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Background: Composed systems have become of great interest in the framework of ground-state quantum phase
transitions (QPTs) and many of their properties have been studied in detail. However, in these systems, the study
of the so-called excited-state quantum phase transitions (ESQPTs) has not received so much attention.
Purpose: A quantum analysis of the ESQPTs in the two-fluid Lipkin model is presented in this work. The study
is performed through the Hamiltonian diagonalization for selected values of the control parameters in order to
cover the most interesting regions of the system phase diagram.
Method: A Hamiltonian that resembles the consistent-Q Hamiltonian of the interacting boson model (IBM) is
diagonalized for selected values of the parameters. Properties such as the density of states, the Peres lattices, the
nearest-neighbor spacing distribution, and the participation ratio are analyzed.
Results: An overview of the spectrum of the two-fluid Lipkin model for selected positions in the phase diagram
has been obtained. The location of the excited-state quantum phase transition can be easily singled out with the
Peres lattice, with the nearest-neighbor spacing distribution, with Poincaré sections, or with the participation
ratio.
Conclusions: This study completes the analysis of QPTs for the two-fluid Lipkin model, extending the previous
study to excited states. The ESQPT signatures in composed systems behave in the same way as in single
ones, although the evidences of their presence can be sometimes blurred. The Peres lattice turns out to be a
convenient tool to look into the position of the ESQPT and to define the concept of phase in the excited states
realm.
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I. INTRODUCTION

For almost twenty years, quantum phase transitions (QPTs)
have been a hot topic in different areas of quantum many-
body physics. On one hand, QPTs in nuclear physics have
been deeply studied [1–3], from both theoretical and ex-
perimental points of view. On the other hand, other fields
such as molecular physics [4,5], quantum optics [6,7],
and solid state physics [8] have put forward the QPT
studies.

The well-known thermodynamic phase transitions develop
in systems with an infinite number of particles, i.e., in the
thermodynamic limit; in this sense they are called classical
phase transitions. QPTs are phenomena similar to classical
phase transitions but differ in that QPTs take place at zero
temperature. In a broad sense, QPTs appear in Hamiltonians
that can be split into two parts, each of them presenting a
different symmetry. In this situation, a simple transitional
Hamiltonian can be written as a function of one control
parameter that governs the change in the system from one
symmetry to the other,

H (ξ ) = ξH (symmetry1) + (1 − ξ )H (symmetry2). (1)

The phase of the system is characterized by a parameter,
usually called the order parameter, that is zero in one phase
and different from zero in the other. A QPT is characterized
by a sudden change in the value of the order parameter for
a small variation around a particular value, ξc, of the control

parameter, ξ . The value ξc where the QPT develops is known
as the critical point and marks when the system undergoes a
structural change from symmetry1 to symmetry2.

An appealing step forward in the QPT concept is its
extension to composed systems, i.e., systems with different
species of components. The simplest case is a quantum system
with two of such species or fluids. One interesting case is the
composed boson-fermion system [9–11], although here we
will focus on a two-fluid model in which the two species are
bosons and are represented by creation and annihilation boson
operators that fulfill the usual boson commutation relations.
In this framework, it is worth mentioning the very first studies
in nuclear physics of two-fluid systems [12–14], conducted
for the proton-neutron interacting boson model. In similar
schemes, the bending dynamics of tetratomic molecules has
also been studied with a two-fluid bosonic model where each
fluid is associated with a bender [15,16]. Other two-fluid
systems, that still today act as landmarks, are the Dicke
[17] and the Jaynes-Cumming [18] models, for which the
two fluids correspond to photons and atoms. Finally, another
simple composed model is the two-fluid Lipkin model [19],
where the fluids may correspond to two species of atoms or
to two vibrational modes. Dicke and Jaynes-Cumming models
are algebraically connected with the two-fluid Lipkin model.
Indeed, the dynamical algebra of the double Lipkin model is
u(2) ⊗ u(2) and one can go to Dicke and Jaynes-Cumming
models through a contraction from the u(2) Lie algebra to the
Heisenberg-Weyl one, hw(1) [20].
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The aim of this work is to extend the study of the two-fluid
Lipkin model, whose QPTs and phase diagram were studied in
detail in Ref. [21], to the excited-state realm, in other words,
to study the excited-state quantum phase transitions (ESQPTs)
of the model. The term ESQPT was first coined in Ref. [22]
and studied in detail in Ref. [23]. In Ref. [23], it is stated
that “the infinite level density, moreover, propagates to higher
excitation energy . . . hence the concept of a continuation of the
QPT to excited states” (p. 1107). Consequently, an ESQPT can
be understood as the propagation of the QPT to excited states.
Moreover, an ESQPT is deeply connected to the existence of
a barrier in the potential energy surface and, in particular, with
the height of the barrier. The presence of an ESQPT is marked
by the presence of a singularity in the density of states, but it
is also known to affect the structure of the states. In fact, these
change from being nonsymmetric or deformed to symmetric
or spherical (or vice versa) when crossing the ESQPT. Another
relevant fact of the ESQPT is that it seems to be related to a
change from a regular to a chaotic regime, although this point
is still an open question.

In this paper, the study of the phase diagram for the
two-fluid Lipkin model is completed by extending the work
of Ref. [21] to the excited states. The paper is organized
as follows: In Sec. II, the algebraic structure and the model
Hamiltonian are outlined. In Sec. II B, the main ingredients of
its phase diagram are revised. In Sec. III, the ESQPT concept
is introduced and, in particular, the main tools used to study
the onset of an ESQPT are discussed. In Sec. IV, the main
outcome of this work is presented and we study in detail the
onset of ESQPTs in some particular cases. Finally, Sec. V
presents the summary and conclusions.

II. THE LIPKIN MODEL AND ITS TWO-FLUID
EXTENSION

The Lipkin model was proposed in the 1960s by Lipkin
et al. [19] as a simple exactly solvable model to check the
validity and limitations of different approximation methods
used in nuclear physics. Since then, the model has been
applied to other fields and many examples of its use can be
found in the literature.

A. Algebraic structure

Using a boson representation, the Lipkin model is built in
terms of scalar bosons that can occupy two nondegenerate
energy levels labeled by s and t . In the case of a single fluid,
the building blocks are the creation s†, t†, and annihilation s,
t , boson operators. The four possible bilinear products of one
creation and one annihilation boson operator generate the u(2)
algebra. The next step to obtain the two-fluid Lipkin model
is to combine two coupled Lipkin structures. In this model,
there are two boson families identified by a subindex, s

†
1, t

†
1

and s
†
2, t

†
2 , and the corresponding dynamical algebra will be

u1(2) ⊗ u2(2), whose generators are s
†
i si , s

†
i ti , t

†
i si , and t

†
i ti , for

i = 1,2.
A detailed description of the u1(2) ⊗ u2(2) algebraic struc-

ture can be found in Ref. [24]. Here, we simply summarize
some features that will be of interest along this work. Starting
from the dynamical algebra u1(2) ⊗ u2(2), the possible subal-
gebra chains are four. However, for us, only two of them, in
which there is an early coupling of the dynamical algebras into
the direct-sum subalgebra u12(2) [or su12(2)], are relevant,

u1(2) ⊗ u2(2) ⊃ u12(2) ⊃ u12(1)
↓ ↓ ↓

N1 ⊗ N2 [h,h′] nt → basis |N1N2hnt 〉
, (2)

where the labels of the irreps verify the following branching rules: h + h′ = N1 + N2, h � h′, 1/2(N1 + N2 + h′ − h) � nt �
1/2(N1 + N2 + h′ − h), and

u1(2) ⊗ u2(2) ⊃ su1(2) ⊗ su2(2) ⊃ su12(2) ⊃ so12(2)
↓ ↓ ↓ ↓

N1 ⊗ N2 j1 ⊗ j2 j μ → basis |j1j2jμ〉
, (3)

where ji = Ni/2, j = 1/2(N1 + N2),1/2(N1 + N2) − 1, . . . ,1/2|N1 − N2|, −j � μ � j , and j = 1/2(h − h′). | . . . 〉 stands
for the basis state in the corresponding dynamical symmetry.

The Hamiltonian used in this work is inspired by the consistent-Q formalism of the interacting boson model [25]. The
Hamiltonian can be written as

H = x
(
nt1 + nt2

) − 1 − x

N1 + N2
Q(y1,y2)Q(y1,y2), (4)

where

nti = t
†
i ti , (5)

Q(y1,y2) = (
Q

y1
1 + Q

y2
2

)
, (6)

Q
yi

i = s
†
i ti + t

†
i si + yi(t

†
i ti). (7)
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FIG. 1. Phase diagram of the consistent-Q-like two-fluid Lipkin
model. In the diagram, the different phases are represented: spherical
and deformed, the first-order QPT surfaces, and the second-order QPT
line. Moreover, the relevant control parameters (x, y = (y1 + y2)/2,
and y ′ = (y1 − y2)/2) and dynamical symmetries also are shown. The
marked points correspond to the cases studied in Sec. IV (see text).

The Hamiltonian (4) has three control parameters (x,y1, and
y2). The model has two order parameters β1 and β2 associated
to each fluid: βi = 0 values indicate the symmetric or spherical
phase for fluid i, while values different from zero characterize
nonsymmetric or deformed phases. Due to the behavior of
the bosons under parity, the Hamiltonian (4) is, in general,
non-parity-conserving, except for y1 = y2 = 0.

The Hamiltonian (4) is a mixture of dynamical symmetries
of the problem, particularly u12(1) for x = 1, and so12(2) for
x = 0 and y1 = y2 = 0. This form is especially suitable to
study QPTs, because one can associate a symmetric (spherical)
phase to the first term of the Hamiltonian and a nonsymmetric
(deformed) shape to the second term. Moreover, depending
on the values of y1 and y2, different kinds of deformation are
generated. For us, it is especially important the case y1 = y2,
for which the dynamical algebra of the Hamiltonian will be
u12(2) (su12(2)) and the states will belong to a single [h,h′]
Young tableau (with a well-defined value of j ). In this case, one
can separate the spectrum in families with given j values. Note
that although j has the properties of an angular momentum,
it is not an orbital angular momentum in the sense of L in
the interacting boson model or in the vibron model. It is,
indeed, similar to the concept of F spin in the proton-neutron
interacting boson model [26].

B. The phase diagram

The combination of numerical calculations with analytical
results, as shown in Ref. [21], provides the phase diagram
depicted in Fig. 1. In that reference, an essential order
parameter β = (β1 + β2)/2 is defined and it is the parameter
that characterizes the different phases: Spherical means β = 0,
while two different deformations can appear, β > 0 and β < 0.

Note that the order parameter β is equivalent to βa as it appears
in Ref. [21].

The Hamiltonian (4) can be more conveniently rewritten
in terms of control parameters y = (y1 + y2)/2 and y ′ =
(y1 − y2)/2. In Fig. 1, the phase diagram of the model in the
space of coordinates x, y, and y ′ is presented. There, a first-
order phase transition surface (in red) separates the symmetric
(spherical, β = 0) and nonsymmetric (deformed) phases (the
one shown here corresponds to β > 0). This first-order phase
transition region appears in many other models (quantum
cusp, interacting boson model, Dicke and Jaynes-Cumming,
among others) and essentially stems from the competition
between single-particle terms that lead to spherical shapes and
two-body interactions that lead to deformed configurations.
Therefore, this phase transition is related with the evolution
and competition of the spherical and the deformed minima
(there is a region of coexistence of minima and the critical point
is defined by the degeneration of both minima). This surface
contains a line (black thick line in the figure) that runs from
y = y ′ = 0 to y = 0, y ′ = 1 and corresponds to a second-order
phase transition. This line is, in fact, a triple point where three
degenerated minima coexist (one spherical and two deformed
with different deformation). The point y = 0, y ′ = 1 shows
a unique behavior because presents a divergence [21] in the
second derivative of the energy with respect to the control
parameter. At this point, the spinodal and the antispinodal lines
merge with the first-order phase transition surface, giving rise
to a tricritical point.

The phase diagram shown in Fig. 1 can be completed by
extending it to negative values of y and y ′. In particular,
the negative y values imply deformation β < 0. The vertical
surface (in gray) separates deformed phases with different
signs in the value of the order parameter β. This is a first-order
phase transition surface. This phase transition is connected
with the existence of two deformed minima, β < 0 and β > 0,
that eventually can become degenerated (the gray surface in the
figure). Note that in this situation, the potential is symmetric
under an appropriate interchange of the two shape variables
(β1 and β2, order parameters). At each side of the surface, two
deformed minima coexist but on the side shown in Fig. 1
the absolute minimum corresponds to β > 0 while on the
other side the absolute minimum appears for β < 0. This
situation is different from what happens at the phase transition
surface separating spherical (β = 0) and deformed (β > 0)
phases. In this case, the system transits from a single spherical
minimum, β = 0, to a deformed minimum (β > 0) through
a coexistence region. In the interacting boson model, the first
situation corresponds to the QPT between the SU(3) and the
SU(3) limits [27], while the second corresponds to the QPT
appearing when passing from the U(5) limit to the SU(3)-O(6)
line [26].

III. EXCITED-STATE QUANTUM PHASE TRANSITIONS

In many-body quantum systems, the presence of a ground-
state QPT can give rise to an ESQPT when using the excitation
energy as a control parameter [23]. Once in the deformed
phase, keeping the control parameters fixed, one can go up in
energy and look into a magnitude that marks the presence of a
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FIG. 2. Density of states for a one-fluid Lipkin Hamiltonian
H = xnt − 1−x

N
Q(y)Q(y) (nt and Q(y) defined in Eqs. (5) and (7)

with x = 1/2, y = 0, and N = 1000 (a) and with x = 1/2, y = 1/2,
and N = 1000 (b); the insets show schematically the corresponding
potential energy surface in both cases.

quantum phase transition in the excited states. This magnitude
can be the density of states, which is expected to have some
kind of singularity when reaching the energy at which an
ESQPT develops. In particular, this is the case for the one-fluid
Lipkin model, where the QPT for the ground state seems
to propagate to the excited states. An ESQPT associated to
second-order QPT is defined as a singularity in the density
of states or in one of its derivatives. The kind of singularity
depends on the number of degrees of freedom of the system in
the semiclassical limit [28,29]. In particular, the Lipkin model,
which has a single degree of freedom, presents a λ singularity
in the density of states at the excitation energy corresponding
to the ESQPT. The Dicke model, with two degrees of freedom,
presents at the ESQPT critical energy a discontinuity in the first
derivative of the density of states [28]. The sudden increase in
the density of states is related with the presence of a maximum
in the potential energy surface of the system. Starting from
the bottom of the potential, the states bunch up when reaching
the maximum of the potential giving rise to an increase of the
density of states. On the other hand, when the QPT is of first
order, besides the previous behavior, linked to the existence
of a maximum, the presence of a new family of states related
with the existence of an extra local minimum induces a finite
increase in the density of states and, therefore, a discontinuity
in the density of states. The energy at which the second family
of states appears in the spectrum corresponds to the energy of
the second minimum.

To explain more in detail the connection between the
presence of a maximum in the potential energy surface and
the onset of an ESQPT, we present in Fig. 2 two calculations
for large number of bosons, N = 1000, evaluating the density
of states for the single Lipkin Hamiltonian. In Fig. 2(a), we
perform a calculation for a Hamiltonian in the deformed phase.
The Hamiltonian represents a situation in which the ground
state is deformed but comes from the evolution of a spherical
ground state through a second-order phase transition; this
means that there is a maximum at zero deformation [see inset
of Fig. 2(a)]. Note that there are, in fact, two degenerated
minima that give rise to degenerated doublets below the
ESQPT. The existence of the maximum induces many states

bunching together in the spectrum, leading, therefore, to a
sudden increase (a singularity in the thermodynamic limit)
in the density of states at the energy of the maximum [this
is seen at zero energy in Fig. 2(a)]. In order to show the
difference with the case of a first-order phase transition, in
Fig. 2(b) a calculation of the density of levels is presented
for a Hamiltonian owning a deformed ground state that now
comes from the evolution of a spherical ground state through a
first-order phase transition. This means that at the QPT there is
coexistence of spherical and deformed minima. This fact has
as a consequence that far from the QPT, in the deformed phase,
the system presents a local deformed minimum too, with both
deformed minima separated by the spherical maximum [this
can be seen in the inset of Fig. 2(b)]. Starting from the bottom
of the potential and going up in energy, when the energy of the
local minimum is reached, a new family of states appears and
it produces a finite increase in the density of states [at energy
around −200 in Fig. 2(b)]. Going higher in energy, one reaches
the maximum of the potential and a new bunching up of the
energy levels is observed in the spectrum, producing a peak in
the density of states [at zero energy in Fig. 2(b)], which will
give a λ singularity in the thermodynamic limit.

Let us now come to our case of interest, the two-fluid Lipkin
model given by Eq. (4). The Hamiltonian is such that for any
set of parameter values that lead to a deformed ground state, the
energy potential has always a maximum at β = 0. The reason
is the absence of linear terms in the potential (see Eq. (27) of
Ref. [21]). This also happens in the interacting boson model.
Therefore, for such a situation, it appears in the spectrum an
ESQPT that is related with the existence of a maximum in the
potential energy surface at β = 0. As a consequence, for our
Hamiltonian, the critical energy of the ESQPT will be always
zero because it corresponds to the value of the potential energy
surface at β = 0.

Although the concept of phase is strictly defined for the
ground state, one can extend it to the excited states [23], in
the sense that the excited states resemble the ground state with
β = 0 (symmetric states) or with β �= 0 (nonsymmetric states).
As a matter of fact, in Fig. 11 of Ref. [23] one can clearly see
how the states can be divided into two families, each one with
reminiscences of one of the different Hamiltonian symmetries
[see Hamiltonian (1)]. The states below the ESQPT energy can
be assigned to the nonsymmetric (deformed) phase, while the
ones above the ESQPT energy are in the symmetric (spherical)
phase, or vice versa.

A. Some tools to study ESQPTs

As we have already explained, an ESQPT has been mainly
identified by some kind of singularity in the density of states.
However, this is neither the only signal of the presence of
an ESQPT nor the most efficient, especially for the study of
finite-size systems. In this section, a set of quantities that could
serve as markers for ESQPT’s are briefly discussed.

1. Density of states

This is the most obvious tool to reveal the presence of
an ESQPT; however, with this observable the presence of an
ESQPT is not always so clear, as in Fig. 2. For example, in the
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case of systems with two degrees of freedom, the discontinuity
appears in the derivative of the density of states and, therefore,
it is hard to be detected in a numerical calculation. The size of
the system is also an issue because it could hide the presence of
an ESQPT. For instance, a low number of states will hinder the
detection of an ESQPT in any numerical calculation of density
of states. Finally, the existence of an unnoticed symmetry in
the Hamiltonian will change completely the observed behavior
in Fig. 2 and the density of states will correspond to the
superposition of multiple belts with smoothed singularities
at an energy that is shifted, making it much harder to notice
any singularity.

2. Chaotic versus regular behavior: Nearest-neighbor spacing
distribution, Poincaré sections, and Peres lattices

The interplay between ESQPTs and the onset of chaos
has been studied in Refs. [30–32]. It has been shown that, in
particular cases, but not in general, the behavior of the nearest-
neighbor spacing distribution (NNSD) suddenly changes from
regular to chaotic distribution when crossing the ESQPT
energy. The NNSD, thus, could be used as a signature of
the presence of an ESQPT at a given energy. However, it will
become especially effective if the character, either regular or
chaotic, changes for all the states at roughly the same energy,
and there are no regular states coexisting with the chaotic ones.
The reason is that the NNSD provides a survey that is not local
but only valid within a certain range of energy.

For the Hamiltonian under study, the NNSD is not an ideal
tool because, as it will be shown, regular and chaotic states

are not well separated in the spectrum. However, as we will
see, one can still get a clear signal when crossing the energy
of the ESQPT. To use the NNSD as a hint for the presence
of chaos, we should remember that in integrable systems the
states follow a Poisson distribution PP (s) = exp(−s), while in
fully chaotic ones, they follow a Wigner distribution PW (s) =
π
2 s exp(−π

4 s2), where si = (Ei+1 − Ei)/〈s〉 is a normalized
distance between levels. We will measure the degree of chaos
defining the quantity

η = σs − σW

σP − σW

, (8)

where σs = 〈s2〉 − 〈s〉2 is the variance of the analyzed spec-
trum, σW = 4/π − 1 is the variance of the Wigner distribution,
and σP = 1 is the variance of the Poisson distribution.
Therefore, the system will be fully regular for η = 1 and fully
chaotic for η = 0. It is worth noting that in order to calculate
η all the considered states should have the same symmetry,
e.g., in the case of states with given parity, all the states should
have the same parity. To mark the onset of chaos, one can plot
the value of η, calculated for a certain number of states, as a
function of the energy.

Another option to study the onset of chaos is to build
the classical counterpart of Hamiltonian (4) and to study its
semiclassical dynamics [29]. To this end, we define a coherent
state as the one of Ref. [21], but taking the deformation
parameter, βk , as complex and redefining it such that its
absolute value is constrained to the interval [0,1], β̃kβ̃k

∗ =
βkβ

∗
k /(1 + βkβ

∗
k ),

|β̃1,β̃2〉 = 1√
N1!N2!

(
√

1 − β̃1β̃
∗
1 s

†
1 + β̃1t

†
1)N1 (

√
1 − β̃2β̃

∗
2 s

†
2 + β̃2t

†
2)N2 |0〉. (9)

The classical limit of the system is then given by the expectation value of the Hamiltonian:

Hcl(β̃1,β̃
∗
1 ,β̃2,β̃

∗
2 ) = 〈β̃1,β̃2|H |β̃1,β̃2〉. (10)

From β̃1 and β̃2, one can define the canonical variables (q1,p1) and (q2,p2), such that they verify

β̃k = 1√
2

(qk + ıpk), (11)

with k = 1,2. Therefore, the classical Hamiltonian per particle, hcl(q1,p1,q2,p2) = Hcl(q1,p1,q2,p2)/N , for a system with
N1 = N2 can be written as

hcl(q1,p1,q2,p2) = x

4

(
p2

1 + p2
2 + q2

1 + q2
2

) + x − 1

16

{
2q2

1

[
p2

1

(
y2

1 − 2
) + 2q2y1

√
−p2

2 − q2
2 + 2 + p2

2y1y2 + q2
2y1y2 + 4

]

+ 4q1

√
−p2

1 − q2
1 + 2

(
p2

1y1 + 2q2

√
−p2

2 − q2
2 + 2 + p2

2y2 + q2
2y2

) + 2q2
2

[
p2

1y1y2 + p2
2

(
y2

2 − 2
) + 4

]

+ 4q2

√
−p2

2 − q2
2 + 2

(
p2

1y1 + p2
2y2

) + (
p2

1y1 + p2
2y2

)2 + 4q3
1y1

√
−p2

1 − q2
1 + 2

+4q3
2y2

√
−p2

2 − q2
2 + 2 + q4

1

(
y2

1 − 4
) + q4

2

(
y2

2 − 4
)}

, (12)

which is defined in a four-dimensional phase space, though energy conservation allows to reduce it to three dimensions only.
The dynamics of the system is determined by Hamilton’s equations:

dqk

dt
= ∂hcl

∂pk

,
dpk

dt
= −∂hcl

∂qk

, (13)
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with k = 1,2. Once Eqs. (13) are solved numerically, the nature
of the motion, either regular or chaotic, can be easily depicted
using the Poincaré sections, plotting the coordinate values of
the intersection in a given plane of different trajectories of the
system. In our case, we consider intersections with the plane
p2 = 0 (note that q2 is determined by energy conservation),
and then we collect the coordinates q1 − p1. On the other hand,
chaotic regimes lead to trajectories that occupy the whole avail-
able phase space and intersect randomly the Poincaré section.
On the other hand, regular situations correspond to trajectories
that are constrained to toroidal regions that generate closed
curves when they intersect the Poincaré section.

Finally, another very simple tool that is able to distinguish
qualitatively regular from chaotic states is the Peres lattice
[33]. A Peres lattice provides a way to characterize states by
simply performing a diagram where each point corresponds
to a single state. In the diagram, the matrix element of a
convenient operator is plotted versus the excitation energy.
In our case, an efficient operator is nti . Therefore, we will
represent 〈nt1〉/N1 (or 〈nt2〉/N2), whose values range between
0 and 1, as a function of the excitation energy. In the case
of an energy region with a chaotic behavior, the Peres lattice
provides a disordered distribution of points, while for regular
states, the pattern becomes ordered. Even in the case of
coexistence of regular and chaotic states in the same energy
region, a Peres lattice will allow us to separate both families.
Note that the Peres lattice can also help to define the shape
and phase of the excited states, as explained in Ref. [23].
The characterization of the excited states’ shape and phase
is carried out by examination of the pattern observed in the
wave functions within a region, but not for a single state. Peres
lattices are an ideal tool to characterize shape and phase of
excited states within a given region.

3. Participation ratio

A different way of studying the onset of an ESQPT is
through the analysis of the wave function. In particular, it is
enlightening to study how localized or delocalized a given state
is since it has been recently proven [34] that states nearby the
critical energy of an ESQPT are well localized, while the rest
present sparse wave functions. A convenient quantity to study
the structure of the wave function is the participation ratio, P ,
which is defined, in a given basis {|i〉}, for a wave function
|ψk〉 = ∑

i C
(k)
i |i〉 as

P (k) = 1

dim

1
∑

i

∣∣Ck
i

∣∣4 , (14)

where dim stands for the dimension of the Hilbert space. This
function provides the degree of delocalization of a given state
in a particular basis, being, therefore, basis dependent. For a
well-localized state, P is small (1/dim in value), while it will
become large for a delocalized one (1 as maximum value).

In Ref. [34], the authors showed that by using a u(n) basis,
the participation ratio of the nearest eigenstate to the ESQPT
shows a marked dip that allows to us localize very cleanly the
ESQPT position. In this work we will use the u1(1) ⊗ u2(1)
basis in which the quantum numbers nt1 and nt2 are specified,
as explained in Ref. [21].
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FIG. 3. Density of states as a function of the excitation energy
for a Hamiltonian with parameters y = 0, y ′ = 0, and x = 1/2 and
a number of bosons N1 = N2 = 70. (a) For selected values of j ;
(b) for all the states without distinction in j .

IV. CASES OF INTEREST

The first case we deal with is y = 0, y ′ = 0 (y1 = 0,
y2 = 0); this is the line from u12(1) to so12(2)), with x = 1/2,
which corresponds to a deformed phase after the critical point
of a second order QPT at xc = 4/5. This case is represented
with point A in Fig. 1. In the following, all the calcula-
tions will be performed for N1 = N2 = 70 bosons, which
involves a dimension of 71 × 71 = 5041. This Hamiltonian
generates a deformed phase for the ground state; i.e., the
order parameters are β1 �= 0 and β2 �= 0. Because y1 = y2

the system is symmetric under the interchange of the index
1 and 2. Therefore, u12(2) will be the dynamical algebra of
the Hamiltonian and the states will belong to a certain Young
tableau, [h,h′], making it possible to define an angular momen-
tum quantum number j = 1/2(h − h′) with possible values
j = 1/2(N1 + N2),1/2(N1 + N2) − 1, . . . ,1/2|N1 − N2|, as
shown in Sec. II. As a consequence, the Hilbert space
can be split in subspaces with a given value of j and
2j + 1 dimension. This fact should be taken into account for
interpreting correctly the upcoming figures; otherwise, wrong
conclusions can be reached.

Let us start with the study of the density of states (Fig. 3),
for which we have already seen in Fig. 2 how a λ divergence is
obtained at the critical energy of the ESQPT. In Fig. 3(a), the
value of the density of states for selected values of j is depicted
(we use a different color for each j value); for each of them a
peak is clearly observed, which is a precursor of a λ divergence.
Note also that as j decreases, the energy of each peak is slightly
shifted to higher values of the energy. In Fig. 3(b), the density
corresponds to the sum of the individual densities presented in
Fig. 3(a) and the consequence is that the typical density values
in Fig. 3(b) are much larger than in Fig. 3(a) and that individual
peaks no longer can be observed. Indeed, the only observed
peak is a broad one well above zero energy. The energy of
the peak at E ≈ 30 is connected with the peak position of the
families with the smallest j values, whose peaks are located at
the highest energy values. Consequently, for this case the level
density is not a good marker for the ESQPT.

In Fig. 4, we plot the Peres lattice for
〈nt1 〉
N1

as a function of
the excitation energy: In Fig. 4(a) the plot is done for each j
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FIG. 4. Peres lattice for
〈nt1 〉
N1

vs the excitation energy for the same Hamiltonian and parameters as Fig. 3. (a) For selected values of j ;
(b) for all the states without distinction in j . Poincaré sections for energies E = −10, E = 0, E = 20, and E = 50, in panels (c), (d), (e), and
(f), respectively [energies marked in panel (b)].

(different color for each j ) while in Fig. 4(b) all the states (all
j ′s) are considered together. In the latter case, one can observe
an almost global regularity, but taking into account what is
observed in Fig. 4(a), one can notice that such a regularity is
associated with the presence of j as an extra quantum number.
The main feature of each set of points, corresponding to given
j values, is the sharp dip observed at energies around E ≈ 0,
with a shift in the dip position towards higher energies as j
decreases, in a way similar to Fig. 3(a). Therefore, Fig. 4(b)
is simply the superposition of different curves with sharp dips
that move from E ≈ 0 to E ≈ 30. Both below and above the
ESQPT, the Peres lattice shows an ordered pattern, pointing
to a nonchaotic behaviour. Note that in this case, we do not
analyze the NNSD because we have to separate in sets with
the same value of j and, therefore, the number of states will
be too low to calculate a reliable value of η (8). However,
one can calculate the Poincaré sections to study the regularity
and chaos interplay. In Figs. 4(c)–4(f), we depict the Poincaré
sections for energies E = −10, E = 0, E = 20, and E = 50,
respectively. Because of the underlying U12(2) symmetry, all
the cases correspond to a regular regime.

In Fig. 5, we plot the value of the participation ratio as
a function of the excitation energy. Once more, in Fig. 5(a)
we separate in families with given j values (different colors)
and in Fig. 5(b) we plot all the states. In each family
depicted in Fig. 5(a), one can see how the participation ratio

starts increasing, reaches a maximum, decreases with a sharp
minimum, shows a new maximum, and finally ends with a
minimum. This behavior was already described in Ref. [34]
and simply reflects the strong localization of the wave function
at the ESQPT. Once more, the position of the minimum
moves towards higher energies for decreasing j values as
it is shown in Figs. 3 and 4. Figure 5(b) corresponds to the
superposition of the previously described curves which leads
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FIG. 5. Normalized participation ratio as a function of the
excitation energy for the same Hamiltonian and parameters as in
Fig. 3. (a) For selected values of j ; (b) for all the states without
distinction in j .
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FIG. 6. Density of states as a function of the excitation energy
for a Hamiltonian with parameters y = 1, y ′ = 0, and x = 1/2 and
a number of bosons N1 = N2 = 70. (a) For selected values of j ;
(b) for all the states without distinction in j .

to the presence of certain parabolic curves somehow blurred.
The set of well-defined lines in the right bottom part of Fig. 5(b)
corresponds to curves with small values of j .

The second selected case of interest corresponds to pa-
rameters y = 1, y ′ = 0 (y1 = 1, y2 = 1); this is a line in the
base of the phase diagram going from u12(1) to the deformed
region, crossing the line of first-order phase transition which is
located at xc ≈ 4/5 (point B in Fig. 1). In particular, we have
selected the point x = 1/2. For this selection of the control

parameters, the system ground state is deformed and since
N1 = N2, the indexes 1 and 2 can be interchanged, u12(2) is
the dynamical algebra of the Hamiltonian, and j is a good
quantum number. Therefore, we are in a similar situation to
the case previously discussed but now, besides the ESQPT, a
set of states associated with the second (local) minimum of the
potential energy surface will appear.

We start with the analysis of the density of states. In Fig. 6,
the density of states are plotted versus the excitation energy. In
Fig. 6(a), each color line corresponds to a given j value, while
in Fig. 6(b), the total density of states is plotted independently
of the j− values. In Fig. 6(a), in addition to the peak close
to zero that is the precursor of the λ divergence, a previous
finite discontinuity is observed very close in energy (negative).
In Fig. 6(b), a relatively broad peak is observed above zero
energy, but nothing qualitatively different from Fig. 3(b),
which corresponds to an ESQPT without a local minimum
in the potential energy surface.

We present the Peres lattice for
〈nt1 〉
N1

versus the excitation
energy for given j values (different colors) in Fig. 7(a), or
for the whole set of states in Fig. 7(b). Here, narrow dips
are observed in Fig. 7(a) around the energy of the ESQPT.
The main difference with respect to the previous case is the
appearance of a second family of states (see lowest part of
Fig. 7 in both panels) related with the local minimum of the
potential energy surface. Note that also in this case, we do
not analyze the NNSD because we have to separate in sets
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FIG. 7. Peres lattice for
〈nt1 〉
N1

vs the excitation energy for the same Hamiltonian and parameters shown in Fig. 6. (a) For selected values of
j ; (b) for all the states without distinction in j . Poincaré sections for energies E = −10, E = 0, E = 20, and E = 50, in panels (c), (d), (e),
and (f), respectively [energies marked in panel (b)].
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FIG. 8. Participation ratio as a function of the excitation energy
for the same Hamiltonian and parameters as in Fig. 6. (a) For selected
j values; (b) for all the states without distinction in j .

with the same j value and, therefore, the states will be too
few to calculate the value of η. As in the previous case, one
can calculate the Poincaré sections to study the regularity and
chaos interplay. In Figs. 7(c)–7(f), we depict the Poincaré
sections for energies E = −10, E = 0, E = 20, and E = 50,
respectively. Because of the underlying u12(2) symmetry, all
the cases correspond to a regular regime, too.

We depict the participation ratio value as a function of the
excitation energy, for selected particular j values (different
colors) in Fig. 8(a) and for the whole set of states in Fig. 8(b).
In Fig. 8(a), each family of states has a narrow minimum
around zero energy with broad maxima at right and left. Here,
for each j family, a second set of states, related with the local
maximum of the energy surface, appears just below the energy
of the ESQPT, but it can be almost unnoticed. It is worthwhile
to mention that even in Fig. 8(b) the position of the ESQPT
critical energy is clearly marked with a relatively narrow dip.

Until now we have only studied cases where u12(2) was
the dynamical algebra of the Hamiltonian and, therefore, they
essentially correspond to the superposition of several one-fluid
Lipkin systems with 2j number of bosons. Now we will move
to the more interesting y1 �= y2 cases, where j is no longer a
good quantum number. The already studied cases have taught
us how the patterns observed in Figs. 3(b), 4(b), 5(b), 6(b), 7(b),
and 8(b) are a consequence of the superposition of lines corre-
sponding to different j values, in other words, a consequence
of the underlying u12(2) symmetry.

The next case of interest corresponds to the parameter
values y = 1/4, y ′ = 3/4 (y1 = 1, y2 = −1/2), which is a
point in the line from spherical u12(1) to the deformed region
but not in the base of the phase diagram, and consequently
does not preserve the u12(2) symmetry. This line crosses the
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FIG. 9. Different observables as a function of the excitation energy for a Hamiltonian with parameters y = 1/4, y ′ = 3/4, and x = 1/2 and
a number of bosons N1 = N2 = 70: (a) Density of states, (b) Peres lattice (black points) for

〈nt1 〉
N1

and η value (red solid curve), (c) participation
ratio, and (d)–(g) Poincaré sections for energies E = −20, E = 0, E = 30, and E = 50, respectively [energies marked in panel (b)].
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FIG. 10. Same as in Fig. 9 but for y = 0, y ′ = 1/2, and x = 1/2. Panels (d), (e), (f), and (g) are Poincaré sections for energies E = −10,
E = 0, E = 20, and E = 50.

first-order surface located around xc ≈ 4/5. We have selected
the point x = 1/2, which corresponds to a deformed ground
state (point C in Fig. 1). In this case, as already mentioned,
it is no longer possible to separate the states in terms of j .
The potential energy surface of this Hamiltonian has a global
deformed minimum and another local deformed one separated
by a maximum. In Fig. 9(a), the density of states is plotted
as a function of the excitation energy. It can be observed
that this quantity is not marking correctly the presence of the
ESQPT at zero energy, as already learned from the preceding
calculations. It is worth noting that although this case presents
a second family of states associated to the local minimum
starting at E ≈ −40, nothing is observed in the density of
states. In Fig. 9(b), the Peres lattice for 〈nt1〉/N1 is depicted
as a function of the excitation energy. This quantity shows
three clear regions, two on them at energies below the ESQPT
critical energy (zero energy) and the third one above. The two
lowest families of points correspond to states that are located in
the well of the global deformed minimum (〈nt1〉/N1 ≈ 0.6) and
in the well of the local one (〈nt1〉/N1 ≈ 0.2), also deformed.
These two regions show a very regular pattern. The third region
is above E ≈ 0 and presents a relatively disordered structure,
except in particular regions, as is 0.8 < 〈nt1〉/N1 < 1. The
Peres lattice is clearly showing the existence of two different
deformed phases, nonsymmetric, with a more regular behavior
below zero energy and a symmetric phase with certain degree

of chaoticity above the energy of the ESQPT. In Fig. 9(b), the
value of η (red line), representing the NNSD, as a function
of the energy is plotted too. This quantity shows a sudden
decrease at the energy of the ESQPT, therefore pointing to
a spectrum with a more regular behavior below the ESQPT
and more chaotic above. However, even above the ESQPT,
there is a regular region at E ≈ 50 with 〈nt1〉/N1 ≈ 0.7. This
behavior has been already observed in other models such as
the Bose-Hubbard Hamiltonian [35]. Note that we do not
reach the whole range of energies because we exclude the
10% of states with lowest and highest energies to calculate
η. In Fig. 9(c), it is depicted the participation ratio versus
the excitation energy. Here, one can note a rather different
structure for energies below and above the critical energy of
the ESQPT. For energies below zero, one can see two sets
of inverted parabolas, with a minimum around zero. The two
sets correspond to the two branches already seen in Fig. 9(b).
For energies above the ESQPT, a single inverted parabola,
though rather blurred, is observed. This region presents a
behavior similar to the one obtained with u12(2)-conserving
Hamiltonians. Finally, Figs. 9(d)–9(g) correspond to Poincaré
sections with energies E = −20, E = 0, E = 30, and E = 50,
respectively. These figures confirm the latter statements, i.e.,
that below the ESQPT energy, a regular behavior exits, as
Fig. 9(d) confirms, at the ESQPT energy chaotic orbits start to
appear [as shown in Fig. 9(e)], and above the ESQPT energy,
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FIG. 11. Same as in Fig. 9 but for y = 0, y ′ = 1, and x = 1/2. Panels (d), (e), (f), and (g) are Poincaré sections for energies E = −10,
E = 0, E = 30, and E = 50.

regions with chaotic [see Fig. 9(f)], and partially regular
motion coexist [see Fig. 9(g)].

The three last cases correspond to Hamiltonians with y = 0,
i.e., with y1 = −y2, and, therefore, located on the gray vertical
plane of the phase diagram. As we proved in Ref. [21], for
values of y ′ < 1 a second-order QPT appears at xc = 4/5,
for y ′ = 1 the QPT shows a divergence in d2E/dx2 also at
x = 4/5, but for y ′ > 1 the QPT becomes of first order. Thus,
next we try to disentangle whether or not there is a different
qualitative behavior among these three situations in terms of
analyses of density of states, Peres lattice, Poincaré section,
and participation ratio. In Fig. 10 the results for the case of
y ′ = 1/2 are presented, in Fig. 11 the case of y ′ = 1 is studied,
and, finally, in Fig. 12 the case of y ′ = 3/2 is analyzed.

In Fig. 10, we consider the case y = 0, y ′ = 1/2, and
x = 1/2 (point D in Fig. 1). This corresponds to a deformed
ground state in a line that changing x presents a second-order
QPT at xc = 4/5. The energy surface has two deformed
degenerate minima (at β and −β) separated by a spherical
maximum. In Fig. 10(a), the value of the density of states is
presented as a function of the excitation energy. A relatively
broad peak is observed with a maximum well above the energy
of the ESQPT. In Fig. 10(b), the Peres lattice for 〈nt1〉/N1 as a
function of excitation energy is presented. Note that because of
the presence of degenerated doublets, it is needed to include

a tiny perturbation in the Hamiltonian for a slight break in
the degeneracy and to avoid random linear combinations of
states. Two branches of points are clearly seen for energies
below the ESQPT, one centered around 〈nt1〉/N1 ≈ 0.3 and the
other around 〈nt1〉/N1 ≈ 0.5. These two branches correspond
to the two degenerated and symmetric minima for which
〈nt1〉 and 〈nt2〉 are interchanged. In both cases, a clearly
ordered pattern is observed. Note that for each energy there
exist two degenerated points, one in each branch. Above the
ESQPT, the order is lost and the points are located in a more
or less random way around a straight line. As in previous
cases, the ESQPT separates the regular and the chaotic zones.
In this sense, the ESQPT separates two shapes and phases
of the system. This is confirmed through the calculation of
the NNSD η value, which shows a sudden decrease in its
value at zero energy, though with several oscillations, therefore
having a more regular behavior below the ESQPT and more
chaotic above. However, even above the ESQPT, there is
a more regular region at E ≈ 50 with 〈nt1〉/N1 ≈ 0.8. Fig-
ures 10(d)–10(g), which correspond to Poincaré sections with
energies E = −10, E = 0, E = 20, and E = 50, respectively,
confirm the above findings: Below the ESQPT energy a regular
behavior exits [Fig. 10(d)], at the ESQPT energy chaotic
orbits start to appear [as shown in Fig. 10(e)], and above the
ESQPT energy, regions with chaotic [Fig. 10(f)] and partially
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FIG. 12. Same as Fig. 9 but for y = 0, y ′ = 3/2, and x = 1/2. Panels (d), (e), (f), and (g) are Poincaré sections for energies E = −20,
E = 0, E = 30, and E = 50.

regular motion coexist [see Fig. 10(g)]. In Fig. 10(c), the
participation ratio versus the excitation energy is depicted.
Below the ESQPT, the points (doubly degenerated) describe
well-separated inverted parabolas with a minimum at zero
energy. For energies above the ESQPT, once more, the points
define a very blurred parabola.

The next case to be analyzed is y ′ = 1, which is probably
the most exotic one because the associated QPT at xc = 4/5
presents a divergence in d2E/dx2 (point E in Fig. 1). However,
as we will explain, in fact nothing special occurs in the
spectrum. In Fig. 11(a), we depict the density of states and
it looks like the one presented in Fig. 10(a). In Fig. 11(b),
we present the Peres lattice and, once more, we have two
branches for energies below the ESQPT, one centered around
〈nt1〉/N1 ≈ 0.2 and the other around 〈nt1〉/N1 ≈ 0.6. Note that
for each energy there exist two degenerated points. Above the
ESQPT, we obtain a cloud of points scattered around a straight
line. Here too, the NNSD η value is plotted and once more it
presents a sudden lowering at the ESQPT energy, therefore
pointing to a more regular spectrum below the ESQPT, while
it is more chaotic above. Note that to calculate η below the
energy of the ESQPT, we only consider states in one of the
branches; otherwise the results are wrong. The decreasing
occurs in two steps, the first at zero energy and the second
at E ≈ 20. This fact is a consequence of the coexistence of

intruder and regular states in the same energy region. In both
regions, several oscillations are observed. Finally, there is an
striking increase of η at E ≈ 50, pointing to the presence of a
regular region above the ESQPT, as can be also observed in the
Peres lattice. Once more, Figs. 11(d)–11(g), which correspond
to Poincaré sections with energies E = −10, E = 0, E = 30,
and E = 50, respectively, confirm the above findings: Below
the ESQPT energy, a regular behavior exits [Fig. 11(d)], at the
ESQPT energy chaotic orbits start to appear [Fig. 11(e)], and
above the ESQPT energy, regions with chaotic [Fig. 11(f)] and
partially regular motion coexist [see Fig. 11(g)]. In Fig. 11(c),
the participation ratio is plotted, presenting well-separated
inverted parabolas below the ESQPT, with the minimum at
zero energy, while above the ESQPT a single thick inverted
parabola can be defined.

The latest case to be analyzed is y = 0, y ′ = 3/2, which
is a line that presents a first-order QPT for xc ≈ 4/5. The
value x = 1/2 corresponds to an energy surface with two
degenerate deformed minima (point F in Fig. 1), as in previous
cases. The obtained figures, Fig. 12(a) for the density of
states, Fig. 12(b) for the Peres lattice, and Fig. 12(c) for
the participation ratio, present only slightly differences with
respect to Fig. 11. In particular, in the Peres lattice, the
two branches located below the ESQPT are centered around
〈nt1〉/N1 ≈ 0.15 and 〈nt1〉/N1 ≈ 0.75, respectively. Here, the
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FIG. 13. 〈nt1〉/N1 vs 〈nt2 〉/N2 for the Hamiltonians studied in
Fig. 10 with parameters x = 1/2, y = 0, and y ′ = 1/2 (a), in
Fig. 11 with parameters x = 1/2, y = 0, and y ′ = 1 (b), and in
Fig. 12 with parameters x = 1/2, y = 0, and y ′ = 3/2 (c). Black
points correspond to states with negative energy, while the red ones
correspond to states with positive energy. In panels (d)–(f), we
depict 〈nt2〉/N2 − 〈nt1〉/N1 as a function of the energy for the same
parameters as in panels (a)–(c), respectively.

η value changes rapidly when crossing the ESQPT, separating
the regular region below the ESQPT and the chaotic one above.
Once more, around E ≈ 50 there is a revival of the value of η
because of the occurrence of a more regular region. The rest
of features are qualitatively the same as in Figs. 10 and 11,
including participation ratio and Poincaré sections.

An alternative way of seeing the existence of different
phases in the spectrum is the use of a two-dimensional diagram
representing 〈nt1〉/N1 versus 〈nt2〉/N2. Moreover, we will
see that |〈nt1〉/N1 − 〈nt2〉/N2| can be considered as an order
parameter and therefore will be a useful tool to define the
phase of the system. We will consider the three last cases
studied with y = 0. In Figs. 13(a)–13(c), we depict 〈nt1〉/N1

versus 〈nt2〉/N2, which corresponds to y ′ = 1/2, y ′ = 1, and
y ′ = 3/2, respectively. The black points correspond to states
with negative energy, hence below the ESQPT, while the red
ones correspond to states with positive energy, therefore above
the ESQPT. In this figure one can easily single out the presence
of two symmetric wells (they will become asymmetric if
y �= 0) that contain the black points, while the rest of states
(red points) are scattered around the line 〈nt1〉/N1 = 〈nt2〉/N2.
Note that 〈nti 〉/Ni can be connected with the order parameter

through βi =
√ 〈nti

〉/Ni

1−〈nti
〉/Ni

. Figures 13(a)–13(c) provide a rough

image of the available position space for the states below
or above the ESQPT. For those below the ESQPT, they
are confined in two disjoint regions, where the potential in
the Hamiltonian can be approximated by a quadratic form
(one in each well) that leads to a regular regime [6,29],
while above the ESQPT, the harmonic approximation for the
Hamiltonian is no longer valid and a more chaotic behavior is
expected. In Figs. 13(d)–13(f), we plot |〈nt2〉/N2 − 〈nt1〉/N1|
as a function of the energy, corresponding to y ′ = 1/2, y ′ = 1,
and y ′ = 3/2, respectively. The variable |〈nt2〉/N2 − 〈nt1〉/N1|

has the typical behaviour of an order parameter; i.e., it has
a zero value in the symmetric phase and is different from
zero in the nonsymmetric one. In our case, states with an
energy below the ESQPT own a finite value of |〈nt2〉/N2 −
〈nt1〉/N1| and it becomes zero for states with energy above the
ESQPT.

V. SUMMARY AND CONCLUSIONS

In this work, we have studied the onset of ESQPTs in a
double Lipkin Hamiltonian which resembles the consistent-
Q Hamiltonian of the interacting boson model. To find the
presence of an ESQPT in the spectrum, we relied on the study
of the density of states, the Peres lattices, the Poincaré sections,
the NNSD, and the participation ratio.

Taking into account, the knowledge of the phase diagram
of the model [21], we have selected particular points in
the parameter model space that correspond to nonsymmetric
(deformed) phases and therefore should present an ESQPT
in the spectrum at the energy at which the potential energy
surface has a maximum, which in our case is always at zero
energy. We have considered both cases with an ESQPT: the one
with just one deformed minimum and a spherical maximum,
and cases where two deformed minima appear separated by a
spherical maximum. In this last case, a second family of states
appears in the spectrum when reaching the excitation energy
of the second minimum.

Among the analyzed cases, first we started with Hamilto-
nians with u12(2) as dynamical algebra and therefore with j
as good quantum number. We have learned that when looking
into the spectrum as a whole, one has to take into account that
the symmetry of the Hamiltonian is shaping the results. This is
particularly evident for the Peres lattice and the participation
ratio. The conclusion for these cases is that the position of
the ESQPT is shifted to higher energies as the value of j
decreases, but the main features of each ESQPT are the same
already described in the literature.

Next, we moved into cases where u12(2) symmetry was
badly broken. Though the lack of symmetry, the patterns that
we observed were amazingly similar to the previous cases
and the zero energy clearly marks the edge between two
shapes and phases with distinct patterns in the Peres lattice
and in the participation ratio. The change in the structure
of the Peres lattice, the Poincaré section, and in the NNSD
(η) points to the passing from a regular to a chaotic or less
regular regime once the ESQPT is crossed, although above the
ESQPT also appear regions with a strong regular character.
The relationship between the appearance of an ESQPT and
the onset of chaos seems to depend on the Hamiltonian
parameters, and therefore it is not possible to establish a
clear connection between both phenomena, as pointed out in
Ref. [32]. However, to the best of our knowledge, all the cases
studied in the literature, including ours, point towards a regular
behavior for states below the ESQPT energy, i.e., belonging
to the nonsymmetric phase, although the character above the
ESQPT energy strongly depends on the Hamiltonian. Finally,
the use of |〈nt2〉/N2 − 〈nt1〉/N1| as order parameter clearly
marks the presence of an ESQPT at zero energy, which is
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deeply connected with the change in the observed pattern in
the diagram (〈nt1〉/N1,〈nt2〉/N2) when crossing the ESQPT
energy.

In summary, in a compound system, as the two-fluid Lipkin
model, the existence of an ESQPT is self-evident, though the
value of the density of states turns out not to be an appropriated
quantity to single out its presence. However, Peres lattices and
participation ratio have been shown to be ideal tools to mark
the presence of ESQPTs.
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