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Using the phenomenological quantum friction models introduced by P. Caldirola [Nuovo Cimento 18, 393
(1941)] and E. Kanai [Prog. Theor. Phys. 3, 440 (1948)], M. D. Kostin [J. Chem. Phys. 57, 3589 (1972)], and
K. Albrecht [Phys. Lett. B 56, 127 (1975)], we study quantum tunneling of a one-dimensional potential in
the presence of energy dissipation. To this end, we calculate the tunneling probability using a time-dependent
wave-packet method. The friction reduces the tunneling probability. We show that the three models provide
similar penetrabilities to each other, among which the Caldirola-Kanai model requires the least numerical effort.
We also discuss the effect of energy dissipation on quantum tunneling in terms of barrier distributions.
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I. INTRODUCTION

In low-energy heavy-ion fusion reactions, it has been known
that excitations of the colliding nuclei considerably influence
the reaction dynamics; that is, fusion cross sections are largely
enhanced as compared to the prediction of a simple potential
model [1–4]. To take into account the excitations during reac-
tions, the coupled-channels method has been developed. Many
experimental data have been successfully accounted for with
this method by including a few internal degrees of freedom
which are coupled strongly to the ground state [3,5]. However,
when a large number of channels are involved, the coupled-
channels calculations become increasingly difficult. This is the
case, e.g., fusion reactions in massive systems, in which many
noncollective excitations may play an important role [6–9].

To deal with this problem, many phenomenological models
based on the classical concept of friction were proposed
in connection with deep inelastic heavy-ion collisions [10].
Among them, it has been found that the classical Langevin
treatment works well for fusion reactions and deep inelastic
collisions when the incident energy is higher than the Coulomb
barrier [11–13]. When the incident energy is close to the
barrier, however, the fusion reaction takes place by quantum
tunneling. Hence, to apply these models to low-energy fusion
reactions, a quantum mechanical extension of the friction
models is essential. Notice that there are many noncollective
levels in atomic nuclei not only in the high-excitation energy
region but also in the low-excitation energy region [6–9], which
may lead to the friction effect even at low incident energies.

Another important issue is to extend the coupled-channels
approach to massive systems by taking into account the
dissipation effects and to develop a quantal theory for deep
inelastic collision with energy and angular momentum dissi-
pations. Such theory would be able to describe simultaneously
dissipative quantum tunneling below the Coulomb barrier and
deep inelastic collision above the barrier. In that way, one
may resolve a long-standing problem of surface diffuseness
anomaly in heavy-ion fusion reactions; that is, an anomaly that
a significantly large value for the surface diffuseness parameter
in an internuclear Woods-Saxon potential has to be used to
account for above barrier data of fusion cross sections [14–16].

Such theory would also provide a consistent description for
deep subbarrier hindrance of fusion cross sections [4], for
which the dynamics after the touching of the colliding nuclei
play a crucial role [17–19].

Quantum friction has attracted lots of attention as a general
problem of open quantum systems [20–27]. To date, many
attempts at developing a quantum friction model have been
made. They can be mainly categorized into the following two
approaches. The first is to consider a system with a bath, for
which the environmental bath is often simplified as, e.g., a col-
lection of harmonic oscillators [28–31]. The second approach
is to treat the couplings to the bath implicitly and introduce
a phenomenological Hamiltonian with which the classical
equation of motion with a frictional force is reproduced as
expectation values. For this approach, Caldirola and Kanai
[32,33], Kostin [34], and Albrecht [35] proposed a Hermitian
Hamiltonian, whose equation of motion contains a linear
frictional force, while Dekker [36] invented an approach with
a non-Hermitian Hamiltonian.

In this paper, we employ the second approach and inves-
tigate quantum tunneling in the presence of friction. Even
though the first approach is more microscopic, physical
quantities are easier to calculate with the second approach, and
thus it is easier to gain physical insight into the effect of friction
on quantum tunneling. We particularly consider the three
Hermitian models for quantum friction, that is, the Caldirola-
Kanai, the Kostin, and the Albrecht models, to discuss the
tunneling problem with quantum friction. We mention that
these Hamiltonians have been applied to a tunneling problem
[37–42], but a systematic study, including a comparison among
the models, has yet to be carried out with respect to tunneling
probabilities. In this connection, we notice that Hasse has
compared the three models for a free wave-packet propagation
and for a damped harmonic oscillator. He has shown that the
time dependence of the width of a Gaussian wave packet varies
significantly from one model to another, while all of these three
models lead to the same classical equation of motion [43]. It is
therefore not obvious whether the three models lead to similar
penetrabilities to each other.

The paper is organized as follows. In Sec. II we briefly
introduce the three quantum friction models that we employ.
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In Sec. III we present our results for penetrability of a
one-dimensional barrier. To compare among the three models,
we first carry out a detailed study on numerical accuracy of
the calculations for a free wave-packet propagation. We then
discuss the energy dependence of the penetrability obtained
with each of these three models. We also discuss the results in
terms of barrier distribution. We finally summarize the paper
in Sec. III C.

II. QUANTUM FRICTION MODELS

A. Classical equation of motion

We consider a system with a particle whose mass is m,
moving in a one-dimensional space q with a potential V (q) and
a linear frictional force. We here consider potential scattering,
and regard q as the distance between the particle and the
center of the potential. The classical equation of motion for
the particle reads

dp

dt
+ γ0p + ∂V

∂q
(q) = 0, (1)

where p = mq̇ is the kinetic momentum, the dot denoting
the time derivative, and γ0 is a friction coefficient. We have
assumed that the potential depends only on q. From the
classical equation of motion, Eq. (1), the time derivative of
the energy E = p2/2m + V (q) reads

dE

dt
= −γ0

m
p2. (2)

In constructing the phenomenological quantum friction
models, Eqs. (1) and (2) have been used as a guiding principle;
that is, it is demanded that the time dependence of the
expectation values obeys the same equations as Eqs. (1) and
(2) [43].

B. The Caldirola-Kanai model

In the Caldirola-Kanai model, the Hamiltonian depends
explicitly on time as [32,33]

H = π2

2m
e−γ0t + V (q)eγ0t , (3)

where π is a canonical momentum conjugate to q. The
canonical quantization [q,π ] = ih̄, with p = πe−γ0t , leads to
the desired equations,

d

dt
〈p〉 + γ0〈p〉 +

〈
∂V

∂q
(q)

〉
= 0, (4)

d

dt
〈E〉 = −γ0

m
〈p2〉. (5)

Here, the expectation value of an operator O is denoted
as 〈O〉 = ∫

dqψ∗Oψ with a wave function ψ = ψ(q,t). p
can be regarded as the kinetic momentum operator, because
the relation 〈p〉 = m (d〈q〉/dt) holds. Notice that the kinetic
momentum operator depends explicitly on time in this model.

Because the Hamiltonian (3) is Hermitian, the probability
is conserved with the continuity equation of

∂ρ

∂t
+ ∂J

∂q
e−γ0t = 0, (6)

where ρ = |ψ |2 and J = (h̄/m)Im(ψ∗∂ψ/∂q) are the prob-
ability density and the current, respectively, Im denoting the
imaginary part.

Because the kinetic momentum operator in this model
depends explicitly on time, the commutation relation between
the coordinate and the physical momentum is of the form

[q,p(t)] = ih̄e−γ0t . (7)

Hence, the quantum fluctuation disappears as t � 1/γ0. One
may consider that this unphysical feature can be neglected
if one considers only a short time behavior. However, the
friction is not active in that time regime, because the factor
e−γ0t determines how much the momentum is damped, and
thus the dynamics may be rather trivial there.

C. The Kostin and the Albrecht models

In the Kostin and the Albrecht models, the momentum
operator is kept time independent, but a nonlinear potential
W is introduced in the Hamiltonian:

H = p2

2m
+ V (q) + γ0W. (8)

In the Kostin model, the nonlinear potential is taken to be [34]

WKo = h̄

2i

(
ln

ψ

ψ∗ −
〈

ln
ψ

ψ∗

〉)
, (9)

= h̄[Im(ln ψ) − 〈Im(ln ψ)〉], (10)

while in the Albrecht model it is taken as [35]

WAl = 〈p〉(q − 〈q〉). (11)

With the canonical quantization, one obtains Eq. (4) together
with

∂ρ

∂t
+ ∂J

∂q
= 0 (12)

for both Hamiltonians.
The energy dissipation for the Kostin model is given by

d

dt
〈E〉 = −γ0

m

〈(
mJ

ρ

)2〉
. (13)

Kan and Griffin rederived the Kostin Hamiltonian from a fluid
dynamics point of view [22,44]. In that context, mJ/ρ in
Eq. (13) is the kinetic momentum, and hence Eq. (13) is similar
to Eq. (2). For the Albrecht model, however, one obtains

d

dt
〈E〉 = −γ0

m
〈p〉2, (14)

as is desired. Notice that the energy dissipation is proportional
to 〈p2〉 in the Caldirola-Kanai and the Kostin models [see
Eqs. (5) and (13)], while it is 〈p〉2 in the Albrecht model. In
the classical limit, these quantities are the same as each other,
but they may differ in quantum mechanics.

In Ref. [43], Hasse discussed a generalization of the
Albrecht model and suggested a better nonlinear potential, W ,
which reproduces the classical reduced frequency for a damped
harmonic oscillator. For simplicity, however, we consider only
the Albrecht model in this paper.
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D. Generalization for a collision problem

In the original models for quantum friction, the friction
constant γ0 is treated to be a constant. When considering
friction in a collision problem, however, we have to introduce
a friction form factor f (q), because the energy dissipation
occurs only during interaction. That is, the form factor f (q)
vanishes outside the range of the potential, V (q). A naive
replacement of γ0 in the model Hamiltonians with γ0f (q)
does not work owing to the q dependence in the form factor.
Alternatively, in this paper we consider a time-dependent
friction coefficient γ (t) which vanishes after the interaction.
In the simple form of γ (t) = γ0f (〈q〉t ), the dissipation
continuously occurs even after the interaction if an incident
wave is equally bifurcated into transmitted and reflected waves.
To avoid this undesired behavior, we choose the form

γ (t) = γ0〈f (q)〉t . (15)

In Ref. [41], Hahn and Hasse discussed a more complex form
factor but it was shown that the behavior is quite similar to the
simple one.

An extension to the time-dependent friction coefficient is
obvious for the nonlinear potential models, just changing γ0 to
γ (t) in Eq. (8). For the Caldirola-Kanai model, however, the
following modification is necessary [45]:

H = π2

2m
e− ∫ t

0 dt ′γ (t ′) + V (q) e
∫ t

0 dt ′γ (t ′). (16)

Here we have assumed that the initial time is t = 0. The
uncertainty relation is now changed from Eq. (7) to

[q,p(t)] = ih̄ e− ∫ t

0 dt ′γ (t ′). (17)

Because of these modifications, the three Hamiltonians
are now nonlinear. It means that the superposition principle
is violated. We are forced to admit this undesired property,
because they are inevitable in the present formalism.

III. RESULTS

To calculate the tunneling probability with the three models
discussed in the previous section, we integrate the time-
dependent nonlinear Schrödinger equation,

ih̄
∂

∂t
ψ = Hψ. (18)

In what follows, we employ the same potential as in Ref. [46],
that is,

V (q) = V0e
− q2

2s2 , (19)

with V0 = 100 MeV and s = 3 fm. This potential somehow
simulates the 58Ni + 58Ni reaction, and thus we take mc2 =
29 × 938 MeV.

A. Wave-packet tunneling without friction

Before we introduce the friction, we first discuss the time-
dependent approach to quantum tunneling. For the calculation
of the tunneling probability for the time-dependent nonlinear
Hamiltonians, the usual time-independent approach, which
imposes the asymptotic plane-wave boundary condition,

would not be applicable. An alternative method is to make
a wave packet propagate, then observe how it bifurcates after
it passes the potential region.

A wave packet is a superposition of various waves, each of
which has a different energy. Hence, to obtain the tunneling
probability for a certain energy, one needs either to perform the
energy projection [47,48] or to broaden the spatial distribution
of the wave packet so that the energy distribution becomes
narrow [49]. In the former method, the tunneling probability is
calculated as the ratio of the energy distribution of a transmitted
wave packet to that of the incident one at a fixed energy. This
method, however, is not applicable in our case, because we do
not know a priori how much energy is lost during a collision
at each energy. Therefore, we shall employ the latter approach
here. To this end, it is necessary to know how narrow the energy
distribution should be in the wave packet to obtain meaningful
results.

To clarify the effect of finite width in the energy distribution,
we take the initial wave function in the energy space ψ̃0(E; Ei)
with the Gaussian form,

|ψ̃0(E; Ei)|2 = 1√
2πσ 2

E

e
− (E−Ei )2

2σ2
E , (20)

where Ei and σE are the mean energy and the width of
the energy distribution, respectively. Multiplying ψ̃0(E; Ei)
by eik(q−q0) with E = h̄2k2/(2m) and making its Fourier
transform into the coordinate space, one obtains the initial
wave function in the coordinate space, ψ(q,t = 0; Ei), which
is consistent with the energy distribution given by Eq. (20).
Such wave function has the mean position of q0. Notice that the
energy alone does not determine the direction of propagation
of the wave packet. It is determined by the interval of the
integration with respect to k. We consider a propagation of the
wave packet from q0 < 0 towards the positive q direction, and
thus we make the integration from k = 0 to ∞. Even though
this initial wave function is somewhat different from the one
used in Refs. [48,49], we find that this form is more convenient
to discuss a correspondence to the time-independent solutions
[see Eq. (22) below].

By integrating the time-dependent Schrödinger equation
(18) from t = 0 to t = tf , by which time the bifurcation of the
wave packet has been completed, we calculate the tunneling
probability Twp(Ei) as

Twp(Ei) =
∫ ∞

0
dq |ψ(q,tf ; Ei)|2. (21)

In implementing the time integration, it is helpful to introduce
the dimensionless time τ ≡ t/t0, by measuring the time in
units of a typical time scale of the problem, t0. For this, we
take t0 as the time taken by a free classical particle to travel
some distance L, that is, t0 = L/

√
2Ei/m. We choose L so

that the final mean position of the transmitted wave packet at
t = t0 is almost independent of Ei (and the friction coefficient,
γ0) for each parameter set.

When σE is small enough, it is expected that Twp(Ei) is
nearly the same as the tunneling probability obtained for
a certain energy Ei , Tex(Ei). More generally, the following
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FIG. 1. Comparison of the tunneling probability of a one-
dimensional potential obtained with several methods. The solid lines
show the penetrability obtained with the time-independent method,
while the solid circles show that with the time-dependent wave-packet
method. The dashed lines denote the smeared tunneling probability,
according to Eq. (22). Panel (a) is for the energy width of σE = 1 MeV
in the wave packet, while panel (b) is for σE = 0.5 MeV.

relation between Twp and Tex should hold:

Twp(Ei) =
∫ ∞

0
dE|ψ̃0(E; Ei)|2Tex(E). (22)

Without friction, Tex(E) can be calculated with the time-
independent approach. The top panel of Fig. 1 shows the result
for σE = 1 MeV. To solve the time-dependent Schrödinger
equation with a wave packet, we employ the Crank-Nicholson
method together with the tridiagonal matrix algorithm [50]
with grid sizes of 	τ = 0.000 25 and 	q = 0.01 fm. We take
a space of −100 fm < q < 100 fm, and set q0 = −50 fm and
L = 165 fm. The solid line shows the penetrability obtained
with the time-independent method, while the dots are obtained
with the wave-packet method. The dashed line denotes the
average penetrability according to Eq. (22). One can find
that Eq. (22) is valid until the tunneling probability falls
below 10−7.

To improve the agreement between Twp and Tex, one needs
a smaller value of σE . The bottom panel of Fig. 1 shows the
result for σE = 0.5 MeV. In this case, we enlarge the space
to −150 fm < q < 150 fm to accommodate a spatially wider
wave packet. As one can see, the penetrability with the time-
dependent wave-packet method is now in a good agreement
with Tex for the tunneling probability higher than 10−4. We

TABLE I. The dimensionless friction coefficient γ0/c, c being the
speed of light, for the weak and strong friction cases. All the values
are given in units of 10−3.

Strength Caldirola-Kanai Kostin Albrecht

Weak (Eloss = 5 MeV) 2.14 2.16 2.17
Strong (Eloss = 30 MeV) 13.8 14.0 14.0

therefore use σE = 0.5 MeV for all the calculations shown
below.

B. Free wave-packet evolution with friction

To discuss the value of a friction coefficient as well as
numerical accuracy of the calculations, we next consider free
wave packet in this section. As discussed in Sec. II, the
potential and the corresponding friction form factor should
have a similar range. In this paper we simply employ the same
form for the form factor as that for the potential, Eq. (19),

f (q) = 1√
2πs2

e
− q2

2s2 . (23)

Here f (q) is normalized so that γ0 is interpreted as the strength
of friction. Note that the dimension of γ0 is altered from inverse
time to velocity.

The friction strength γ0 is determined based on the amount
of energy loss. Because the energy loss depends on energy, we
choose the barrier top energy, Ei = 100 MeV, as a reference.
With the mean energy of the transmitted wave, Ef , the energy
loss Eloss is given by Eloss = Ei − Ef . We here consider weak
and strong friction cases, for which Eloss is 5 and 30 MeV,
respectively. These are realized when γ0 is chosen, as listed
in Table I.

Using these friction coefficients, the accuracy of integration
of the time-dependent noninear Schrödinger equation is tested
by checking how well the equation of motion, Eq. (4), is
reproduced. The equation cannot be solved in the same way as
in Sec. III A, because the matrix is no longer in a tridiagonal
form owing to the nonlinearity. Instead, we carry out the
numerical integration in the following way.

The discretized Schrödinger equation may be given by

ih̄
ψn+1 − ψn

	t
= Hn+1ψn+1 + Hnψn

2
(24)

at the nth time grid. Here H is the Hamiltonian which
depends on ψ . In our calculation, we simply neglect the time
dependence of the Hamiltonian and obtain

ih̄
ψn+1 − ψn

	t
= Hn ψn+1 + ψn

2
. (25)

We integrate this equation with grid sizes of 	τ = 0.000 25,
	q = 0.01 fm for the Caldirola-Kanai and the Kostin models,
and 	τ = 0.000 15, 	q = 0.01 fm for the Albrecht model.

Care must be taken in integrating the equation for the Kostin
model. The nonlinear potential Eq. (10) is nothing but the
phase of a wave function, and hence a naive estimation leads
to discontinuities in the potential. However, one can estimate

054604-4



QUANTUM TUNNELING WITH FRICTION PHYSICAL REVIEW C 95, 054604 (2017)

the continuous phase by the definition [22] (see also Ref. [25])

arg ψ(q,t) = Im[ln ψ(q,t)] + 2π (n+ − n−), (26)

where n+ and n− are the number of crossing the discontinuous
points from π to −π and from −π to π , respectively. We take
q = 0 as a reference and compute n+(n−) by counting the point
where the adjacent phase differs by less than −4 (more than 4).

Our numerical test is carried out for Ei = 100 MeV. We
compare the following quantity with that of the no friction:

Accu ≡ 1

h̄

∣∣∣∣ d

dτ
〈p〉 + γ t0〈p〉

∣∣∣∣. (27)
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FIG. 2. (a)–(c) The numerical accuracy defined by Eq. (27) in
the case of the strong friction. The dashed and the solid lines show
the results without and with friction, respectively. The dotted lines
are the expectation value of the form factor, 〈f (q)〉. (d) The time
dependence of 〈q〉 for the Caldirola-Kanai model. All the calculations
are performed with L = 160 fm.

Because we do not consider the potential in this section, this
quantity vanishes if the equation of motion is fully satisfied.
The accuracy for the strong friction case is shown in Figs. 2(a)–
2(c) for the three friction models. The expectation value of
the form factor, 〈f 〉, is also shown to illustrate the effect of
nonlinearity on numerical accuracy. The corresponding 〈q〉 as
a function of τ is also shown in Fig. 2(d) for the Caldirola-
Kanai model (the results for the other two models are almost
the same and are not shown in the figure). We have verified
that the probability is conserved within a numerical accuracy
for all the calculations. It is found that the Caldirola-Kanai
model can be integrated as accurately as the no friction case.
In contrast, the reproduction of the equation of motion is
less satisfactorily with the Kostin and the Albrecht models
owing to the nonlinearity of the equations. This is expected
if the nonlinearity owing to the form factor plays a much less
important role as compared to the nonlinearity of the equation
itself, because the nonlinearity of the Caldirola-Kanai model
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FIG. 3. Same as Fig. 2, but in the case of the weak friction.
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FIG. 4. The time evolution of a wave packet for a tunneling
problem in the Caldirola-Kanai model. Panels (a), (b), and (c)
correspond to the case of without friction, with weak friction, and with
strong friction, respectively. The initial energy Ei and L are set to be
Ei = 100 MeV and L = 165 fm for no friction, Ei = 103 MeV and
L = 165 fm for weak friction, and Ei = 120 MeV and L = 185 fm
for strong friction.

is caused only by the friction form factor, Eq. (23). Actually,
we have verified that the accuracy remains almost the same as
Fig. 2 even without the form factor for all the models.

Notice that the increase of Accu at large τ is attributable to
the finiteness of our space; that is, q is limited in the range of
−150 fm � q � 150 fm. An accumulation of numerical errors
is rather small, as no increase is observed when L is taken to
be small enough so that the tail of the wave packet does not
reach the edge of the box at τ = 1 while keeping the number
of step in the τ integration to be the same.

The accuracy of the nonlinear potential models does not
improve even for the weak friction, as shown in Figs. 3(a)–3(c).
Even though the absolute value of Accu is slightly reduced in
this case, the τ dependence remains almost the same.

We should note that the damping from a bound excited
state to the ground state can successfully be described with the
Kostin model [22,51]. Actually, we also have verified it for a
harmonic oscillator with the same grid sizes. An application
to scattering problems seems more difficult with our present
numerical method.
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FIG. 5. The energy dependence of the tunneling probability for
the Caldirola-Kanai (dot-dashed lines), the Kostin (solid circles), and
the Albrecht (dotted lines with solid diamonds) models with the weak
friction. Panel (a) is in the linear scale, while the panel (b) is in the
logarithmic scale. The result without friction is also shown by the
solid lines for a comparison.

C. Quantum tunneling with friction

Let us now discuss dissipative quantum tunneling, i.e.,
quantum tunneling in the presence of friction. For an illus-
tration, Fig. 4 shows the time-evolution of the wave packet for
the Caldirola-Kanai model. The initial mean energy is chosen
so that the transmitted wave packet has an appreciable amount.
The calculations are performed with Ei = 100 MeV and
L = 165 fm for no friction, Ei = 103 MeV and L = 165 fm
for weak friction, and Ei = 120 MeV and L = 185 fm for
strong friction. The behavior is quite similar also for the
nonlinear potential models. Notice that the reflected and the
transmitted wave packets at τ = 1 largely deviate from a
symmetric Gaussian shape in the presence of friction.

Figures 5 and 6 compare the tunneling probability as a
function of energy obtained with the three friction models
for the weak and the strong friction cases, respectively. We
plot only the tunneling probability larger than 10−4, according
to the discussion in Sec. III A. One can see that the tunneling
probability of the three models is nearly the same, even though
there might be a possibility that the results of the Kostin and
the Albrecht models suffer from numerical errors with the
present setup of numerical calculations (see the discussion in
Sec. III B). It is interesting to notice that the Caldirola-Kanai
and the Kostin models lead to almost the same results to each
other, while the result of the Albrecht model slightly deviates
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FIG. 6. Same as Fig. 5, but with the strong friction.

from the other two models. Even though the exact cause of this
different behavior is not known, a possible origin may be the
fact that the energy dissipation is slightly different between the
Albrecht model and the Caldirola-Kanai/Kostin models [see
the discussion below Eq. (14)].

In what follows, we focus only on the result of the Caldirola-
Kanai model. As can be seen in Fig. 7(a), the stronger
the friction is, the lower the tunneling probability results
in. This behavior is consistent with the results of Ref. [37]
for a rectangular barrier unless the tunneling probability is
extremely small. Reference [37] showed that the tunneling
probability is not affected by friction at energies well below
the barrier. Whereas the numerical accuracy has yet to be
estimated to draw a conclusive conclusion concerning the role
of friction in quantum tunneling at deep subbarrier energies,
we simply could not confirm the result of Ref. [37] because a
finite width in the wave packet prevents us to go into the deep
subbarrier energy region [see Fig. 1(b)]. In Ref. [40], McCoy
and Carbonell argued that the tunneling probability is either
increased or decreased by fiction depending on the magnitude
of the barrier height and width. We do not confirm their results
either, partly because we do not include the fluctuation term
in the Hamiltonian.

To gain a deeper insight into the role of friction in quantum
tunneling, we next discuss a barrier distribution. In the field
of heavy-ion subbarrier fusion reactions, the so-called fusion
barrier distribution has been widely used in analyses of
experimental data [2,52]. This quantity is defined as the second
energy derivative of the product of the incident energy E and
fusion cross sections σfus, that is, d2(Eσfus)/dE2 [53], and has
provided a convenient representation to study the underlying
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FIG. 7. (a) The penetrabilities for the Caldirola-Kanai model as
a function of incident energy. The solid line corresponds to the
no-friction case. The dashed and the dotted lines are for the weak
and strong friction cases, respectively. (b) The corresponding barrier
distribution defined as the first energy derivative of the penetrability.

dynamics of subbarrier fusion reactions. For the tunneling
problem, this quantity corresponds to the first energy derivative
of the penetrability, dT /dE [3]. The barrier distribution for
the Caldirola-Kanai model is shown in Fig. 7(b). Whereas the
barrier distribution shows a symmetric peak in the case of
no friction, some strength is shifted towards higher energies
as the strength of the friction increases and the barrier
distribution becomes structured. It is interesting to notice that
a similar behavior has been obtained in coupled-channels
calculations for fusion in relatively heavy systems, such as
100Mo + 100Mo [54].

The barrier distribution indicates that the energy damping
during tunneling results in a increased effective barrier, whose
height is thus energy dependent and is determined by the
strength of friction. This leads us to two different points
of view for dissipative quantum tunneling. From one view
point, the incident energy is damped by friction, while a
wave packet traverses towards a fixed barrier. This can be
interpreted in a different way because the effective barrier
increases dynamically owing to the friction for a fixed value of
incident energy. The barrier distribution shown in Fig. 7 well
represents this dynamical point of view of friction.

IV. SUMMARY

We have investigated the effects of friction on quan-
tum tunneling by applying the three friction models—the
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Caldirola-Kanai, the Kostin, and the Albrecht models—to
a one-dimensional tunneling problem. We have studied the
energy dependence of the tunneling probability obtained as the
barrier penetration rate of a wave packet, whose initial energy
variance is set to be small enough. To limit a region where the
dissipation is active, we have introduced the time-dependent
friction coefficient. We have shown that the friction tends
to prevent the wave packet from penetrating the barrier, and
thus the penetrability decreases as a function of the strength
of friction. We have found that the three models lead to
similar penetrabilities to each other. We have also discussed
the effect of friction on quantum tunneling in terms of
barrier distribution and have shown that the barrier distribution
becomes structured owing to friction by shifting effective
barriers towards higher energies. Among the three models that
we considered in this paper, we have found that the numerical

accuracy can be most easily handled with the Caldirola-Kanai
model.

Very recently, it has been found experimentally that heavy-
ion multinucleon transfer processes in 16,18O, 19F + 208Pb
reactions populate highly excited states in the targetlike nuclei
[55]. One may be able to describe such processes by extending
the friction models considered in this paper to multichannel
cases. We are now working towards this direction, and we will
report our results in a separate paper.

Another interesting direction is to include the random force
term to the quantum friction Hamiltonians, which leads to the
fluctuation effect. For this purpose, a proper quantization of
the fluctuation term will be needed. It would be intriguing to
investigate its effect on quantum tunneling, as has been done
in Ref. [31] using a system-plus-bath model. We leave it as a
future work.
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