrizations are considered. The framework
developed here allows for a treatment of MECs and short-range correlations (SRCs).
Results: Results are compared with electron-scattering data and with literature. The strengths of the seagull,
pion-in-flight, and axial currents are studied separately and double differential cross sections including MECs
are compared with results including SRCs. A comparison with MiniBooNE and T2K data is presented.
Conclusions: In the 1p1h channel, the effects of the MECs tend to cancel each other, resulting in a small effect
on the double differential cross section. 2N knockout processes provide a small contribution to the inclusive
double differential cross section, ranging from the 2N knockout threshold into the dip region. A fair agreement
with the MiniBooNE and T2K data is reached.
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I. INTRODUCTION

With the advent of accelerator-based neutrino-oscillation
experiments, the precision of the determined neutrino-
oscillation parameters improved a lot. A major source of
systematic uncertainty in the analyses is related to the neutrino-
nucleus scattering cross sections. To further improve the
precision of the determined squared-mass differences and
mixing angles, an accurate neutrino-nucleus (νA) interaction
model is required. Progress and issues in this context have
recently been reviewed in Refs. [1,2]. One of the main
challenges is related to the role of multinucleon effects.

In previous work, we studied the effect of long-range corre-
lations in a continuum random-phase approximation (CRPA)
approach [3–8] and short-range correlations (SRCs) [9]. This
work is a further development and focuses on the influence of
the seagull and pion-in-flight currents, and accounts for one-
nucleon (1N ) and two-nucleon (2N ) knockout interactions.

In our model, the initial and final state of the nucleus is
described as a Slater determinant. Mean-field single particle
wave functions from a Hartree-Fock (HF) calculation are used.
These HF wave functions account for the elastic distortion by
the residual nuclear system on the emitted nucleons. Shell
structure, nuclear binding energy, and Pauli blocking are
included. The model is an extension towards the weak sector of
the 2N knockout model developed in Ghent, which accounts
for meson-exchange currents (MECs), � currents as well as
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SRCs, for photoinduced [10] and electroinduced [11,12] 1N
and 2N knockout reactions. The model describes exclusive
(e,e′NN ) [13,14], semiexclusive (e,e′p) [15,16], and inclusive
(e,e′) [17] scattering with a satisfactory accuracy. The �
currents are not included here, neither are any other effects
that can cause 2N emission such as final-state effects.

Several theoretical approaches have analyzed the role of
MECs in νA interactions. The models by Martini et al. [18] and
Nieves et al. [19] take nuclear finite-size effects into account
via a local density approximation and a semiclassical expan-
sion of the response function. Both approaches include the
interference between MECs, � currents, and the correlation
current. Recently, calculations using a relativistic Fermi gas
by Amaro et al. [20], accounting for correlations, MECs, and
�-currents in electroinduced 2N emission, have been extended
to νA and νA interactions [21–24]. In ab initio calculations
on 12C [25,26], MECs are inherently included. Recent work
on electron scattering [27,28] has generalized the formalism
based on a factorization ansatz and nuclear spectral functions
to treat transition matrix elements involving MECs and �
currents.

The structure of this work is as follows. In Sec. II, the
seagull, pion-in-flight, and axial currents used in the numerical
calculations are discussed. The influence of the MECs on 1N
emission processes is studied in Sec. III. 2N knockout of MEC
pairs is outlined in Sec. IV, where exclusive, semiexclusive,
and inclusive cross sections are studied. In Sec. V, the
computed 2N knockout strength of MECs and SRCs is added
to the 1N knockout strength in the CRPA approach and
theoretical predictions for the MiniBooNE and T2K data are
provided. In Sec. VI, our conclusions are presented.
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FIG. 1. The vector current diagrams considered in this paper. The boson X can be either a γ or a W+ in this work. Diagram (a) shows the
1p1h channel in the impulse approximation (IA), diagrams (b), (d), (e), and (g) are the 1p1h and 2p2h seagull diagrams; and (c) and (f) are the
pion-in-flight diagrams. The p and h denote the single-nucleon particle and hole states.

II. SEAGULL AND PION-IN-FLIGHT CURRENTS

In this work we consider electron and charged-current
(CC) muon-neutrino (νμ) scattering. The initial lepton will
be referred to as l and the final state lepton as l′. The
four-momentum transfer carried by the exchanged boson,
qμ = (ω,q), is

ω = El − El′ , q = kl − kl′ , (1)

and Q2 = q 2 − ω2.
The MECs considered in this work are the seagull and pion-

in-flight currents. The conventional approach is to consider all
diagrams with single-pion exchange. In the seagull currents,
the boson exchanged by the external probe, a γ or W+, couples
with the MEC at the πNN vertex. In pion-in-flight currents,
the boson couples with the virtual pion. The vector MECs are
shown in Fig. 1 for the 1p1h and 2p2h channel. The sum

∑
h′

in the 1p1h channel extends over all occupied single-particle
states of the target nucleus, as explained in Ref. [9]. In the
derivation of the Feynman diagrams, the couplings are either
obtained from a pion-nucleon scattering amplitude [29] or
from an effective chiral Lagrangian [30]. In the low-energy
limit, the vector seagull (labeled “sea”) and pion-in-flight
(“pif”) currents, for electron scattering interactions, are given
by [31–34]

̂J [2],sea
V = − i

(
fπNN

mπ

)2

(IV )3 FV
1 (Q2)

×
(

�2
π

(
q2

2

)σ 1(σ 2 · q2)

q2
2 + m2

π

− �2
π

(
q2

1

)σ 2(σ 1 · q1)

q2
1 + m2

π

)
,

(2)

̂J [2],pif
V = i

(
fπNN

mπ

)2

(IV )3 FV
1 (Q2)F

(
q2

1,q
2
2

)
× (σ 1 · q1)(σ 2 · q2)(

q2
1 + m2

π

)(
q2

2 + m2
π

) (q1 − q2). (3)

The momenta q1 and q2 are the momenta of the exchanged
meson. They are related to the momenta of the nucleon particle
( p) and hole states (h),

q1 = pa − h, (4)

q2 = pb − h′, (5)

with q = q1 + q2. The operators σ i and τ i are the corre-
sponding spin operators in spin and isospin space and IV is
the two-body isovector operator

IV = (τ 1 × τ 2). (6)

The currents for a CC neutrino interaction can be obtained
via an isospin rotation, which follows from conservation of
the vector current (CVC). This implies replacing the third
component of the isovector operator with the ± components
[31],

(IV )3 →(IV )± = 1
2 [(IV )x ± i(IV )y]. (7)

The value of the πNN coupling constant is determined via
f 2

πNN/4π = 0.075, and mπ is the mass of the pion. The πNN
vertices are regularized by introducing a monopole form factor
with cutoff mass �π = 1250 MeV. We follow the procedure
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introduced in Ref. [33] to ensure CVC:

�π (q2) = �2
π − m2

π

q2 + �2
π

, (8)

F
(
q2

1,q
2
2

) = �π

(
q2

1

)
�π

(
q2

2

)(
1 + q2

1 + m2
π

q2
2 + �2

π

+ q2
2 + m2

π

q2
1 + �2

π

)
.

(9)

At the electroweak vertices, we introduce the isovector nucleon
form factor FV

1 (Q2), using the conventions of [9].
For MECs where a single pion is exchanged, only the

seagull current has an axial counterpart. In the low energy
limit it is given by [34,35]

ρ̂
[2],sea
A = i

gA

(
fπNN

mπ

)2

(IV )±

(
σ 2 · q2

q2
2 + m2

π

− σ 1 · q1

q2
1 + m2

π

)
,

(10)

with gA = 1.26. The πNN vertex is regularized by intro-
ducing monopole factors as was done for the vector seagull
current. At the electroweak vertices one relies on the partially
conserved axial current (PCAC) hypothesis to constrain the
currents. In the low-energy limit, this procedure is not
unambiguous and different results are found in the literature.
An in-depth discussion of these differences is beyond the scope
of this paper but can be found, e.g., in Refs. [31,34]. In this
work, we consider three different prescriptions for the axial
current. The first two are different parametrizations for the
axial seagull current and the third expression contains more
diagrams next to the axial seagull current,

ρ̂
[2],sea,1
A = i

gA

(
fπNN

mπ

)2

(IV )± GA(Q2)

×
(

�2
π

(
q2

2

) σ 2 · q2

q2
2 + m2

π

− �2
π

(
q2

1

) σ 1 · q1

q2
1 + m2

π

)
, (11)

ρ̂
[2],sea,2
A = i

gA

(
fπNN

mπ

)2

(IV )±

×
(

Fπ

(
q2

1

)
�2

π

(
q2

2

) σ 2 · q2

q2
2 + m2

π

−Fπ

(
q2

2
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�2

π

(
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1
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q2
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π

)
, (12)

ρ̂
[2],axi
A = i

gA

(
fπNN

mπ

)2
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×
(

Fπ

(
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2

)
�2

π

(
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. (13)

Pion form factors are introduced to comply with the PCAC
hypothesis,

Fπ (q2) = m2
ρ

q2 + m2
ρ

, (14)

with mρ the mass of the ρ meson.
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FIG. 2. Diagrams considered in the axial charge density ρ̂
[2],axi
A

derived in Ref. [34], A1 denotes the A1 meson.

The current, labeled with the superscript “sea,1” is the axial
version of the seagull current, derived using the soft-pion
approximation [34,35]. It can be constructed from Eq. (10)
by introducing the monopole form factors �π (q2

i ) at the πNN
vertices and multiplying it by the axial form factor GA(Q2),
for which we adopt the standard dipole parametrization. The
expression (11) was used in the neutrino-deuteron scattering
studies of Refs. [36,37].

For the construction of the axial seagull current with
superscript “sea,2”, a nonrelativistic reduction of the axial
seagull current used in the calculations by Ruiz Simo et al.
[23] was performed. In that work, the form factors were
based on those used in the weak pion production amplitudes
of [38]. The MECs were constructed by appending the pion
production diagrams with an extra nucleon that absorbs the
virtual pion. The pion form factor was introduced to account
for the ρ-meson dominance of the ππNN vertex. To account
for the one-body version of PCAC, the same form factor was
used to regularize the axial WπNN vertex. The πNN vertices
are multiplied by the �π (q2

i ) hadronic form factors as was also
done for the vector currents. We remark that the vector currents
in this work correspond with the nonrelativistic limits of the
vector seagull and pion-in-flight currents of [23].

The axial current, labeled “axi” was derived in Ref. [34].
The four diagrams displayed in Fig. 2 are included. The
first is the axial version of the seagull current (a). The other
three diagrams have a pion-in-flight-like structure, but one of
the two pions is replaced by a ρ meson, and the coupling
of the W boson at the πρ vertex is a contact coupling (b), an
A1 pole (c), or π -pole coupling (d). The three diagrams with
a π -ρ exchange (b)–(d) have no vector counterpart and since
one of the two mesons is a pion, they are of the same range
as the vector diagrams. The pion-in-flight diagrams shown in
Fig. 1 have no axial counterpart. The combination of these four
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currents obeys the two-nucleon version of the PCAC relation.
The nonrelativistic limit of these currents is purely timelike.
The vertices are multiplied by the appropriate �π (q2

i ) form
factors. This current has the same operator structure as the
two axial seagull currents, though, by construction, it contains
more diagrams. This axial current fits most naturally in our
model, as it uses the two-nucleon version of the PCAC relation
to constrain the currents.

III. MEC CORRECTIONS TO INCLUSIVE
ONE-NUCLEON KNOCKOUT

In this section, we consider the following electron and CC
νμ induced 1N knockout reactions,

e(Ee,ke) + A → e′(Ee′ ,ke′ ) + (A − 1)∗ + N (EN, pN ),

νμ

(
Eνμ

,kνμ

) + A → μ(Eμ,kμ) + (A − 1)∗ + N (EN, pN ).

The residual (A − 1)∗ nucleus is left with little to no excitation
energy. The double differential A(e,e′) cross section is given
by

dσ

dEe′d�e′
= σ Mott

[
ve

LWCC + ve
T WT

]
. (15)

For A(νμ,μ−) interactions, one has

dσ

dEμd�μ

= σWζ [vCCWCC + vCLWCL + vLLWLL

+ vT WT ∓ vT ′WT ′]; (16)

the − (+) sign refers to neutrino (antineutrino) scattering. The
prefactors are defined as

σ Mott =
(

α cos(θe′/2)

2Ee sin2(θe′/2)

)2

, (17)

σW =
(

GF cos(θc)Eμ

2π

)2

, (18)

with α the fine-structure constant, θe′ the electron scattering
angle, GF the Fermi constant, θc the Cabibbo angle, and the
kinematic factor ζ ,

ζ =
√

1 − m2
μ

E2
μ

. (19)

The functions vi contain the lepton kinematics and the response
functions Wi the nuclear dynamics. The Wi are defined as
products of transition matrix elements Jλ,

Jλ = 〈�1p1h|Ĵλ(q)|�gs〉. (20)

Here, |�1p1h〉 and |�gs〉 refer to the one-particle one-hole
(1p1h) final state and the 0+ ground state of the target nucleus.
Ĵλ are the timelike and spherical components of the nuclear
current. To account for MECs, the nuclear current is written
as a sum of the IA and MEC contributions,

Ĵλ(q) = Ĵ
[1],IA

λ (q) + Ĵ
[2],MEC

λ (q). (21)

The results presented in this work consider 12C as target
nucleus. For 12C(e,e′) two 1p1h final states are accessible,

|�1p1h〉 = |11C,n〉, |11B,p〉, (22)

while for CC neutrino scattering only one 1p1h final state is
accessible,

|�1p1h〉 = |11C,p〉. (23)

The expressions for the kinematic factors vi and the
response functions Wi can be found in Ref. [9]. The standard
expressions for the nuclear current in the IA are adopted [39].

Nucleon knockout occurs in the spectator approach (SA),
where the nucleon absorbing the boson is the one that becomes
asymptotically free. The bound-state and continuum wave
functions are constructed through a HF calculation with an
effective Skyrme-type interaction [40]. Relativistic corrections
are implemented in an effective fashion as proposed in
Refs. [41–43], using the following substitution for ω in the
computation of the outgoing nucleon wave functions,

ω → ω

(
1 + ω

2mN

)
. (24)

This substitution effectively shifts the position of the QE
peak from its nonrelativistic value to the relativistic position
and reduces the width of the one-body responses. The wave
functions for the target and residual nucleus are represented as
Slater determinants. A multipole expansion is adopted for the
calculation of the transition matrix elements.

In Fig. 3 the difference between the 1p1h responses for
12C(νμ,μ−), calculated with and without MECs, is shown,

�Wi = W IA+MEC
i − W IA

i . (25)

The total 1p1h responses will be compared with the 2p2h
contributions in Fig. 10. The three expressions for the axial
current interfere constructively with the nuclear current in the
IA, resulting in an increase of the Coulomb response. The
effect for the “sea,2” version is the smallest. The current “axi”
yields an increase of ≈10% of the 1p1h Coulomb response in
the IA (see Fig. 10 below). The combined effect of the seagull
and pion-in-flight currents results in a negligible decrease of
the total 1p1h response; the total decrease is less than 1%
compared to the 1p1h response in the IA. In fact it is smaller
than the variation obtained using alternative parametrizations
of the nucleon form factor. The small impact is partly due to
the fact that a large part of the transverse strength comes from
the axial part of the current, which is unaffected by the MECs
in the low-energy limit. We note that the effect of the MECs
on the 1N knockout channel of the double differential cross
sections will be negligible since the cross section is dominated
by the transverse channel.

The influence of the MECs on the 1p1h transverse response
function for 12C(e,e′) interactions is of similar size, but has
an opposite effect, increasing the response function, as can be
seen further in Fig. 6. The reason for this opposite behavior for
electrons versus neutrinos is related to the isospin operators.

IV. KNOCKOUT OF MEC PAIRS

For knockout of MEC pairs, we consider the following
reactions:

e(Ee,ke) + A → e′(Ee′ ,ke′ ) + (A − 2)∗

+Na(Ea, pa) + Nb(Eb, pb), (26)
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FIG. 3. The correction of the MECs on the 1p1h responses for 12C(νμ,μ−) at three different q.

νμ

(
Eνμ

,kνμ

) + A → μ(Eμ,kμ) + (A − 2)∗

+Na(Ea, pa) + Nb(Eb, pb). (27)

The residual (A − 2)∗ nuclear system is left with little to no
excitation energy. Electron interactions with MECs can only
emit pn pairs, due to the (IV )3 operator, hence the 2p2h final
state is

|�2p2h〉 = |10B,pn〉. (28)

For CC neutrino reactions, the pp and pn emission channels
are open,

|�2p2h〉 = |10B,pp〉, |10C,pn〉. (29)

The two-body transition matrix elements are given by

Jλ = 〈�2p2h|Ĵ [2],MEC
λ (q)|�gs〉. (30)

Only the two-body part of the nuclear current contributes
to the 2N knockout cross section. We follow the same
approach as for the 1N knockout calculations. The SA is
adopted: the pair interacting with the incoming boson is
the one that becomes asymptotically free. The continuum
and bound-state wave functions are calculated in the same
mean-field potential. Mutual interactions between the emitted
nucleons are neglected. The wave functions for both outgoing
nucleons are expanded in terms of the continuum eigenstates
of the potential and a multipole expansion is adopted for
the calculation of the matrix elements [10]. The 2p2h matrix
elements are summarized in the Appendix.

A. Exclusive 2N knockout

Exclusive 2N knockout refers to reactions with a final
state consisting of a lepton, two ejected nucleons, and an
(A − 2) nucleus that is left with little or no excitation energy.
The hammer events reported by the ArgoNeuT Collaboration
[44] were initially considered as detected events of that type.
These events, however, have been shown to be related to pion
production and reabsorption processes and not to exclusive 2N

knockout [45]. Other experiments using liquid argon detectors
such as MicroBooNE [46] and DUNE [47] or scintillator
trackers such as MINERvA [48] and NOvA [49] are designed
with the ability to observe 2N knockout events.

The exclusive A(e,e′NaNb) cross section in the laboratory
frame can be written as a function of four response functions,

dσ

dEe′d�e′dTad�ad�b

= σ Mottg−1
rec

[
ve

LWCC + ve
T WT + ve

T T WT T + ve
T LWT C

]
,

(31)

with recoil factor

grec =
∣∣∣∣1 + Eb

EA−2

(
1 − pb · (q − pa)

p2
b

)∣∣∣∣. (32)

Ten response functions contribute to A(νμ,μ−NaNb) reac-
tions,

dσ

dEμd�μdTad�ad�b

= σWζf −1
rec [vCCWCC + vCLWCL + vLLWLL + vT WT

+ vT T WT T + vT CWT C + vT LWT L

∓ (vT ′WT ′ + vT C ′WT C ′ + vT L′WT L′)]. (33)

Ta is the kinetic energy of particle a, pa and pb are the
momenta of the emitted nucleons, and �a and �b are the
nucleon emission angles, defined with respect to the direction
of q. θa and θb are the polar angles in the lepton-scattering plane
and ϕa and ϕb are the azimuth angles with respect to the lepton-
scattering plane. All the response functions depend on the polar
angles, while only the five responses WT T , WT C, WT L, WT C ′ ,
and WT L′ contain azimuthal information.

In Fig. 4 the results of an exclusive 12C(νμ,μ−NaNb)
calculation are shown for 2N knockout in the lepton-scattering
plane. The top panel only includes the axial current of Eq. (13).
The panels “sea” and “pif” only use the vector seagull and
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FIG. 5. Semiexclusive 12C(νμ,μ−p) cross section for in-plane
kinematics for Eνμ = 750 MeV, Eμ = 550 MeV, and three muon
scattering angles. The bottom panel shows the (θp,Em) area with
P12 < 300 MeV/c for θμ = 15◦.

pion-in-flight current respectively and the panel “MECs”
includes the coherent sum of vector and axial currents. The
bottom panel shows the area where the initial center-of-mass
(c.o.m.) momentum P12 of the pair,

P12 = pa + pb − q, (34)

is smaller than 300 MeV/c.
We observe that for the selected kinematic situation, the

2N knockout strength is dominated by the vector currents
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“sea” and “pif”. The strength of both currents is comparable in
size. Further, the seagull and pion-in-flight currents interfere
destructively, which can be inferred from the fourth panel.
This destructive interference of the vector currents was also
observed for exclusive 16O(γ,pn) interactions [10]. The 2N
knockout strength arises from the part of phase space where
the initial c.o.m. momentum of the pair is low. To illustrate
this, the region where P12 < 300 MeV/c is displayed in the
bottom panel. The numerical results also show that the chosen
kinematic situation favors back-to-back nucleon knockout in
the laboratory frame, as studied, e.g., in Ref. [50].

B. Semiexclusive 2N knockout

It is interesting to study the contribution of the exclusive
2N knockout A(νμ,μ−NaNb) cross section to the inclusive
A(νμ,μ−) cross section, as there are very little data on
exclusive cross sections.

As an intermediate step, we compute the contribution of
exclusive 2N knockout A(l,l′NaNb) strength to the A(l,l′N )
cross section, where the residual nuclear system (A − 1)∗ is
excited above the 2N emission threshold. This is called the
semiexclusive cross section in this work.

Exclusive 1N knockout cross sections detect the final state
lepton and the emitted nucleon in coincidence. Processes
with two emitted nucleons whereby one remains undetected
also contribute to the signal. This means that for neutrino
experiments which have the ability to detect nucleons in the
final state, but have a relatively high detection threshold, these
semiexclusive cross sections will be a very interesting tool.

The calculation of the semiexclusive cross section involves
an integration over the phase space of the undetected ejected
nucleons, i.e., d�b in Eqs. (31) and (33). In the case where
the detected particle is a proton, the total semiexclusive cross
section is a sum of the semiexclusive pp and pn pair knockout

cross sections (Na = p, Nb = p′ or n),

dσ

dEl′d�l′dTdd�p
(l,l′p)

=
∫

d�p′
dσ

dEl′d�l′dTpd�pd�p′
(l,l′pp′)

+
∫

d�n
dσ

dEl′d�l′dTpd�pd�n
(l,l′pn). (35)

We use the method outlined in Ref. [11] and exploit the fact that
the exclusive 2N knockout strength resides in a well-defined
part of phase space; see the bottom panel of Fig. 4: For
each particular semiexclusive kinematical setting (dTpd�p),
the exclusive cross section strength resides in a restricted part
of the phase space of the undetected nucleon (d�b). In this
limited part of the phase space, where the exclusive strength
resides, the momentum of the undetected particle pb varies
only little, which allows one to set pb ≈ p ave

b . The average
momentum ( p ave

b ) can be determined using quasideuteron
kinematics [P12 ≈ 0 in Eq. (34)]

p ave
b = q − pp. (36)

With this average momentum, the integration over d�p′ and
d�n in Eq. (35) can be performed analytically [11]. Note that
in contrast to the frozen nucleon approximation of [51], we
take into account the initial nucleon momenta, and perform
the integration over the nucleon emission angle.

The results of a semiexclusive 12C(νμ,μ−p) calculation
are displayed in Fig. 5 for three different lepton scattering
angles as a function of the outgoing angle of the detected
proton θp (ϕp = 0), and the missing energy Em = ω − Tp. The
Bjorken variable xB = Q2/2ωmN varies from 0.08 to 1.09 for
the three presented kinematic situations. The semiexclusive
strength is largest for small θμ. Further, for large θμ, the
strength is confined to small proton scattering angles, while
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relatively large strength at backward proton knockout is
observed for small lepton scattering angles. This feature is
related to the initial c.o.m. momentum of the pair; the bottom
panel shows the area where P12 < 300 MeV/c is accessible.
This demonstrates that the semiexclusive strength is dominated
by pairs with small c.o.m. momenta.

C. Inclusive cross section results

The 2N knockout contribution to the inclusive A(l,l′)
cross section is calculated by integrating over the phase space
dTpd�p in Eq. (35),

dσ

dEl′d�l′
(l,l′) =

∫
dTpd�p

dσ

dEl′d�l′dTpd�p
(l,l′p). (37)

The angular integration can be done analytically; integration
over the outgoing nucleon kinetic energy Tp is performed
numerically.

Before we consider the inclusive 2N knockout responses
for νA, we confront our results for electron scattering with
data and other models [52,55]. In Fig. 6, the 1p1h and 2p2h
response functions WCC and WT are shown and compared
with Rosenbluth separated cross-section data. The seagull
and pion-in-flight currents have no effect on the Coulomb
response, as the vector currents have no timelike component
in the low-energy limit. In the 1p1h responses, the MECs
result in a small increase of the responses. The 2p2h responses
appear as a broad background to the 1p1h responses. Figure 7
shows the results of the inclusive transverse 2p2h responses,
where the knockout of seagull and pion-in-flight pairs was
studied separately. The strength for both two-body currents is
of similar size. The pion-in-flight current is slightly more im-
portant for large ω for the three-momentum transfers studied.
More interesting is that the currents interfere destructively.
In Ref. [56], e.g., the same destructive interference was
observed between the seagull and pion-in-flight currents in a
relativistic Fermi gas model for 56Fe(e,e′). Further, our results
are comparable to those of Amaro et al. [52], where a similar
model was used.

In Figs. 8 and 9, inclusive 12C(e,e′) and 12C(νμ,μ−)
responses are studied at q = 500 MeV/c. Only the seagull
current is accounted for in the 2N knockout calculations, to
compare with the corresponding results of Ruiz Simo et al.
[55], where a relativistic Fermi gas (RFG) was used. The

results of the 1N knockout calculations in the IA for both
models are displayed as a reference.

For electron scattering, the 2N knockout strength attributed
to the seagull current is roughly a factor 2 smaller than in the
RFG calculations of Ref. [55]. The 2N knockout contribution
to the transverse response for νA is very similar in both
calculations. In the Coulomb channel, the results for the three
different axial currents are compared. The currents labeled
“sea,1” and “axi” yield a strength that is comparable to
each other and to the strength of the RFG calculations of
Ref. [55]. For low ω, the results of the currents “sea,1” and
“axi” coincide. For increasing energy transfers, the former
keeps increasing while the latter decreases for ω � 250 MeV.
The strength of the current “sea,2” which was obtained after
a nonrelativistic reduction of the axial seagull current in
Ref. [55], is roughly five times larger than the other two
prescriptions, and appears unrealistically large compared to
the 1p1h strength.

The results for the responses WCC and WT for inclusive
12C(νμ,μ−), including seagull and pion-in-flight currents in
the 1p1h and 2p2h channels, are presented in Fig. 10. In the
1p1h channel, we only display the results using the “axi” cur-
rent. The results using the other two expressions can be inferred
from Fig. 3. In Fig. 11, the 2p2h responses are shown, showing
the separate strengths of the seagull and pion-in-flight currents.

Comparing the 2p2h results in the transverse channel
for electron and neutrino scattering, we observe that the
contributions of the seagull and pion-in-flight currents have
a similar ω dependence. The currents interfere destructively
in both cases. The 2p2h responses for neutrino scattering
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FIG. 8. The transverse 1p1h and 2p2h responses for 12C(e,e′) at
q = 500 MeV/c with only seagull currents. The solid (dashed) black
lines are the 1p1h (2p2h) results from Ref. [55].

054611-8



SEAGULL AND PION-IN-FLIGHT CURRENTS IN . . . PHYSICAL REVIEW C 95, 054611 (2017)

0
2
4
6
8

10
12

0 100 200 300 400 500

0
20
40
60
80

100

0 100 200 300 400 500

W
C

C
G

eV
−

1

12C, q = 500 MeV/c

IA
sea 1
sea 2

axi

W
T

G
eV

−
1

ω (MeV)

sea

FIG. 9. The Coulomb and transverse 1p1h and 2p2h responses for
12C(νμ,μ−) at q = 500 MeV/c with only seagull and axial currents.
The solid (dashed) black lines are the 1p1h (2p2h) results from
Ref. [55].

are roughly a factor 4 larger than in electron interactions.
The relative effect of the 2p2h responses in comparison with
the 1p1h responses appears similar for electron and neutrino
interactions. The 2p2h Coulomb responses are smaller than
the transverse responses, however their effect relative to the
corresponding 1p1h response is larger.

In previous work on neutrino scattering [9], we accounted
for SRCs by applying a correlation operator to the uncorrelated
HF wave functions, following the approach of Refs. [11,12].
In the calculation of the responses, the nuclear current operator
in the IA is replaced with an effective operator, that is a
sum of the IA current operator and a two-body operator that
accounts for SRCs. In Fig. 12, the results of a 12C(νμ,μ−)

cross-section calculation are shown, for Eνμ
= 750 MeV and

three muon scattering angles. In the calculations the SRCs
are accounted for, as outlined in Ref. [9], next to the MECs,
and MEC-SRC interference is included via the square of the
transition matrix elements. The effect of the MECs on the
1p1h channel is negligible, as can be inferred from Fig. 10.
The double differential cross sections are dominated by the
transverse channel and the effect of the MECs on the transverse
responses is very small. The decrease of the 1p1h channel due
to the presence of two-body currents is mainly caused by SRCs,
as shown in Ref. [9].

The contribution of the MECs in the 2p2h channel yields
a smaller contribution to the inclusive cross section than that
provided by the SRCs. It is roughly a factor 3 smaller for
θμ = 15◦ to a factor 5 for θμ = 60◦. The results suggest
that the total 2p2h strength equals the sum of the SRC and
MEC contributions, however a small destructive interference
is present between both types of two-body currents. The
combined effect of both types of two-body currents yields
strength that appears as a broad background to the QE peak,
ranging from the 2N knockout threshold into the dip region.
In the dip region, experimental data are underpredicted by
calculations in the IA, and the 2N knockout contribution
provided by SRC and MEC pairs only accounts for a small
fraction the missing strength in this region.

V. FLUX-FOLDED DOUBLE DIFFERENTIAL
CROSS SECTIONS

In Ref. [7], the impact of long-range correlations on
νA cross sections was studied in a HF-CRPA approach. In
the random-phase approximation, long-range correlations are
taken into account by including particle-hole and negative
energy hole-particle configurations out of a correlated ground
state. This way, the random phase approximation goes one step
beyond the zeroth-order mean-field approach and describes a
nuclear state as the coherent superposition of particle-hole
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contributions,

|�RPA〉 =
∑

c

{X(�,C)|ph−1〉 − Y(�,C)|hp−1〉}. (38)

The summation index C stands for all quantum numbers
defining a reaction channel unambiguously:

C = {nh,lh,jh,mh,εh; lp,jp,mp,τz}, (39)

where the indices p and h indicate whether the considered
quantum numbers relate to the particle or the hole state, εh

denotes the binding-energy of the hole state, and τz defines the
isospin character of the particle-hole pair. The propagation of
these particle-hole pairs in the nuclear medium is described
by the polarization propagator. In our model, the continuum
RPA equations are solved using a Green’s function approach

in which the polarization propagator is approximated by an
iteration of the first-order contribution.

As the separation between “mean-field” properties and
CRPA correlations is strongly scheme-dependent (a Fermi-gas
mean field is very different from a HF one), we ensure
consistency of the HF-CRPA correlation inclusion by using the
same Skyrme parametrization as CRPA residual interaction
as the one that was used to generate the HF mean field
wave functions. As the HF mean field already contains a
considerable amount of nuclear effects, the influence of our
CRPA tends to be smaller than that found in FG-based
calculations.

In Ref. [7], flux-folded double differential cross sections off
12C were presented and compared with MiniBooNE and T2K
data. The CRPA model underpredicted the data because of the
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absence of processes beyond pure QE scattering. For com-
pleteness we now show results combining the 1p1h CRPA cal-
culations, with 2N knockout of SRC and MEC pairs using HF
wave functions, and compare with MiniBooNE and T2K data.

In Fig. 13, a prediction for the strength of the MiniBooNE
flux-folded differential CCQE-like cross section is shown as
a function of the muon kinetic energy Tμ, and compared with
data. The solid black line is the incoherent sum of the CRPA,
MEC, and SRC contributions. Due to the heavy computational
cost, the flux folding was done in steps of 100 MeV, while the
integration in cos θμ was done in three steps.

The MiniBooNE CCQE-like data set is defined as the
processes where one muon and no pions are observed in the
final state. Yet, in the analysis, the CCQE-like data have partly
been corrected for � currents by subtracting pionless � decays
from the data [57].

The CRPA approach combined with 2N knockout of MEC
and SRC pairs reproduces the strength and shape of the forward
bin in Fig. 13 very well, however, the predictions and data
appear to be shifted over some 50 MeV. The agreement in the
bin with more backward lepton scattering is less satisfactory,
as a large fraction of the measured strength is not accounted
for by the calculations.

In Fig. 14, the corresponding double differential results for
two T2K angular bins are shown as a function of the muon

momentum pμ. Two bins were used for the averaging over
cos θμ. In the top panels, the results are compared with the
inclusive data, i.e., processes with pions in the final state are
included. In the bottom panels, the results are compared with
T2K CC0π data, defined as the processes where no pions are
observed in the final state. These data were not corrected
for the �-current contribution, and they should be included
in the 2N knockout channel for a complete description of
the data.

The theoretical predictions already reproduce the inclusive
data in Fig. 14(a) rather well, while extra strength from �
currents and pion production still has to be included for
a complete description of the data. If �-current and pion
production contributions are of the order of those found in
Martini et al. [59], Megias et al. [60], or GiBUU [61], some
overestimation might be expected.

Similar results are obtained for the prediction of the CC0π
data in Fig. 14(b). The prediction already appears to be on the
high side, while the �-current contribution has not yet been
included. The 1p1h calculations in the CRPA approach already
overestimate part of the data, hence little room is left to add
the necessary 2p2h channel without overpredicting the data. A
satisfactory description of the data is not strictly ruled out since
all possible interference effects between the contributions
should be included, and the flux normalization error of the

0
2
4
6
8

10
12
14

0 200 400 600 800 1000
0
2
4
6
8

10
12
14

0 200 400 600 800 1000
pμ (MeV/c)

0.84 < cos θμ < 0.9

1p1h CRPA
1p1h HF

dσ
/d

p
μ
d

co
sθ

μ
(1

0−
4
2
cm

2
/
(M

eV
/c

))

pμ (MeV/c)

0.9 < cos θμ < 0.94

2p2h MEC (no Δ)
2p2h SRC

(a)

0
2
4
6
8

10
12
14

0 200 400 600 800 1000 1200 1400
0
2
4
6
8

10
12
14

0 200 400 600 800 1000 1200 1400
pμ (MeV/c)

0.85 < cos θμ < 0.9

1p1h CRPA
1p1h HF

dσ
/
dp

μ
d

co
sθ

μ
(1

0−
4
2
cm

2
/
(M

eV
/c

))

pμ (MeV/c)

0.9 < cos θμ < 0.94

2p2h MEC (no Δ)
2p2h SRC

(b)

FIG. 14. T2K flux-folded double differential cross sections per target nucleon for 12C(νμ,μ−). The solid line is the incoherent sum of
the CRPA, MEC, and SRC contributions. The experimental error bars represent the shape uncertainties, flux uncertainties are not included.
(a) Inclusive T2K data from Ref. [62]. (b) CC0π T2K data from Ref. [63].

054611-11



T. VAN CUYCK et al. PHYSICAL REVIEW C 95, 054611 (2017)

data should be accounted for. However, the prediction will
undoubtedly be on the high side.

The results of the flux-folded double differential cross
sections are in line with the unfolded cross sections displayed
in Fig. 12. The strength of the SRCs is a factor 3 to 5 larger
than that of the MECs.

VI. SUMMARY

In this work we studied the effect of seagull and pion-in-
flight currents on νA cross sections. The research presented
here is part of a larger project studying multinucleon effects
on νA interactions. The presented formalism provides a
framework for the treatment of MECs and SRCs in the
calculation of exclusive, semiexclusive and inclusive 1N and
2N knockout cross sections.

The standard expressions for the vector seagull and pion-in-
flight currents were used. For the axial current, three different
prescriptions are used. The first version is constructed by
multiplying the axial seagull current by GA(Q2). The second
expression followed after a nonrelativistic reduction of the
axial seagull current in Ref. [23]. The third expression was
derived in Ref. [34], where a two-nucleon version of the PCAC
hypothesis was used to constrain the current.

The second expression of the axial seagull current yields an
unrealistically large 2N knockout contribution to the inclusive
double differential cross section. This unrealistic behavior
might be related to the pion-pole current. This current was not
taken into account in this work, but in Ref. [23] it was included
to fulfill the PCAC relation. For small ω, the first expression
of the axial seagull current and the current labeled “axi” result
in a similar increase of the responses in the 1N knockout
channel and give rise to comparable 2N knockout strength.
For larger ω, the current labeled “sea,1” consistently yields
more strength. The axial current “axi” fits most naturally in
the model presented in this work, since it fulfills the two-body
version of the PCAC hypothesis. We will be guided by the
conclusions drawn from this research for the inclusion of axial

� currents in future work, which are generally assumed to
provide the largest strength.

The inclusion of MECs in double differential cross section
calculations of electron and neutrino scattering interactions
yields relatively small effects, as the various terms tend to
cancel each other. The inclusion of seagull and pion-in-flight
currents in electron scattering interactions results in a small
increase of the 1p1h channel and a broad background 2p2h
strength. For neutrino scattering, the combined effect of the
MECs on the 1p1h channel is very small. The 2N knockout
strength appears as a background to the 1p1h channel,
extending into the dip region where the data is severely
underpredicted by the IA. The MECs account for only a small
fraction of the missing strength.

Accounting for long-range correlations in the 1N knockout
channel in a CRPA approach and MECs and SRCs in the
2N knockout channel, a fair agreement with the MiniBooNE
CCQE-like data is reached in the bin 0.8 < cos θμ < 0.9.
For 0.4 < cos θμ < 0.5, some strength is missing. A fair
agreement with the T2K data is reached. Taking interference
effects and the additional flux normalization uncertainty into
account, there is room for the extra strength from � currents
and pion production.

The results presented here used 12C as a target nucleus, but
the model is general and can be used for all target nuclei with
a 0+ ground state such as 16O and 40Ar.
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APPENDIX: MATRIX ELEMENTS

The standard expressions for the multipole operators and the nuclear currents are used in this work; see, e.g., Refs. [9,39]. The
2p2h matrix elements for the vector part of the seagull and pion-in-flight currents are given in Ref. [10]. The matrix elements for
the three axial currents of Eqs. (11)–(13) are given by

〈ab; J1‖M̂Coul
J

[
ρ̂

[1],sea,1
A (1,2)

]‖cd; J2〉

= 1

gA

(
fπNN

mπ

)2 1√
4π

2

π
GA(Q2)

∑
l

∑
J3

∑
η=±1

Ĵ Ĵ1Ĵ2Ĵ3(−1)J3+l

×〈 ab|IV |cd 〉√l + δη,+1

(
J l J3

0 0 0

)∫
dp

p3

p2 + m2
π

�2
π (p2)

∫
dr1

∫
dr2

×
⎛⎝〈ja‖jJ (qr1)jl(pr1)YJ3 (�1)‖jc〉r1〈jb‖jl+η(pr2)[Yl+η(�2) ⊗ σ 2]l‖jd〉r2

⎧⎨⎩ja jb J1

jc jd J2

J3 l J

⎫⎬⎭
− (−1)l+J3+J 〈ja‖jl+η(pr1)[Yl+η(�1) ⊗ σ 1]l‖jc〉r1〈jb‖jJ (qr2)jl(pr2)YJ3 (�2)‖jd〉r2

⎧⎨⎩ja jb J1

jc jd J2

l J3 J

⎫⎬⎭
⎞⎠, (A1)
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〈ab; J1‖M̂Coul
J

[
ρ̂

[2],sea,2
A (1,2)

]‖cd; J2〉

= 1

gA

(
fπNN

mπ

)2 1√
4π

(
2

π

)2 ∑
ll′

∑
η=±1

Ĵ Ĵ1Ĵ2̂l(−1)l−l′ 〈 ab|IV |cd 〉√l′ + δη,+1

(
l l′ J
0 0 0

)

×
∫

dp1 p2
1Fπ

(
p2

1

) ∫
dp2

p3
2

p2
2 + m2

π

�2
π

(
p2

2

) ∫
dr1

∫
dr2

∫
drr2jl(p1r)jl′(p2r)jJ (qr)

×
⎛⎝〈ja‖jl(p1r1)Yl(�1)‖jc〉r1〈jb‖jl′+η(p2r2)[Yl′+η(�2) ⊗ σ 2]l′ ‖jd〉r2

⎧⎨⎩ja jb J1

jc jd J2

l l′ J

⎫⎬⎭
− (−1)l+l′+J 〈ja‖jl′+η(p2r1)[Yl′+η(�1) ⊗ σ 1]l′ ‖jc〉r1〈jb‖jl(p1r2)Yl(�2)‖jd〉r2

⎧⎨⎩ja jb J1

jc jd J2

l′ l J

⎫⎬⎭
⎞⎠. (A2)

In the matrix elements, we used the shorthand notation a ≡ (na,la,1/2,ja). The radial transition densities 〈a||ÔJ ||b〉r are defined
such that they are related to the full matrix elements as 〈a||ÔJ ||b〉 ≡ ∫

dr〈a||ÔJ ||b〉r . The matrix element for the axial current
“axi” is obtained by removing the GA(Q2) in Eq. (A1) and introducing the p-dependent form factor Fπ (p2).
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