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Interaction cross sections and matter radii of oxygen isotopes using the Glauber model
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Using the Coulomb modified correlation expansion for the Glauber model S matrix, we calculate the interaction
cross sections of oxygen isotopes (16–26O) on 12C at 1.0 GeV/nucleon. The densities of 16–26O are obtained using
(i) the Slater determinants consisting of the harmonic oscillator single-particle wave functions (SDHO) and (ii) the
relativistic mean-field approach (RMF). Retaining up to the two-body density term in the correlation expansion,
the calculations are performed employing the free as well as the in-medium nucleon-nucleon (NN ) scattering
amplitude. The in-medium NN amplitude considers the effects arising due to phase variation, higher momentum
transfer components, and Pauli blocking. Our main focus in this work is to reveal how could one make the best
use of SDHO densities with reference to the RMF one. The results demonstrate that the SDHO densities, along
with the in-medium NN amplitude, are able to provide satisfactory explanation of the experimental data. It is
found that, except for 23,24O, the predicted SDHO matter rms radii of oxygen isotopes closely agree with those
obtained using the RMF densities. However, for 23,24O, our results require reasonably larger SDHO matter rms
radii than the RMF values, thereby predicting thicker neutron skins in 23O and 24O as compared to RMF ones. In
conclusion, the results of the present analysis establish the utility of SDHO densities in predicting fairly reliable
estimates of the matter rms radii of neutron-rich nuclei.
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I. INTRODUCTION

The rapid progress in the accelerator and detection tech-
niques around the globe has made it possible to produce
and study unstable nuclei away from the stability line. This
development has added new dimensions in the fields of
both nuclear physics and nuclear astrophysics. The unstable
neutron-rich nuclei play an important role in the formation
of ultra-neutron-rich and superheavy nuclei near the nascent
neutron star. The formation of such nuclei is the result of the
nuclear reactions and fusion phenomena in the cosmological
objects. The study of the results of various observations,
such as the nuclear reaction cross sections, elastic scattering
differential cross sections, one-nucleon removal cross sections,
and Coulomb breakup cross sections makes it possible to
extract information about the detailed structure of these
unstable nuclei, particularly the halo structure near the drip
lines. Impetus to the field of unstable neutron-rich nuclei,
however, came more into existence only after the results of
Tanihata et al. [1], who discovered the neutron halo in 11Li.
Subsequently, the matter radii of neutron-rich nuclear isotopes
have been quite effectively derived from the measurement of
reaction cross sections [2]. A nuclear halo is manifested by
a sudden increase in the reaction cross section and hence
the matter radius of a nucleus compared to its neighboring
isotopes. Such a structure has been considered as the one
having one or two weakly bound valence neutrons, which
allows the tunneling of the wave function into the classically
forbidden region, thereby forming a low-density neutron halo
around the core. This feature of extended neutron distribution
has also been observed in 11Be [3,4] and 19,22C [5–8], and 31Ne
in the so-called island of inversion region [9].
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Due to limited experimental information on the neutron
drip line for Z > 8, the production of oxygen isotopes from
A = 16 to 28 may be considered as the heaviest nuclei for
which a neutron drip line has been well established. The
interaction cross-section (σI ) data for oxygen isotopes up
to the drip-line nucleus 24O are available at relatively high
energies (∼1.0 GeV/nucleon) [2]. These cross sections show
a smooth increase with increasing neutron number from 16O
to 21O and then a sudden increase up to 23O. The sharp
increase in σI for 23O supports the idea of 23O being a
one-neutron halo and having large matter radius, although its
relatively high one-neutron separation energy (∼2.74 MeV)
[2] favors it to have a nonhalo structure. To explore the
anomaly in the interaction cross section of 23O, Kanungo et al.
[10] have revised the measurements of σI of 22,23O-12C at
∼900 MeV/nucleon. The new data show that σI for 23O is
smaller than that reported earlier. The value of σI for 23O in
the revised data is only ∼8–9% larger than that for 22O, which
may not be sufficient to classify 23O as a one-neutron halo.

In a recent analysis [11], we have calculated the inter-
action cross sections of neon isotopes 17–32Ne on 12C at
240 MeV/nucleon within the framework of Coulomb modified
correlation expansion for the Glauber model (CMGM) S ma-
trix. The results suggested that the use of the Slater determinant
description of colliding nuclei, involving harmonic oscillator
single-particle wave functions (hereafter referred to as SDHO
densities), can be considered as a good starting point to predict
the matter root-mean-square (rms) radii of stable as well as
(exotic) neutron-rich nuclei.

Motivated by the successful application of CMGM to
analyzing the differential cross section and reaction cross
section of nucleon-nucleus and nucleus-nucleus collisions at
intermediate energies, we, in this work, propose to undertake
the analysis of the interaction cross sections of oxygen
isotopes, 16–24O, on 12C at ∼1.0 GeV/nucleon within the
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framework of CMGM. The calculations consider up to the
two-body density term in the correlation expansion, which is
expected to provide the dominant correction to the uncorre-
lated part. Keeping in view the effective use of SDHO densities
in predicting the nuclear matter rms radii, particularly for the
neutron-rich nuclei near the drip lines, the calculations involve
SDHO densities for oxygen isotopes. To test the usefulness
of SDHO densities, we also consider the relativistic mean
field (RMF) densities, obtained in this work, in calculating the
interaction cross sections of oxygen isotopes. Our aim in this
work is to see how far the considered densities account for the
available experimental data and what could be said about the
use of SDHO densities in predicting the matter rms radii of
oxygen isotopes.

A brief formulation of the problem is given in Sec. II. The
numerical results are presented and discussed in Sec. III. The
conclusions are presented in Sec. IV.

II. FORMULATION

According to the Glauber model, the scattering amplitude
describing the elastic scattering of a projectile nucleus with
ground-state wave function ψB on a target nucleus with
ground-state wave function ψA may be written as [12,13]

Fel(�q) = iK

2π

∫
ei �q.�b[1 − Sel(�b)]d2b, (1)

Sel(�b) = 〈ψAψB |
A∏

i=1

B∏
j=1

[1 − �NN (�b − �si + �s ′
j )]|ψBψA〉,

(2)

where A(B) is the mass number of target(projectile) nu-
cleus, �b is the impact parameter vector perpendicular to

the incident momentum �K , �si
�(s ′
j ) are the projections of the

target(projectile) nucleon coordinates on the impact parameter
plane, and �NN (�b) is the nucleon-nucleon (NN ) profile
function, which is related to the NN scattering amplitude
fNN (�q) as follows:

�NN (�b) = 1

2πik

∫
e−i �q.�bfNN (�q)d2q, (3)

where k is the incident nucleon momentum corresponding
to the projectile kinetic energy per nucleon and �q is the
momentum transfer.

To obtain the correlation expansion for the Glauber model
S matrix, we follow Ahmad [14], according to which the S-
matrix element Sel is rewritten as

Sel(�b) = 〈ψAψB |
A∏

i=1

B∏
j=1

[(1 − �00) + γij ]|ψBψA〉, (4)

where

γij = �00 − �NN (�b − �si + �s ′
j ) (5)

and

�00 =
∫

ρA(�r)ρB(�r ′)�NN (�b − �s − �s ′)d�rd �r ′
. (6)

The quantities ρA and ρB in Eq. (6) are the (one-body) ground-
state densities of the target and projectile, respectively.

Now, it is found that the double product in Eq. (4) gives the
following expression for the S-matrix element Sel :

Sel(�b) = S0(�b) +
AB∑
l=2

Sl(�b), (7)

where

S0(�b) = (1 − �00)AB (8)

and

Sl(�b) = 〈ψAψB | 1

l!
(1 − �00)AB−l

′∑
i1,j1

′∑
i2,j2

· · ·

×
′∑

il ,jl

γi1,j1γi2,j2 . . . γil ,jl
|ψBψA〉. (9)

The primes on the summation signs indicate the restriction
that two pairs of indices cannot be equal at the same time (for
example, if i1 = i2 then j1 �= j2 and vice versa). Moreover, the
sum in Eq. (7) starts from l = 2, as the l = 1 term does not
contribute to the elastic scattering.

Further, it is found that the substitution of expansion (7)
in Eq. (1) leads to the required correlation expansion for the
elastic scattering amplitude

Fel(�q) = F0(�q) +
AB∑
l=2

Fl(�q), (10)

where

F0(�q) = iK

2π

∫
ei �q.�b[1 − S0(�b)]d2b (11)

and

Fl(�q) = − iK

2π
〈ψAψB |Sl|ψBψA〉. (12)

The term F0 in Eq. (10) is the uncorrelated part of the
scattering amplitude, involving all orders of scattering and
depends upon the one-body densities of the colliding nuclei
through �00 [Eq. (6)]. The other terms Fl (l � 2) involve the
lth-body density of both the target and projectile nuclei and
may be regarded as providing corrections to the uncorrelated
part. As mentioned in Sec. I, we consider only up to F2(S2) term
in Eq. (10) [Eq. (7)], which is expected to provide a leading
correction to the uncorrelated part; the detailed evaluation of
F2(S2) follows a similar approach as discussed in Ref. [14].

The Coulomb scattering has been incorporated in the same
way as suggested in Ref. [15]. Further, the deviation in the
straight-line trajectory of the Glauber model because of the
Coulomb field can be incorporated [16] by replacing b in Sel(�b)
[Eq. (4)] by b

′
, which is the distance of the closest approach

in Rutherford orbits and is given by

kb
′ = η + (η2 + k2b2)1/2, (13)

where η = ZAZBe2/h̄v is the Sommerfeld parameter with
ZA(ZB) as the target (projectile) atomic number and v is the
projectile-target relative velocity.
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With these considerations, the elastic differential cross
section is calculated using the expression

dσ

d	
= |Fel(�q)|2. (14)

In connection with the interaction cross section (σI ), it may
noted that, at relativistic energies, the inelastic cross section
(σinela) is smaller than the typical errors of σI and, therefore, σI

can be assumed to be nearly equal to the reaction cross section
(σR) [17]. Hence, the Glauber model S matrix [Eq. (7)] can be
used to calculate both σI and σR as follows:

σI (R) =
∫

d2b[1 − |Sel(�b)|2]. (15)

Finally, it should be noted that the above formulation can
also be used for hadron-nucleus collision [18]. For this, we
need to drop all the quantities related to the projectile and set
B = ZB = 1.

III. RESULTS AND DISCUSSION

Following the approach outlined in Sec. II, we have
calculated the interaction cross sections (σI ) of 16–26O on 12C
at 1.0 GeV/nucleon. The inputs required in the calculation are
(i) the NN scattering amplitude, (ii) the proton and neutron
density distributions of colliding nuclei, and (iii) the oscillator
parameters.

In the first phase of our calculations, the NN scattering
amplitude is parametrized in the form [19]

fNN (�q) = kσNN

4π
(i + ρNN )e−βNN q2/2, (16)

where σNN is the NN total cross section, ρNN is the ratio of the
real to the imaginary parts of the forward NN amplitude, and
βNN is the slope parameter. The values of σNN , ρNN , and βNN

at energy under consideration are taken from Ref. [20]. Here
it should be noted that the above-mentioned NN amplitude,
with its parameter values in Ref. [20], describes the free NN
scattering.

The proton and neutron density distributions of 16–26O iso-
topes are obtained using (i) the Slater determinants constructed
from the harmonic oscillator single-particle wave functions
(SDHO) and (ii) the relativistic mean field (RMF) approach.
For SDHO densities, we follow similar approach to that
outlined in Refs. [11,21]. The expressions for the SDHO proton
and neutron density distributions of oxygen isotopes (16–26O)
are given in the appendix. To obtain the RMF proton and
neutron density distributions for oxygen isotopes (16–26O), we
have performed calculations in an axially symmetric deformed
basis with reflection symmetry. The force parameter NL3∗ has
been used for the Lagrangian [22]. Pairing correlations have
been treated within the BCS scheme with constant pairing
gap [23]. The RMF densities of 16–26O, obtained in this
way, are depicted in Figs. 1 and 2, and the corresponding
root-mean-square (rms) radii for proton, neutron, and matter
distributions are given in Table I. For the target nucleus 12C, we
use density distributions for the protons and neutrons, which
are obtained by using the RMF approach [9].

The oscillator parameters (α2) for SDHO proton and
neutron density distributions are fixed from the corresponding

FIG. 1. Point-proton SDHO and RMF density distributions in
16–26O isotopes. Squares (inverted triangles) and triangles show,
respectively, SDHO and RMF densities. The calculations of SDHO
densities, shown by squares and inverted triangles, correspond to the
values of oscillator parameters for proton distributions as given in
Tables II and III, respectively.

relativistic mean field rms radii (Table I) for nuclei under
consideration. The values of α2 obtained in this way are given
in Table II, and the SDHO proton and neutron distributions are
presented in Figs. 1 and 2.

The results of the calculation for σI (with two-body density
term) of 16–26O on 12C at 1.0 GeV/nucleon using SDHO and
RMF densities are presented in Fig. 3. It is found that both
the SDHO and RMF densities provide similar accounts of
the interaction cross sections. Further, it is to be noted that
although the theoretical predictions show the increasing trend
as observed in the experimental data [2], we observe large
discrepancies between theory and experiment in almost all
the cases. From the point of view of density, it is seen that
although the densities under consideration (Figs. 1 and 2) are
quite different, this difference is not significantly reflected
in the σI results (Fig. 3). This shows that SDHO and RMF
densities of 16–26O, with similar rms radii of proton and neutron
distributions, may be considered on equal footing as far as the
calculations of σI are concerned.

To look into the possible causes of source of discrepancy be-
tween theory and experiment, we now proceed to calculate the
interaction cross sections of 16–24O on 12C at 1.0 GeV/nucleon
using the SDHO densities in which the oscillator parameters
are varied up to the extent of getting better description of
the data. In fact, the purpose of such calculations is to assess
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FIG. 2. Point-neutron SDHO and RMF density distributions in
16–26O isotopes. Squares (inverted triangles) and triangles show,
respectively, SDHO and RMF densities. The calculations of SDHO
densities, shown by squares and inverted triangles, correspond to the
values of oscillator parameters for neutron distributions as given in
Tables II and III, respectively.

how far a reasonable variation in the RMF matter rms radii of
oxygen isotopes helps in accounting for the experimental data.
To achieve this, the value of α2 for proton distribution (α2

p) in
16O has been fixed from the interaction cross section of 16O on
12C at 1.0 GeV/nucleon, and it is the corresponding rms radius
which has been assumed to be the same for all other oxygen
isotopes. Thus the present calculations involve searching α2

TABLE I. The calculated (RMF) proton (rp), neutron (rn), and
matter (rm) radii of oxygen isotopes.

Nucleus rp rn rm

(fm) (fm) (fm)

16O 2.75 2.70 2.72
17O 2.74 2.84 2.79
18O 2.71 2.93 2.83
19O 2.67 2.97 2.85
20O 2.64 3.01 2.87
21O 2.63 3.04 2.89
22O 2.62 3.00 2.92
23O 2.62 3.16 2.99
24O 2.63 3.25 3.05
25O 2.65 3.33 3.13
26O 2.68 3.39 3.19

TABLE II. The calculated oscillator parameters, α2
p and α2

n, that,
when used in SDHO densities, predict the rms radii, rp and rn

(Table I), as obtained from the RMF proton and neutron density
distributions, respectively.

Nucleus α2
p α2

n

(fm−2) (fm−2)

16O 0.286 0.295
17O 0.288 0.286
18O 0.296 0.281
19O 0.305 0.284
20O 0.312 0.286
21O 0.316 0.287
22O 0.318 0.286
23O 0.318 0.277
24O 0.317 0.267
25O 0.312 0.258
26O 0.305 0.251

for neutron distribution (α2
n) only for the isotopes 17–24O. The

results of such calculations are shown in Fig. 4. The values
of α2

p and α2
n obtained in this way, and the corresponding

matter rms radii of oxygen isotopes are presented in Table III.
We find that such an exercise though provides good account
of the interaction cross-section data, the matter rms radii of
16–24O are found to be quite different from those obtained
using RMF densities (Fig. 5). A similar situation has also
been observed by Abu-Ibrahim et al. [24] in their calculations
involving SDHO densities. To examine the extracted matter
rms radii of oxygen isotopes (Table III) in other situations, we
consider the analysis of the available experimental data on (i)
p-16O elastic differential cross sections at 200, 300, 600, and
1000 MeV and (ii) p-16O reaction cross sections in the energy
range 40–1000 MeV. The values of the parameters of the NN
amplitude [Eq. (16)] at energies under consideration are taken
from Ref. [20]. The results of these calculations are presented
in Figs. 6 and 7. Here, we find that the extracted matter rms
radius of 16O helps to push theory closer to the experiment, but
the results are not as satisfactory as the one observed in the case
of 16O-12C interaction cross section (Fig. 4). As a result, the
present calculations lead to inconclusive findings simply due
to the fact that since the RMF densities work well for nonhalo
nuclei [9], the significant deviation from the RMF matter rms
radii may not be justified. Moreover, our major concern is the
rms radius of 16O nucleus which makes sense provided it is
closer to the electron scattering value [28]. Unfortunately, the
present calculation with SDHO density predicts smaller rms
radius of 16O (2.55 fm; Table III) as compared to those obtained
using electron scattering experiments (2.73 fm; Ref. [28]) and
RMF densities (2.72 fm; Table I). This suggests that instead
of reproducing the interaction cross-section data at the cost
of matter rms radii, one should explore the other possibilities
to understand the source of discrepancy between theory and
experiment.

Before proceeding further, it is important to reiterate that
while performing the aforesaid calculations, we have used the
experimental values of the NN total cross section (σNN ) [20],
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FIG. 3. Interaction cross sections of 16–26O isotopes on a 12C
target at 1.0 GeV/nucleon using SDHO (squares) and RMF (triangles)
densities. The calculations using SDHO densities involve the values
of oscillator parameters for proton and neutron distributions as given
in Table II. The experimental data (dots and open circles) are taken
from Ozawa et al. [2] and Kanungo et al. [10].

which describes the free NN scattering. However, the earlier
studies [29,30] demonstrated that in-medium NN total cross
section is strongly modified by the Pauli blocking. Moreover,
our results [31] have shown that it is not only the NN total cross
section but also the other parameters of the NN amplitude
(ρNN and βNN ) which get modified in the nuclear medium.
Also, the consideration of phase variation [31] and higher
momentum-transfer components [31] of the NN amplitude
seems to be important in any realistic study of the nuclear
cross-section data. Thus, keeping in view of the fact that the use
of (free) NN amplitude along with SDHO densities demands
large deviations in the so-called realistic (RMF) matter rms
radii, we therefore propose to reanalyze the 16–24O interaction
cross sections on 12C at 1.0 GeV/nucleon using the SDHO
densities corresponding to RMF matter rms radii, involving
the phase variation, higher momentum transfer components,
and Pauli blocking of the NN amplitude. Our aim is to see
how far the efforts of using realistic form of the NN amplitude
helps in accounting for the experimental data and what could
be said about the use of SDHO densities in predicting the
matter rms radii of oxygen isotopes.

In order to have physically meaningful results, we need
to have in-medium parameters of the NN amplitude in the
presence of its phase variation, higher momentum transfer
components, and Pauli blocking at the energy under consider-
ation, so that the calculations of the interaction cross sections
become parameter free. For this purpose, we consider the

FIG. 4. Interaction cross sections of 16–24O isotopes on a 12C target
at 1.0 GeV/nucleon using SDHO (inverted triangles) densities. The
calculations using SDHO densities involve the values of oscillator
parameters for proton and neutron distributions as given in Table III.
The experimental data (dots and open circles) are taken from Ozawa
et al. [2] and Kanungo et al. [10].

analysis of p-16O elastic scattering differential cross section at
1.0 GeV involving the SDHO densities with the same matter
rms radius as obtained using the RMF densities (Table I). The
calculations include systematic study of the effects arising due
to phase variation, higher momentum transfer components,
and Pauli blocking of the NN amplitude. The details of such
calculations are described as below.

TABLE III. The calculated oscillator parameters, α2
p and α2

n, that,
when used in SDHO densities, provide good account of the interaction
cross sections of 16–24O on 12C at 1.0 GeV/nucleon. The last column
gives the matter rms radii of 16–24O as predicted in these calculations.

Nucleus α2
p α2

n rm

(fm−2) (fm−2) (fm)

16O 0.332 0.332 2.55
17O 0.332 0.319 2.62
18O 0.333 0.311 2.69
19O 0.334 0.313 2.72
20O 0.334 0.321 2.73
21O 0.335 0.329 2.74
22O 0.335 0.330 2.76
23O 0.336 0.281 2.95
24O 0.336 0.231 3.21
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FIG. 5. Matter rms radii of 16–24O isotopes using SDHO (inverted
triangles) and RMF (triangles) densities. The SDHO densities involve
the values of oscillator parameters for proton and neutron distributions
as given in Table III. The inverted open triangles with uncertainties
are the predicted SDHO matter rms radii of 23,24O that account for
the interaction cross-section data on 23O and 24O employing the in-
medium NN amplitude (see the text).

A. Effect of phase variation

To accommodate the effect of phase variation, we follow
the approach of Franco and Yin [32], according to which
the phase can be taken into account by multiplying the NN

amplitude [Eq. (16)] by the phase factor e−iγNN q2/2 and treating
the phase γNN as a free parameter. The other parameters of the
NN amplitude (σNN , ρNN , and βNN ), corresponding to free
NN scattering, are kept same as in Ref. [20]. The results of
such calculations for p-16O elastic scattering differential cross
section at 1.0 GeV are presented in Fig. 8, and the values of
phase variation parameter γ for pp and pn amplitudes are
given in Table IV.

B. Effect of Pauli blocking

As already mentioned, the in-medium NN total cross section
(σNN ) and also the other parameters of the NN amplitude (ρNN

and βNN ) are strongly modified by the Pauli blocking. Keeping
this in mind, we use Eq. (16) for the NN amplitude and fix the
in-medium value of σNN as obtained from the parametrization
of Xiangzhou et al. [33]; the parameters ρNN and βNN are
varied up to the extent of getting best possible description
of the p-16O elastic scattering differential cross-section data
at energy under consideration. These results are also shown
in Fig. 8, and the corresponding parameters for pp and pn
amplitudes are given in Table IV.

FIG. 6. Differential cross section of p-16O elastic scattering
at 200, 300, 600, and 1000 MeV. Squares, inverted triangles,
and triangles represent the results using SDHO (Table II), SDHO
(Table III), and RMF densities, respectively. The experimental data
(dots) are taken from (a) Murdock et al. [25], (b) Abu-Ibrahim et al.
[24], and [(c), (d)] Bruge [26].

C. Effect of higher momentum transfer components

In order to study the effects of higher momentum transfer
components of NN amplitude, we consider the following

FIG. 7. Reaction cross sections of p-16O scattering in the energy
range 40–1000 MeV. Squares, inverted triangles, and triangles
represent the results using SDHO (Table II), SDHO (Table III), and
RMF densities, respectively. The experimental data (dots) are taken
from Carlson [27].
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FIG. 8. Differential cross section of p-16O elastic scattering
at 1.0 GeV, showing the effects due to phase variation (PV)
(inverted triangles), higher momentum transfer components (HMTC)
(squares), and Pauli blocking (PB) (triangles) of the NN amplitude.
Open squares show the combined effect of PV, HMTC, and PB. The
experimental data (dots) are taken from Bruge [26].

parametrization of the NN amplitude [31]

fNN (�q) = ikσNN

4π

∞∑
n=0

An+1

(
σNN

4πβNN

)n

× (1 − iρNN )n+1

(n + 1)
exp

[−βNNq2

2(n + 1)

]
, (17)

TABLE IV. The values of NN amplitude parameters at 1.0 GeV
that take care of the effects arising due to phase variation (PV), higher
momentum transfer components (HMTC), and Pauli blocking (PB)
of the NN amplitude.

Effect NN σNN ρNN βNN γNN

(fm2) (fm2) (fm2)

PV pp 4.6300 −0.0900 0.1930 0.0954
pn 3.8800 −0.4600 0.1510 0.4796

HMTC pp 2.2871 −0.0451 0.1197
pn 3.3642 −0.3615 0.4746

PB pp 4.2759 −0.7843 0.1301
pn 3.7287 −1.1830 0.2121

PV+HMTC+PB pp 2.3203 −0.2373 0.1216 −0.2282
pn 3.5650 −0.5932 0.2582 0.4367

where

An+1 = A1

n(n + 1)
+ A2

(n − 1)n
+ A3

(n − 2)(n − 1)
+ · · · + An

1.2
,

(18)

with A1 = 1.
The NN amplitude [Eq. (17)] has three adjustable param-

eters; σNN , ρNN , and βNN . These parameters along with the
value of n in the summation index in Eq. (17) are varied in such
a way that one is able to get the simultaneous account of the
values of σNN and ρNN , corresponding to free NN scattering
[20] and the p-16O elastic differential cross-section data at
1.0 GeV. The results with n = 3 are also presented in Fig. 8,
and the corresponding parameters for pp and pn amplitudes
are given in Table IV.

D. Combined effect of phase variation, higher momentum
transfer components, and Pauli blocking

To look into the combined effect of phase variation, higher
momentum transfer components, and Pauli blocking, we
parametrize the NN amplitude as follows (hereafter referred
to as in-medium NN amplitude):

fNN (�q) =
{

ikσNN

4π

∞∑
n=0

An+1

(
σNN

4πβNN

)n (1 − iρNN )n+1

(n + 1)

× exp

[−βNNq2

2(n + 1)

]}
exp

(−iγNNq2

2

)
. (19)

The NN amplitude [Eq. (19)] consists of four adjustable
parameters: σNN , ρNN , βNN , and γNN . The variation of
these parameters now allows simultaneous description of the
in-medium value of σNN [33] and p-16O elastic scattering
differential cross-section data at energy under consideration.
Such results are also depicted in Fig. 8, and the corresponding
parameters of the pp and pn amplitudes are given in Table IV.

The results in Fig. 8 show that although the individual
effects of phase variation, higher momentum transfer compo-
nents, and Pauli blocking of the NN amplitude reflect their
relative importance, the inclusion of the combined effect,
however, provides quite a satisfactory explanation of p-16O
scattering data up to the available range of scattering angles.
In order to increase the domain of our calculations and to
see how far the effects of phase variation, higher momentum
transfer components, and Pauli blocking of the NN amplitude
are important in other situations, we consider the p-16O
reaction cross sections σR in the energy range 40–550 MeV,
where the experimental data are available [27]. However, for
illustration purpose, we calculate σR for p-16O scattering only
at some selective energies (40, 65, and 550 MeV). The results
of such calculations are presented in Table V. It is found
that the individual consideration of phase variation and Pauli
blocking as well as the consideration of the combination of
phase variation, higher momentum transfer components, and
Pauli blocking of the NN amplitude provide equivalently
good description of the experimental data at energies under
consideration. Further, we notice that the consideration of
higher momentum transfer components of the NN amplitude
alone shows large deviations from the experimental data at
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TABLE V. Effects of phase variation (PV), higher momentum
transfer components (HMTC), and Pauli blocking (PB) of the NN

amplitude on p-16O reaction cross sections σR at 40, 65, and 550 MeV.
σ th

R and σ
exp
R represent our theoretical estimates and experimental

values of σR .

Energy Effect σ th
R σ

exp
R

(MeV) (mb) (mb)

40 PV 452.1 452.0 [27]
PB 455.0

HMTC 533.9
PV+HMTC+PB 452.0

65 PV 365.0 365.0 [27]
PB 404.1

HMTC 475.4
PV+HMTC+PB 365.0

550 PV 294.1 290.0 [27]
PB 290.0

HMTC 348.8
PV+HMTC+PB 290.0

all the considered energies. This shows that the analysis of
p-16O reaction cross sections may not be helpful in providing
satisfactory understanding of the NN amplitude in the nuclear
medium. Thus, we arrive at the conclusion that, in the present
context, the study of p-16O elastic differential cross section
seems to be a better choice to predict the in-medium behavior
of the NN amplitude.

Having obtained the in-medium parameters of the NN
amplitude (Table IV), we now proceed to perform parameter
free calculations for 16–24O-12C interaction cross sections
at 1.0 GeV/nucleon. The results of such calculations are
presented in Fig. 9. It is found that, except for 23O and 24O, the
use of SDHO densities, corresponding to RMF matter rms
radii, along with the in-medium corrected NN amplitude,
provides satisfactory explanation of the experimental data.
Here, it should be mentioned that the results can be improved
further by making some minor changes in the RMF matter rms
radii of oxygen isotopes (results not shown).

Let us now focus our attention on 23O and 24O, whose
interaction cross sections σI with 12C are not well reproduced,
even when the in-medium effects are taken into account.
For if we have a look on the interaction cross sections
of 16–24O, we find that the values of σI follow almost a
systematic increase up to 22O, whereas this increase becomes
noticeably higher for 23O and 24O. Keeping this in mind, we
conjecture that this feature of σI beyond 22O might be due to
relatively larger envelope of neutron distribution in the surface
region of 23O and 24O, as compared to the ones obtained
using SDHO densities corresponding to RMF neutron rms
radii. In other words, we expect that both 23O and 24O may
require larger matter rms radii, as compared to their RMF
values, to accommodate the increasing trend of σI beyond
22O. To incorporate this in the calculations and to see how
far it helps in the present context, we consider the increase
in SDHO matter rms radii of 23O and 24O by varying the
oscillator parameter for neutron distribution. The results of
such calculations show that the matter rms radii of 23O and

FIG. 9. Interaction cross sections of 16–24O isotopes on a 12C
target at 1.0 GeV/nucleon. Squares show the results using SDHO
densities (involving the values of oscillator parameters for proton and
neutron distributions as given in Table II) and the free NN amplitude.
Open squares show the results using similar SDHO densities as used
in obtaining squares, but involve the combined effect of the phase
variation, higher momentum transfer components, and Pauli blocking
of the NN amplitude. The experimental data (dots and open circles)
are taken from Ozawa et al. [2] and Kanungo et al. [10].

24O that can account for the interaction cross section data
are 3.08 ± 0.10 fm and 3.28 ± 0.12 fm, respectively (shown
in Fig. 5); the coresponding values of the neutron skin
thickness in 23O and 24O are found to be 0.68 ± 0.14 fm
and 0.93 ± 0.17 fm, respectively. We find that the predicted
SDHO matter rms radii of 23O and 24O are reasonably larger
than the RMF values (Table I). Further, the results predict
thicker neutron skins in 23O and 24O as compared to RMF
ones. The detailed analysis presented herein thus establishes
the utility of SDHO densities in predicting the matter rms radii
of neutron-rich nuclei.

IV. SUMMARY AND CONCLUSIONS

In this work, we have presented a theoretical study of the
interaction cross sections of oxygen isotopes from 12C target
at 1.0 GeV/nucleon, using the Coulomb modified correlation
expansion for the Glauber model S matrix for nucleus-nucleus
scattering. The densities of the colliding nuclei are obtained
using (i) the Slater determinants consisting of the harmonic
oscillator single-particle wave functions (SDHO) and (ii) the
relativistic mean field (RMF) approach. By retaining up to
the two-body density term in the correlation expansion, the
calculations are performed using the free as well as the
in-medium nucleon-nucleon (NN ) scattering amplitude. The
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in-medium NN amplitude considers the effects arising due to
phase variation, higher momentum transfer components, and
Pauli blocking. Our main concern in this work is to see how
could one make the best use of SDHO densities with reference
to RMF one and how far the simple (single parameter) SDHO
densities account for the experimental data. The results show
that the use of SDHO densities, along with the in-medium
corrected NN amplitude, provides satisfactory explanation of
the experimental data. It is found that, except for 23,24O, the
predicted SDHO matter rms radii of oxygen isotopes closely
agree with those obtained using the RMF densities. However,
for 23O and 24O, our results require reasonably larger SDHO
matter rms radii than the RMF values. This result predicts
thicker neutron skins in 23O and 24O as compared to RMF ones.

Thus, we conclude that the present analysis establishes the
utility of SDHO densities in providing fairly reliable estimates
of the matter rms radii of neutron-rich nuclei. Using a similar
approach, we aim to predict the matter rms radii of all such
neutron-rich nuclei in near future.
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APPENDIX: INTRINSIC MATTER DENSITY DISTRIBUTIONS

1. Proton density distributions

ρ16−26O(r) = 1

π3/2p3

[
1 − 3

16α2p2
+ 1

32

r2

α2p4

]
exp

(
− r2

4p2

)
. (A1)

2. Neutron density distributions

ρ17O(r) = 1

8π3/2p3

[
9 − 2

α2p2
+ 1

16α4p4
+

(
1

3α2p4
− 1

48α4p6

)
r2 + 1

960

r4

α4p8

]
exp

(
− r2

4p2

)
, (A2)

ρ18O(r) = 1

8π3/2p3

[
10 − 5

2α2p2
+ 1

8α4p4
+

(
5

12α2p4
− 1

24α4p6

)
r2 + 1

480

r4

α4p8

]
exp

(
− r2

4p2

)
, (A3)

ρ19O(r) = 1

8π3/2p3

[
11 − 3

α2p2
+ 3

16α4p4
+

(
1

2α2p4
− 1

16α4p6

)
r2 + 1

320

r4

α4p8

]
exp

(
− r2

4p2

)
, (A4)

ρ20O(r) = 1

8π3/2p3

[
12 − 7

2α2p2
+ 1

4α4p4
+

(
7

12α2p4
− 1

12α4p6

)
r2 + 1

240

r4

α4p8

]
exp

(
− r2

4p2

)
, (A5)

ρ21O(r) = 1

8π3/2p3

[
13 − 4

α2p2
+ 5

16α4p4
+

(
2

3α2p4
− 5

48α4p6

)
r2 + 1

192

r4

α4p8

]
exp

(
− r2

4p2

)
, (A6)

ρ22O(r) = 1

8π3/2p3

[
14 − 9

2α2p2
+ 3

8α4p4
+

(
3

4α2p4
− 1

8α4p6

)
r2 + 1

160

r4

α4p8

]
exp

(
− r2

4p2

)
, (A7)

ρ23O(r) = 1

8π3/2p3

[
15 − 5

α2p2
+ 17

32α4p4
+

(
5

6α2p4
− 17

96α4p6

)
r2 + 17

1920

r4

α4p8

]
exp

(
− r2

4p2

)
, (A8)

ρ24O(r) = 1

8π3/2p3

[
16 − 11

2α2p2
+ 11

16α4p4
+

(
11

12α2p4
− 11

48α4p6

)
r2 + 11

960

r4

α4p8

]
exp

(
− r2

4p2

)
, (A9)

ρ25O(r) = 1

8π3/2p3

[
17 − 6

α2p2
+ 3

4α4p4
+

(
1

α2p4
− 1

4α4p6

)
r2 + 1

80

r4

α4p8

]
exp

(
− r2

4p2

)
, (A10)

ρ26O(r) = 1

8π3/2p3

[
18 − 13

2α2p2
+ 13

16α4p4
+

(
13

12α2p4
− 13

48α4p6

)
r2 + 13

960

r4

α4p8

]
exp

(
− r2

4p2

)
, (A11)

Here,

p2 = A − 1

4α2A
. (A12)

The quantities α2 and A in the above equations are the oscillator parameter and number of nucleons in the nucleus, respectively.
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