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Lee-Yang–inspired functional with a density-dependent neutron-neutron scattering length
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Inspired by the low-density Lee-Yang expansion for the energy of a dilute Fermi gas of density ρ and momentum
kF , we introduce here a Skyrme-type functional that contains only s-wave terms and provides, at the mean-field
level, (i) a satisfactory equation of state for neutron matter from extremely low densities up to densities close
to the equilibrium point, and (ii) a good-quality equation of state for symmetric matter at density scales around
the saturation point. This is achieved by using a density-dependent neutron-neutron scattering length a(ρ) which
satisfies the low-density limit (for Fermi momenta going to zero) and has a density dependence tuned in such a
way that the low-density constraint |a(ρ)kF | � 1 is satisfied at all density scales.
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I. INTRODUCTION

The interaction between the constituents of very dilute
Fermi systems is accurately determined by a few parameters
associated with s-wave scattering processes. An example
is given by ultracold trapped Fermi gases where the in-
teraction may be reasonably well approximated by a zero-
range force with a coupling constant directly related to the
s-wave scattering length a [1–4]. The study of a dilute
regime in fermionic systems is of particular interest for a
wide community of many-body practitioners, for instance in
the domains of atomic (cold fermionic trapped atoms) and
nuclear (nuclear matter) physics, as well as in nuclear
astrophysics for the investigation of the properties of neutron
star crusts. Within such a wide framework, bridging effective
field theories (EFTs), which by construction correctly describe
low-density regimes, with energy-density-functional (EDF)
theories, which are currently employed for instance in the
nuclear many-body problem, is a very appealing challenge
which requires a tight interchange and connections between
EFT and EDF expertise and competencies. The dilute regime
is characterized by the relation |akF | < 1. For such a regime,
Lee and Yang introduced in the 1950s an expansion in (akF )
for the ground-state energy [5]. It is important to notice that,
at the unitarity limit, for example in ultracold atomic dilute
gases close to Feshbach resonances, another expansion is used,
on 1/(akF ) (instead of akF ). The first terms of the Lee and
Yang low-density expansion in (akF ) are reported for instance
in Refs. [6–9]. More recently, such terms were derived in
the framework of EFTs [10]. The first four terms contain
only s-wave parameters: the s-wave scattering length and the
associated effective range rs , the following term appearing in
the expansion contains the p-wave scattering length. We report
here the first four terms, in the case where the spin degeneracy
is equal to 2 (for example for neutron matter):
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where N is the number of particles. Within EFT, the above
equation is obtained via dimensional regularization (DR) with

minimal subtraction. It is independent of the adopted regular-
ization scheme, provided that a matching to an effective-range
expansion is performed [11].

The comparison of the Lee-Yang (LY) energy, Eq. (1), with
the energy obtained in a many-body perturbative expansion
indicates that the terms in (kF a), (kF a)2, and (kF a)3 corre-
spond respectively to the leading-, second-, and third-order
contributions produced by a zero-range interaction with a
coupling constant related to the scattering length a [12].
The term in (kF rs)(kF a)2 corresponds to the leading-order
contribution provided by a velocity-dependent zero-range
s-wave interaction. Furthermore, it was shown in Ref. [13] that
the (kF a)2 term may be alternatively obtained at leading order
with a specific density-dependent zero-range force. We notice
finally that the term in (kF a)3 has the same kF dependence
as the term in (kF rs)(kF a)2. This implies that a zero-range
s-wave velocity-dependent term may mimic such a term at
leading order. At very small densities, these first terms of the
LY expansion, containing only s-wave scattering parameters,
are enough to correctly describe the energy of the system.

Inspired by this expansion, we introduce here a Skyrme-
type functional [14,15], containing only s-wave terms, that
leads, at the mean-field level, to an EOS for neutron matter
given by Eq. (1), with the relations

t0(1 − x0) = 4πh̄2

m
a,

t3(1 − x3) = 144h̄2

35m
(3π2)1/3(11 − 2 ln 2)a2, (2)

t1(1 − x1) = 2πh̄2

m
(a2rs + 0.19πa3),

where t0,t1,t3 and x0,x1,x3 are Skyrme parameters and the
power of the density-dependent t3 term is chosen equal to
1/3 [13]. We require that such a functional (i) correctly
describes neutron matter from extremely low densities up to
densities close to the equilibrium point of symmetric matter,
ρ = 0.16 fm−3, and (ii) provides in addition a correct equation
of state (EOS) for symmetric matter at density scales around
the saturation point. The requirement (i) cannot be fully
satisfied by using the value of −18.9 fm for the s-wave
scattering length. Such a very large value leads indeed to a
correct description of neutron matter with the first terms of
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Eq. (1) only at extremely low densities [13]. For this reason,
resumed expressions have been proposed in the literature
within EFT for cases where the scattering length is very
large (see for instance Refs. [16–18]). Recently, going towards
this direction, a hybrid functional was introduced, YGLO,
combining a resumed expression (that guarantees the correct
low-density behavior) and good properties of Skyrme-type
forces, which are known to well describe the EOS of matter
close to the equilibrium point of symmetric matter [13]. A
resumed functional making connection between cold atoms
and neutron matter was introduced in Ref. [19].

In this work, we probe the possibility of adopting a simpler
functional, which does not contain any resumed expression.
To satisfy both requirements (i) and (ii) we impose that the
neutron-neutron scattering length is density dependent, a(ρ),
in such a way to ensure the correct low-density behavior for
neutron matter (for kF going to zero) and to justify the use of a
LY-type EOS truncated at the very first terms (only parameters
related to the s-wave scattering length are taken into account).

Owing to the fact that the parameters xi associated with s-
wave terms do not appear in the mean-field EOS of symmetric
matter with a Skyrme force, we adjust here the parameters ti
to have a reasonable mean-field EOS for symmetric matter,
and we tune the neutron-neutron scattering length in the
following way: We impose that it takes the value of −18.9 fm
up to a Fermi momentum kmax

F such that kmax
F 18.9 = 1.

This ensures the correct low-density behavior. It turns out
that kmax

F ∼ 0.05 fm−1, corresponding to a maximum density
∼4 × 10−6 fm−3, where the density and the Fermi momentum
are related by the relation kF = (3π2ρ)1/3. Beyond this density
value, we generalize the low-density constraint |kF a| � 1
(that identifies the density window where the LY formula
is valid) to the case where the scattering length is density
dependent, with the relation |kF a(ρ)| � 1 used to tune the
density dependence of the scattering length. Interestingly,
the momentum dependence 1/kF obtained by imposing
such a constraint strongly resembles to the magnetic-field
dependence of the scattering length in ultracold trapped atoms
close to Feshbach resonances [2]. This indicates a very strong
analogy with ultracold atomic gases, where the scattering
length is tuned by an applied magnetic field. Our strategy of
using a Fermi momentum (or density) tuned scattering length
leads in our case to a strikingly similar behavior.

We plot in Fig. 1 the neutron-neutron scattering length as
a function of the density (a) and as a function of the Fermi
momentum (b). The lower curve corresponds to the tuning
|kF a(kF )| = 1. As an illustration of the sensitivity to the
hypothesis discussed above, the upper curve delimiting the
green region is also shown, corresponding to a tuning obtained
by imposing a stricter low-density constraint, |kF a(kF )| =
0.5. The green areas in the two panels of the figure contain
all the intermediate cases. When replacing a by a(ρ), the xi

parameters become density dependent and their expressions
may be deduced from Eqs. (2).

II. FIRST TWO TERMS OF THE LEE-YANG EXPANSION

The EOS obtained by dropping the last two terms of
Eq. (1) corresponds to a mean-field EOS within a Skyrme
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FIG. 1. Neutron-neutron s-wave scattering length as a function
of the density (a) and of the Fermi momentum (b). The green region
contains all the possible cases between |kF a(kF )| = 0.5 (red dashed
line) and |kF a(kF )| = 1 (black solid line).

t0 − t3 model. Within such a simplified model, we adjusted in
Ref. [13] the parameters t0 and t3 to have a satisfactory EOS
for symmetric matter around the saturation point, providing
a saturation density of 0.16 fm−3 with an energy per particle
of −16.04 MeV: t0 (t3) = −1803.93 MeV fm3 (=12911.00
MeV fm4). By using these values for t0 and t3, we may deduce
the density dependence of the parameters x0 and x3 through the
density dependence of the neutron-neutron scattering length
(Fig. 2). Notice that the values of the parameters x0 and x3

vary from −4.46 and −139.40, respectively, at zero density
[13], to values which are closer to typical x0, x3 values in
Skyrme forces at larger densities. The corresponding EOS of
symmetric matter is plotted in Fig. 3 and compared to the
SLy5-mean-field [20] EOS (used as a benchmark for the fit in
Ref. [13]).
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FIG. 2. Density dependence of the parameters x0 (a) and x3 (b).
The green region contains all the possible cases between |kF a(kF )| =
0.5 (red dashed line) and |kF a(kF )| = 1 (black solid line).
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FIG. 3. EOS of symmetric matter obtained within a t0 − t3 model,
with the parameters adjusted in Ref. [13] (red dashed line) and within
a t0 − t3 − t1 model, with the parameters adjusted in this work (blue
circles). For comparison, the SLy5-mean-field EOS is plotted (black
solid line).

The EOS for neutron matter with x0, x3 displayed in Fig. 2
is shown in Fig. 4, where also the SLy5-mean-field EOS is
drawn for comparison (black triangles). We also show in the
same figure two alternative mean-field Skyrme EOSs, obtained
with the parametrizations SkP [21] (cyan circles) and SIII
[22] (magenta squares). Whereas the SLy5 parametrization
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FIG. 4. EOS of neutron matter as a function of the density com-
puted in the mean-field approximation with SLy5 (black triangels),
SkP (cyan circles), and SIII (magenta squares). The EOSs obtained
with the first two terms of the Lee-Yang expansion by using the
constant value a = −18.9 fm (blue squares) and a density-dependent
scattering length are also shown. For the latter case, the black solid
line represents the EOS obtained with the low-density constraint
|kF a(kF )| = 1 whereas the red dashed curve represents the EOS
obtained by imposing |kF a(kF )| = 0.5. The green area contains the
intermediate cases. The black dotted line represents the EOS obtained
by imposing |kF a(kF )| = 1 and using an effective range of −4.5 fm.

was designed to accurately reproduce a microscopic EOS for
neutron matter even beyond the saturation point of symmetric
matter, the other two Skyrme parametrizations were not
adjusted in the same way and are not so accurate. However,
they still provide reasonable results for neutron matter at least
up to densities around the equilibrium point of symmetric
matter. One observes that the upper and lower EOSs delimiting
the green area differ very weakly. To estimate how much the
density dependence of the scattering length affects the EOS,
we also plot the EOS obtained by using a constant scattering
length equal to the free value, −18.9 fm, (blue squares) which
obviously leads to a totally wrong curve, except at extremely
small densities.

One observes that the obtained EOS is still quite far from
the Skyrme EOSs. The energy is systematically too high,
indicating that an attractive contribution is missing.

III. INCLUDING THE s-WAVE k5
F TERMS

The value of the effective range associated with the
scattering length a = −18.9 fm is 2.75 fm. In general,
the term containing the effective range may be neglected
in the LY expansion if kF |rs | < 1. For higher momenta,
kF |rs | � 1 and the corresponding term cannot be neglected
anymore. In our case, the scattering length is equal to −18.9 fm
only up to kF ∼ 0.05 fm−1. At this value of the Fermi
momentum and for rs = 2.75 fm, kF rs ∼ 0.14, which is
still sensibly less than 1. Thus, up to kF ∼ 0.05 fm−1, the
effective-range term may be safely neglected. However, at
higher densities, the value of the scattering length changes
very fast as a function of the density and it would be
meaningless to still associate to such a value an effective
range of 2.75 fm. Furthermore, we have observed in the
Skyrme t0 − t3 model that, at ordinary nuclear densities, a
density-dependent neutron-neutron scattering length is not
sufficient to reproduce a reasonable EOS and that an attractive
contribution is missing. Such a missing attractive contribution
in the EOS may indeed be obtained by including the following
two terms of the expansion, which are still s-wave terms and
have both a k5

F dependence [Eq. (2) shows the relation with
the t1 velocity-dependent term of a Skyrme model]. The first
of these terms contains the effective range and we use the
effective range as a parameter for reproducing a reasonable
neutron-matter EOS up to around the saturation density of
symmetric matter. We have found that rs = −4.5 fm for the
case |kF a(kF )| = 1 leads to an acceptable EOS (black dotted
line in Fig. 4).

The symmetric matter EOS will also be modified by the
inclusion of the t1 term in the interaction. We proceed as
done previously: we readjust the parameters t0, t3, and t1 to
have a satisfactory EOS for symmetric matter and we keep
these values unchanged. The adjusted parameters are t0 =
−1818 MeV fm3, t3 = 12970 MeV fm4, t1 = 15 MeV fm5 and
the corresponding EOS of symmetric matter is plotted in Fig. 1
within the model t0 − t1 − t3.

Let us now investigate in more detail the very low-density
sector. Figure 5 shows the energy of neutron matter divided by
the free gas energy as a function of −akF (with a = −18.9 fm).
The curves corresponding to the first two terms of the Lee-Yang
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FIG. 5. Energy of neutron matter divided by the energy of a free
Fermi gas as a function of |akF |, with a = −18.9 fm. The black solid
and the blue dotted curves represent the SLy5-mean field and the LY
(with only the first two terms and a = −18.9 fm) EOSs, respectively.
The red dashed and the green dot-dashed curves illustrate the EOSs
obtained with a density-dependent scattering length with |a(kF )kf | =
1, with only the first two terms and with the full expression of Eq. (1)
(rs = −4.5 fm), respectively. The ab initio quantum Monte Carlo
(QMC) results with only s wave and with the full AV4 interaction
taken from Refs. [24,25] are shown respectively with purple squares
and blue triangles. The AFDMC ab initio results are taken from
Ref. [26].

expansion with a constant scattering length (−18.9 fm) and
with a density-dependent scattering length are shown together
with the SLy5 EOS. In addition, the dot-dashed green curve
illustrates the results obtained with the inclusion of the k5

F

terms with rs = −4.5 fm. We have already observed that this
case gives a reasonable EOS at ordinary nuclear densities
(Fig. 4). We see now that, in addition, it well reproduces the
correct low-density behavior. For instance, for −akF ∼ 6, the
value of the energy divided by the free gas energy is ∼0.6,
which is comparable to the microscopic QMC s-wave, the
QMC AV4, or the AFDMC results reported in Refs. [23–26].

IV. SUMMARY AND CONCLUSIONS

Our exploratory study can be summarized as follows. We
start with a functional based on the first two terms of the
LY expansion, which is correct at very low densities but
produces a wrong EOS for ρ > 10−6 fm−3. Then, for higher
densities, we depart from the matching to an effective-range
expansion by imposing a density-dependent scattering length
a(kF ), which is constrained by a dimensionless quantity
C (|kF a(kF )| = C � 1). Empirical evidence shows that the
effective range needs to enter as a free parameter in order to
obtain a reasonable description of neutron matter up to the
saturation density. The EOS of symmetric and neutron matter
can be deduced by a simple functional which corresponds to
a t0 − t1 − t3 Skyrme interaction with density-dependent xi’s.
Our functional may be employed into various applications
for the description of neutron-rich systems at very low-density
scales as well as of isospin-symmetric and asymmetric systems
at ordinary nuclear density scales.
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