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Theoretical uncertainties in the predictions of inner fission barrier heights in superheavy elements have been
investigated in a systematic way for a set of state-of-the-art covariant energy density functionals which represent
major classes of the functionals used in covariant density functional theory. They differ in basic model assumptions
and fitting protocols. Both systematic and statistical uncertainties have been quantified where the former turn
out to be larger. Systematic uncertainties are substantial in superheavy elements and their behavior as a function
of proton and neutron numbers contains a large random component. The benchmarking of the functionals to the
experimental data on fission barriers in the actinides allows reduction of the systematic theoretical uncertainties
for the inner fission barriers of unknown superheavy elements. However, even then, on average they increase
on moving away from the region where benchmarking has been performed. In addition, a comparison with
the results of nonrelativistic approaches is performed in order to define full systematic theoretical uncertainties
over the state-of-the-art models. Even for the models benchmarked in the actinides, the difference in the inner
fission barrier height of some superheavy elements reaches 5—6 MeV. This uncertainty in the fission barrier
heights will translate into huge (many tens of the orders of magnitude) uncertainties in the spontaneous fission

half-lives.
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I. INTRODUCTION

The region of superheavy elements (SHE), characterized
by the extreme values of proton number Z, is one of the
extremes of the nuclear landscape and an arena of active
experimental and theoretical studies (see Refs. [1-3] and
references therein). Contrary to other regions of the nuclear
chart, the SHE are stabilized only by quantum shell effects.
Currently available experimental data reach proton number
Z =118 [4,5] and dedicated experimental facilities such as
the Dubna Superheavy Element Factory will hopefully allow
to extend the region of SHE up to Z = 120 and for a wider
range of neutron numbers for lower Z values.

The stability of SHESs is defined by the fission barriers. In
addition, the experimental studies of SHEs are based on the
observation of « decays. As a consequence, only SHEs with
spontaneous fission half-lives tgr longer than the half-lives
7, of the a decays could be observed in experiments. An
additional limit is set up by the fact that only o decays
longer than 10 us can be observed in experiment. Therefore,
it is of great importance to study the fission barriers in
SHEs. The height of the fission barrier, By, which is the
difference of the energies of the respective saddle in the
potential energy surface (PES) and the ground state, is one of
most important quantities. It defines the survival probability
of SHEs synthesized in heavy-ion reactions and impacts the
spontaneous fission half-lives. The latter is important for an
understanding of the competition between the fission process
and «-particle emission.

Fission barriers have been extensively studied in different
theoretical frameworks; these studies have been reviewed in
Refs. [1,6]. The theoretical frameworks used are the mi-
croscopic + macroscopic method [7], nonrelativistic density
functional theories (DFT) based on finite-range Gogny [8] and
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zero-range Skyrme forces [9], and covariant density functional
theory (CDFT) [10]. Our present investigation is performed
in CDFT. It has been less frequently used in the studies
of fission barriers in SHEs as compared with nonrelativistic
theories: a systematic investigation of the fission barriers in
the Z = 112-120 SHE has been performed in the triaxial
relativistic mean field plus BCS (RMF + BCS) framework
with the NL3* functional in Ref. [11] and potential energy
surfaces in the (B,y) plane for the even-even isotopes in
the a-decay chains of the 2120 and 3°°120 nuclei have
been calculated in the triaxial relativistic Hartree-Bogoliubov
approach with the DD-PC1 functional in Ref. [12].

Theoretical investigations require an estimate of theoretical
uncertainties. This becomes especially important when one
deals with the extrapolations beyond the known regions, as,
for example, in particle number or deformation. This issue
has been discussed in detail in Refs. [13,14] and in the
context of global studies within CDFT in the introduction
of Ref. [15]. In the CDFT framework, the studies of theo-
retical uncertainties have been restricted to the ground-state
properties so far. Systematic theoretical uncertainties and their
sources have been studied globally for the ground-state masses,
deformations, charge radii, neutrons skins, positions of drip
lines, etc., in Refs. [3,15-19]. Of particular importance in
the context of the present paper is the study of theoretical
uncertainties in the ground-state properties of SHE presented
in Ref. [3]. An analysis of statistical theoretical uncertainties
in the ground-state observables is currently under way and
will be submitted for publication soon [20]. The major goal
of the present paper is to extend these investigations to
excited states, namely, to the fission barriers in superheavy
nuclei. Both statistical and systematic theoretical uncertainties
in the description of fission barriers will be considered
here.
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Theoretical uncertainties emerge from the underlying the-
oretical approximations. In the DFT framework, there are two
major sources of these approximations, namely, the range
of interaction and the form of the density dependence of
the effective interaction [9,21]. In the nonrelativistic case,
one has zero-range Skyrme and finite-range Gogny forces
and different density dependencies [9]. A similar situation
exists also in the relativistic case: Point coupling and meson
exchange models have interactions of zero and finite range,
respectively [10,22-24]. The density dependence is introduced
either through an explicit dependence of the coupling constants
[22,24,25] or via nonlinear meson couplings [21,23]. This
ambiguity in the definition of the range of the interaction
and its density dependence leads to several major classes of
the covariant energy density functionals (CEDF), which were
discussed in Ref. [15].

As a consequence, in the present paper, we focus on
the uncertainties related to the choice of the energy density
functional. They can be relatively easily deduced globally [15]
(at least for axial reflection symmetric shapes). We therefore
define theoretical uncertainty for a given physical observable
(which we call in the following “spreads”) via the spread of
theoretical predictions as [15]

AO(Z,N) = |Omax(Z,N) — Onin(Z,N)I, ey

where Onax(Z,N) and Op,in(Z, N) are the largest and smallest
values of the physical observable O(Z,N) obtained within
the set of CEDFs under investigation for the (Z,N) nucleus.
Note that these spreads are only a crude approximation of the
systematic theoretical errors discussed in Ref. [14] since they
are obtained with a very small number of functionals which
do not form an independent statistical ensemble. Note also
that these systematic errors are not well defined in unknown
regions of the nuclear chart or deformation since systematic
biases of theoretical models could not be established in these
regions in the absence of experimental data and/or an exact
theory.

We use the CEDFs NL3* [23], DD-ME2 [22], DD-MES§
[26], DD-PC1 [24], and PC-PK1 [27]. These state-of-the-art
functionals represent the essential types of CEDFs used in
the literature (for more details, see the discussion in Sec. II
of Ref. [15] and the introduction to Ref. [3]). Moreover,
their performance and the related theoretical uncertainties
have recently been analyzed globally in Refs. [15,18,19,28]
and in particular in superheavy nuclei in Ref. [3]. They are
characterized by an improved accuracy of the description of
experimental data as compared with the previous generation
of CEDFs.

In details, they are based on rather different concepts:

(1) NL3* [23], a slightly improved modern version of the
well-known functional NL3 [29], is a representative
of the first group of CEDFs proposed in 1977 in
the pioneering work of Boguta and Bodmer [21].
These two functionals are based on the Walecka
model [30] with its three mesons o, w, and p and
include a density dependence through nonlinear meson
couplings in the o channel. In addition to the four basic
parameters (m,, &5, 8v» and g,), they depend on two
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nonlinear coupling constants g, and gz describing the
strength of cubic (03) and quartic (c*) terms. This
class of functionals misses a density dependence in
the isovector channel and therefore the asymmetry
energy of such functionals is relatively large and their
dependence on the density is rather stiff.

(2) The second class of the functionals, originally intro-
duced in 1999 by Typel and Wolter [25], is also based
on meson-exchange forces, but the nonlinear meson
couplings are replaced by an explicit density depen-
dence of the coupling constants [g;(p), i = o, w, p]
with four additional parameters. The set DD-ME2 [22]
is probably one of the most successful CEDFs of this
type. Its eight parameters have been adjusted in a very
careful way to the binding energies and radii of a set
of twelve spherical nuclei. Here, g,(p) depends on the
density and therefore this set reproduces rather well not
only the ab initio results for the equation of state (EoS)
of symmetric nuclear matter, but also those for neutron
matter [31].

(3) The third functional DD-MES$ [26] is in its form very
similar to DD-ME2 but it represents a new idea. It
is, to a large extent, derived from modern ab initio
calculations of nuclear matter [32,33]. Therefore, it
contains in addition to three mesons o, w, and p the
scalar isovector meson §. Only four phenomenological
parameters (Mg, g5, 8w, and g,) at saturation density
are adjusted to the same set of data as has been used
for DD-ME2. All the rest is derived from ab initio
calculations.

(4) The last two functionals, DD-PC1 [24] and PC-PK1
[27], have been chosen because they represent zero-
range functionals, which are technically much simpler
than those based on meson exchange forces with
finite range. They can be derived in the limit of large
meson masses. This class of functionals has been first
proposed in the eighties by Manakos ez al. [34], but only
recently their density dependence has been adjusted
carefully to experimental data. We chose two versions
of this model with a different density dependence and
with a different fitting strategy. The functional DD-PC1
[24] contains an exponential density dependence and
it has been adjusted only to nuclear matter data and
masses of a large set of deformed nuclei. On the
other hand, PC-PK1 [27] has a density dependence
of polynomial form in all spin-isospin channels and
it is adjusted to a very large set of spherical nuclei.
Because of its polynomial density dependence, it can
also be used for beyond mean field calculations in the
framework of the generator coordinate method (GCM)
[35]. However, it does not have a density dependence
in the isovector channel.

An additional source of theoretical uncertainties is related
to the details of the fitting protocol such as the choice of
experimental data and the selection of adopted errors. It
applies only to a given functional and the related theoretical
uncertainties are called statistical [14,36]. Note that the
selection of adopted errors is to a degree subjective, in
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particular, if one deals with quantities of different dimensions.
The investigation of statistical theoretical uncertainties for
potential energy curves is time-consuming since it involves
constrained deformed calculations over a substantial number
of grid points performed for a substantial number of the
variations of the original functional. As a result, such an
analysis is performed only for a single nucleus and only for
two CEDFs.

We restrict our investigation to inner fission barriers.
There are several reasons behind this choice. A systematic
investigation of Ref. [11] within the RMF + BCS framework
with the NL3* CEDF has shown that the fission barriers
of many SHEs have a double-humped structure in axial
reflection-symmetric calculations. The inclusion of octupole
and triaxial deformations lowers outer fission barriers by 2 to
4 MeV so that they are only around 2 MeV in height with
respect to superdeformed minimum. A similar situation exists
also in Gogny DFT calculations [37]. In addition, similar
to actinides [38], symmetry unrestricted calculations which
combine octupole and triaxial deformations simultaneously
could further reduce the heights of outer fission barriers.
These low barriers would translate into a high penetration
probability for spontaneous fission such that most likely these
superdeformed states are metastable and that outer fission
barriers do not affect substantially the fission process in total.
Note also that outer fission barriers do not exist in most of the
SHEs with Z > 110 in Skyrme DFT calculations [39,40]. An
accurate description of outer fission barriers would require the
use of symmetry unrestricted relativistic Hartree-Bogoliubov
(RHB) code. Unfortunately, the computational cost for such
an investigation of theoretical uncertainties in the description
of outer fission barriers is prohibitively high.

Despite these limitations, this investigation provides for a
first time a systematic analysis of theoretical uncertainties in
the description of fission barriers within the CDFT framework.
Italso gives an understanding of which observables and aspects
of many-body physics can be predicted with a higher level of
confidence than others for density functionals of the given
type. Moreover, it is expected that they will indicate which
aspects of the many-body problem have to be addressed with
more care during the development of the next generation of
EDFs. This study also represents an extension of our previous
studies of theoretical uncertainties in the global description
of the ground-state properties of the nuclei from the proton
to neutron drip lines [15-17,19], superheavy nuclei [3], and
rotating nuclei [41].

The paper is organized as follows. Section II describes the
details of the calculations. The results of global investigation
of inner fission barriers and related systematic theoretical
uncertainties within the axial RHB framework are discussed
in Sec. III. Statistical uncertainties in the description of
fission barriers and potential energy curves are investigated
in Sec. IV. Section V is devoted to the study of systematic
uncertainties in the description of the energies of fission
saddles within the triaxial RHB framework. In Sec. VI, we
present a comparison of fission barriers obtained in different
models. Finally, Sec. VII summarizes the results of our
work.
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II. NUMERICAL DETAILS

In the present paper, axially symmetric and triaxial RHB
frameworks are used for the studies of fission barriers and the
related theoretical uncertainties.

First, the axially symmetric RHB framework is used for
systematic studies of all Z = 96-126 even-even actinides
and SHEs from the proton-drip line up to neutron number
N = 196. The proton-drip lines for the different functionals
are defined in Refs. [3,15,16]. The details of this formalism
have been discussed in Secs. II-IV of Ref. [15] and Sec. 11
of Ref. [17]. Thus, we only provide a general outline of
the features specific for the current RHB calculations. In
these calculations, we solve the RHB equations in an axially
deformed oscillator basis [18,42—45]. The truncation of the
basis is performed in such a way that all states belonging
to the shells up to Ng = 20 fermionic shells and Ny = 20
bosonic shells are taken into account. As tested in a number
of calculations with Ny = 26 and Ny = 26, this truncation
scheme provides sufficient numerical accuracy. For each
nucleus, the potential energy curve is obtained in a large
deformation range from , = —1.0upto 8, = 1.05 in steps of
B> = 0.02 by means of a constraint on the quadrupole moment
Q2. Then, the correct ground-state configuration and its
energy are defined; this procedure is especially important for
the cases of shape coexistence (see the discussion in Ref. [3]).
The effect of the octupole deformation on the binding energies
of the ground states (and thus on the heights of inner fission
barriers) is also taken into account according to the results
obtained in Refs. [18,46]. Note that octupole deformation in
the ground states affects fission barriers and their spreads only
forthe Z ~ 92, N ~ 132 and Z ~ 96, N ~ 196 nuclei.

In order to avoid uncertainties connected with the size of the
pairing window, we use the separable form of the finite-range
Gogny pairing interaction introduced by Tian et al. [47].
As follows from the RHB studies with the CEDF NL3* of
odd-even mass staggerings, moments of inertia and pairing
gaps, the Gogny DIS pairing and its separable form work
well in the actinides (Refs. [15,41,48]). A weak dependence
of its pairing strength on the CEDF has been observed in
the studies of pairing and rotational properties of deformed
actinides in Refs. [41,49], of pairing gaps in spherical nuclei
in Ref. [15], and of pairing energies in Ref. [17]. Thus,
in the present work, the same pairing strength is used also
in the calculations with DD-PC1, DD-ME2, DD-ME$, and
PC-PK1. Considering the global character of this study as
well as the existing uncertainties in the extrapolation of pairing
from actinides (where experimental data could be confronted
with the results of calculations) to superheavy nuclei, this is a
reasonable choice.

As a next step, we perform triaxial RHB (TRHB) calcula-
tions in a parity-conserving Cartesian oscillator basis [45,50]
using the same pairing and the same set of the functionals.
However, such calculations are enormously time-consuming.
Therefore, they cannot be carried out on the same global
scale as axial RHB calculations. As a result, we restricted
the TRHB studies to a selected set of the Z = 112-120 nuclei.
These nuclei are located mostly in the region where extensive
experimental studies have either been already performed
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FIG. 1. The heights of inner fission barriers in selected nuclei as obtained in axially symmetric RHB calculations with indicated CEDFs.

or will be performed in a foreseeable future. Even then
the calculations of full potential energy surfaces (PES) are
numerically prohibitive for the Ny =20 fermionic basis.
However, the topology of the PESs obtained in the TRHB
calculations with the truncation of the fermionic basis at
Np =16 and Nr = 20 is the same. Thus, full PESs have
been calculated only with the Nyg = 16 fermionic basis.
These results define the positions in the deformation plane
and the energies of axial and triaxial saddles. Afterward, they
are corrected for the Ny = 20 fermionic basis by performing
the TRHB calculations with the Ny = 20 fermionic basis in
the spherical and normal deformed minimum and at few grid
points near the saddles.

III. GLOBAL INVESTIGATION OF INNER FISSION
BARRIERS AND RELATED SYSTEMATIC THEORETICAL
UNCERTAINTIES IN THE AXTAL RHB CALCULATIONS

Figure 1 compares the heights of inner fission barriers
obtained in axially symmetric RHB calculations with the five
functionals. We show only results for nuclei in which the
lowest saddle is axially symmetric in the systematic triaxial
RMF + BCS calculations with NL3* of Ref. [11]. One can see
that NL3*, DD-PC1, and PC-PK1, which successfully describe
experimental fission barriers in the actinides [11,12,38,51,52],
give similar results for the heights of inner fission barriers. On
the other hand, the fission barriers produced by DD-ME2 are
always at the upper end. This may be a generic feature of this
functional since it produces also in **U and **’Pu inner fission
barriers which are higher than those of NL3* and DD-PC1
[11]. The functional DD-MES produces unrealistically low
fission barriers (see Sec. III in Ref. [11] for a discussion of the
inner fission barriers in SHES).

The global behavior of the inner fission barrier heights in
the region of superheavy nuclei is shown in Fig. 2 for all five
employed functionals. Again the highest fission barriers are
provided by DD-ME2 and the lowest by DD-MEGS.

The employed functionals can be split into two groups
[3]. The first group, consisting of NL3* DD-ME2, and
PC-PK1, predicts bands of spherical SHEs in the (Z,N) plane
centered around the Z = 120 and N = 184 lines. The second
group includes DD-ME§$ and DD-PC1 and it does not predict
spherical SHE in the vicinity of the abovementioned particle
numbers. The impact of the proton and neutron spherical shell
gaps at Z = 120 and N = 184 is clearly visible for NL3*,
DD-ME2, and PC-PK1; there is a substantial increase of the
inner fission barrier heights around these numbers. In contrast,
no such effect is seen in the calculations with DD-MES and
DD-PCI1. For NL3* and PC-PK1, the heights of the inner
fission barriers are lowered around Z ~ 100, N ~ 172 and
Z ~ 108, N ~ 194. Similar regions of reduced inner fission
barrier heights could be found also for the other functionals
but they are centered around different combinations of proton
and neutron numbers.

The spreads in the predictions of inner fission barrier
heights are shown for all five employed functionals in Fig. 3(a).
One can see that in the actinides (Z < 100, N < 164) these
spreads are typically smaller than 2.5 MeV. Note that in this
mass region theoretical uncertainties in the prediction of the
ground-state deformations are very small (see Refs. [3,15]).
However, the AE? spreads drastically increase in the Z =
112-120, N = 170-186 region where they range from 3.5
up to 5.5 MeV. To a large extent, this region coincides
with the region where the uncertainties in the predictions
of the ground-state deformations are substantial (see Fig. 8
in Ref. [3]). This clearly suggests that in this region the
uncertainties in the fission barrier heights are strongly affected
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FIG. 2. The heights of inner fission barriers (in MeV) obtained in axially symmetric RHB calculations as a function of proton and neutron
numbers. The results of the calculations with the indicated CEDFs are shown from the two-proton drip line up to N = 196.

by the uncertainties in the ground-state deformations. A similar
enhancement of the AE? spreads is seen in the nuclei around
Z ~ 98, N ~ 174. However, the differences in the predictions
of the ground-state deformations play here a minor role since
they are almost the same for all functionals (see Fig. 8 in
Ref. [3]). Theoretical AE® spreads decrease for N > 186;
here they are typically less than 3 MeV with only a few nuclei
characterized by higher spreads of around 4 MeV.

The above-discussed impact of the uncertainties in the
calculated deformations on the spreads of inner fission barrier
heights can be understood in the following way. The inner
fission barrier height is the difference between the energies of
the saddle and ground states. However, these two points in the
potential energy curve have different deformations and thus
substantial differences in the underlying shell structure. This
leads to different spreads of the binding energies in the ground
states and saddles which are compared in Fig. 4. Minimum
spreads in these energies appear in the band of the nuclei which

is shown in yellow and red colors [Figs. 4(a) and 4(b)]. These
spreads increase on going away from this band of the nuclei;
this is caused by different isovector properties of employed
functionals (see discussion in Ref. [19] for more details). Let
focus our discussion on this yellow-red band of the nuclei.
Due to different underlying shell structure at the ground state
and saddle point, the minima of the spreads (shown by red and
reddish colors) in the binding energies are localized in different
(Z,N) regions at the ground state and saddle point. Indeed, at
the ground state, the increase of the spreads in binding energies
takes place near neutron numbers which correspond to the shell
gaps in the single-particle spectra, namely, near deformed
N = 162 shell closure and especially near N ~ 184, which
corresponds to spherical shell closure in some functionals
[Fig. 4(a)]. The situation is different at the saddle point where
the increase of the spreads in binding energies appears in wide
regions near N ~ 168 and ~196 [Fig. 4(b)]. These effects
become even more visible when the color map of Fig. 3 is
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FIG. 3. The spreads AE® of the heights of inner fission bar-
riers as a function of proton and neutron numbers. AE?(Z,N) =
|EB (Z,N)— EB (Z,N)|, where, for given Z and N values,

EE (Z,N) and EE (Z,N) are the largest and smallest heights of

inner fission barriers obtained with the set of functionals NL3%*,
DD-ME2, DD-MES§, DD-PC1, and PC-PK1. Panel (a) shows the
results for all five functionals, while DD-ME2 and DD-MES§ are
excluded in the results shown in panel (b).

used in Figs. 4(c) and 4(d); this is done for simplicity of the
comparison of these two figures. The features of the fission
barrier spreads which are visible in Fig. 3 (and especially their
increase near N ~ 184) are consequences of the ones seen in
Fig. 4.

The benchmarking of the functionals to experimentally
known fission barriers in the actinides allows us to reduce
theoretical spreads in their heights for unknown nuclei. This
is illustrated in Fig. 3(b), where only the NL3*, DD-PC1, and
PC-PK1 functionals are used in the definition of the theoretical
spreads. Again, the source of this reduction could be traced
back to the reduction of the fluctuations in binding energy
spreads for the ground states and saddles in the direction
along the direction of minimum spreads (compare Figs. 5
and 4). These functionals successfully describe experimental
fission barriers in the actinides [11,12,38,51,52]. One can
see that the use of only these functionals reduces theoretical
uncertainties in the inner fission barrier heights for the N <
180 nuclei typically to less than 2 MeV; only in few nuclei
around Z = 110,N ~ 164 and Z ~ 110,N ~ 176 do these
uncertainties reach 4 and 5.5 MeV, respectively. However,
these uncertainties increase by roughly 1 MeV for the nuclei
with N > 182. It is also important to mention that theoretical
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spreads in the inner fission barrier heights do not form a smooth
function of proton and neutron numbers; there is always a
random component in their behavior.

IV. STATISITICAL UNCERTAINTIES IN
THE DESCRIPTION OF FISSION BARRIERS
AND POTENTIAL ENERGY CURVES

As discussed in the introduction, there are statistical
uncertainties in the description of physical observables in
addition to the systematic ones which for the saddles of inner
fission barriers are quantified in the previous section and
in Secs. V and VI below. The description of the statistical
uncertainties for fission barriers and potential energy curves
follows the formalism presented in Ref. [14]. Its major details
are outlined below.

For a model having Np, adjustable parameters p =

(p1,p2, - - -, PN,,) the normalized objective function is defined
as

lepb n; ( exp 2

i.j(P) —
aw=t 32O

i=1 j=1 ij

where
2
x~(Po)
= (3)
Ndata - Npar

is a global scale factor (Birge factor [53]) defined at the
minimum of the penalty function (optimum parametrization
Po), which leads to the average x>(po) per degree of freedom
equal to one [14] and

Ngata = Z n; 4

is the total number of data points of different types. Here,
Niype stands for the number of different data types. The
calculated and experimental-empirical values of the physical
observable J of the ith type are represented by O; ;(p) and
0, j » respectively. AO; ; is the adopted error for the physical
observable 0;,;.

The acceptable functionals are defined by the condition
[14,36]

X2 m®P) < XZmPo) + 1. )

This condition specifies the physically reasonable domain
around the minimum py in which the parametrization p
provides a reasonable fit and thus can be considered as
acceptable. For a given original functional, the set of the
M functional variations [pi,p2, - --,Psm] has been defined in
Ref. [20]; note that this set also includes the original functional.

For this set of the functional variations, the potential energy
curves of the 112 nucleus have been calculated in the axial
RHB framework in the deformation range 8, = 0.0-1.05 with
a step of AB, = 0.02. Then, the energies of these potential
energy curves were redefined with respect of the energy of
their spherical or near spherical minimum. As a result, the
energy of the minimum becomes equal to zero. Finally, the
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FIG. 4. The spreads in the binding energies of the ground states (a) and the energies of saddle points (b) as obtained with five employed
CEDFs. Panels (c) and (d) show the same results but with the energy color map used in Fig. 3.

mean values of the energy

i 1 &
E(Bri) = 77 D Ex(Pa) (6)
k=1

and their standard deviations

1 & _
o8 = |47 ;[Ek(ﬁli) — E(Br)]? 7

have been calculated for this set of potential energy curves
at the ith value of the deformation. Note that the standard
deviations serve here as a measure of the statistical uncertainty.

The set of the M functional variations defined by the
condition of Eq. (5) is represented by 2000 reasonable
functionals [20]. Note that they are defined with respect of
the ground-state experimental data on 12 spherical nuclei and
some empirical data on nuclear matter properties. However,
because of numerical restrictions we use the subset of 500
randomly selected functionals in the calculations of potential
energy curves and quantities defined in Eqgs. (6) and (7). This
number of the functionals is sufficient for a reliable definition
of the mean values of the energy and their standard deviations.
Indeed, the comparison of the results obtained with 250 and
500 functionals reveals very little difference, which strongly
suggests that fine details related to statistical properties of the

quantities of interest are already imprinted in relatively small
number (few hundred) of the functional variations.

The selection of the 2°°112 nucleus has been guided by
the requirement to avoid large shape changes in the ground
state with the variation of the functional. Indeed, this nucleus
is spherical in the ground state with a well pronounced
minimum in the parabola-like potential energy surface. As
a consequence, with exception of a few functional variations,
the ground state is spherical in the RHB calculations. On the
contrary, larger shape changes in the ground state with the vari-
ation of the functional are expected in many nuclei of the region
of interest since they are transitional in the ground state
with soft potential energy surfaces (see Refs. [3,11]). In such
nuclei, statistical theoretical uncertainties in the evolution of
the energy with deformation in potential energy curves are
expected to be polluted by the variations in the ground-state
properties.

Statistical uncertainties in the deformation energy curves
are shown in Fig. 6. One can see that in the case of the
NL3* functional they are small in the vicinity of the spherical
minimum but then increase with increasing deformation. They
become especially pronounced in the vicinity of the inner and
outer saddles and in the region of the superdeformed (SD)
minimum. The o values have a maximum at the inner saddle
where they are close to 0.7 MeV. They are smaller at the
superdeformed minimum and the outer saddle, where they are
close to 0.5 MeV. It is interesting that statistical uncertainties
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FIG. 5. The same as Fig. 4 but for the case when DD-ME2 and DD-ME§ CEDFs are excluded from consideration.

decrease substantially above the outer fission barrier; here og
values are around 0.35 MeV.

Their behavior is quite different for DD-ME2. For this
functional, the statistical uncertainties in the deformation
range B, = 0.0-0.6 are by approximately factor 1.5 smaller
than those obtained with NL3*. However, they increase with
increasing deformation and reach a maximum at 8, ~ 0.85.
With further increase of deformation, they decrease and finally
stabilize above B8, ~ 0.95.

It is likely that the increased theoretical uncertainties in the
region of quadrupole deformations 8, = 0.1-0.8 in the case of
NL3* and around S, ~ 0.85 in the case of DD-ME?2 are due to
the underlying single-particle structure. The variations of the
functional lead to modifications of the single-particle energies
as well as to changes in the sizes of the superdeformed shell
gaps and the single-particle level densities at the saddles and
the SD minimum. This in turn leads to substantial variations in
the shell correction energies. The DD-ME2 functional provides
aclear example. Indeed, the increase of statistical uncertainties
around B, ~ 0.85 is due to the fact that an additional hump
develops in the potential energy curve at this deformation in
a number of the functional variations. This fact could only
be explained by the underlying shell structure. In addition,
the reduced statistical uncertainties at larger deformations and
their stabilization strongly support the impact of the underlying
single-particle structure on the statistical uncertainties. This
is because the shell gaps at hyper- and higher deformations
are smaller than at superdeformation (see Refs. [54,55] and
references quoted therein). As a consequence, the changes in

the single-particle structure caused by the functional variations
have a smaller impact on the shell correction energy.

So far, the statistical uncertainties in the deformation energy
curves have been investigated only in Skyrme DFT. They
have been studied in Ref. [56] for the nucleus 2*°Pu with the
functional UNEDF1 functional and in Ref. [6] for the nucleus
26615 with the functionals SV-min and SV-bas. In 2**Pu, the
statistical uncertainties increase on going from the normal
deformed minimum to higher deformations and they become
especially large after the second fission barrier. The later
observation is in contradiction with our results which show
a decrease and a stabilization of statistical uncertainties after
the second fission barrier. The reasons for such a difference
are not clear. They may be related to a different choice of the
nuclei. Differences in the analysis also contribute. To avoid
the use of the emulator, we restricted our consideration to
axially symmetric shapes. On the contrary, the authors of
Ref. [56] replace the exact DFT model by a Gaussian process
response surface (GPRS) which they “train” to a restricted set
of 200 DFT computations. Although this simplified approach
allows us to take into account also triaxiality and octupole
deformation, it is not clear how well GPRS reproduces the
energies for very complicated topologies of the potential
energy surfaces (see, for example, Figs. 7 and 8 below) for
functional variations not included into the training set. The
analysis of 2°°Hs in Ref. [6] is restricted to the vicinity
of the inner fission barrier. Statistical uncertainties obtained
with the SV-bas (SV-min) functional are close to (larger than)
those obtained in our analysis of 2*°112.
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FIG. 6. Statistical uncertainties in the deformation energy curves
of the 2112 nucleus. The mean potential energy curve is shown by
a solid line. The red-colored region shows the standard deviations in
energy.

V. SYSTEMATIC THEORETICAL UNCERTAINTIES
IN THE DESCRIPTION OF INNER FISSION BARRIERS
FOR TRIAXTAL RHB CALCULATIONS

Not in all cases is the axial saddle the lowest in energy.
The systematic investigation of the heights of inner fission
barriers in superheavy nuclei performed within the RMF+BCS
approach with the NL3* CEDF in Ref. [11] has revealed that
triaxial deformation lowers the heights of the inner fission
barriers in a number of nuclei; this is especially pronounced
in the vicinity of particle numbers Z = 120 and N = 184 (see
Table V in Ref. [11]). Thus, the axial RHB calculations provide
an upper limit for the inner fission barrier heights.

In general, triaxial deformation has to be included into the
calculations for a more realistic estimate of the heights of
inner fission barriers which can be used for the comparison
with experiment. However, such a study requires tremendous
computational power. This is also illustrated by the fact
that within the covariant and Gogny DFTs, so far only
a limited set of superheavy nuclei has been studied in
the triaxial Hartree-Bogoliubov framework [12,37,57]. The
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computational challenge becomes especially large in the case
of the analysis of systematic theoretical uncertainties because
the same nucleus has to be calculated within the TRHB
framework for several CEDFs. Thus, a full global analysis
of theoretical uncertainties similar to the one presented in
Sec. III in the axial RHB framework is, at present, beyond
the reach of available computational facilities. As a result,
we concentrate here on the selected set of the Z = 112-120
superheavy nuclei which will be in the focus of experimental
studies within the next decades. They are shown in Fig. 9
below. In the selection of nuclei we focus on the nuclei in
which the triaxial saddle is expected to be the lowest in energy
in the region of interest. According to systematic studies in
the RMF+BCS framework with the CEDF NL3* of Ref. [11],
these are the nuclei in the vicinity of the Z = 120and N = 184
lines. On the contrary, the axial saddles are the lowest in energy
in the nuclei which are away from these lines. For example, this
takes place for N < 174 inthe Z = 112, 114, 116 nuclei (see
Ref. [11]). Triaxial RHB calculations for the (Z = 112, N =
164),(Z =112, N = 172),(Z = 114, N = 166), and (Z =
114, N = 172) nuclei [these nuclei are seen on the left
side of Fig. 9(a)] confirm this observation of Ref. [11] for
all CEDFs employed in the present paper. We will try to
establish (i) how theoretical systematic uncertainties obtained
in axial RHB calculations will be modified when triaxiality
is included and (ii) to what extent theoretical uncertain-
ties obtained in axial and triaxial RHB calculations are
correlated.

The dependence of the potential energy surfaces on the
CEDF is illustrated in Figs. 7 and 8. These PES are character-
ized by a complicated topology which, however, reveals some
typical triaxial saddles.

For example, in the nucleus **°120 they are located at (8, ~
0.32,y ~21°),(By ~0.43,y ~33°), and (B, ~0.49,y ~
24°) for the functionals DD-ME2, PC-PK1, NL3* and DD-
PC1 (see Fig. 7). The later two are also visible in the CEDF
DD-MES. However, the first one is shifted to smaller 8, and
y deformations, namely, to (8, ~ 0.20, y ~ 15°).

For all functionals except DD-MES§ the axial saddle is
higher in energy by roughly 0.5 MeV than the triaxial
saddle at (8, ~ 0.32, y ~ 21°) and by approximately 1.5 MeV
than the triaxial saddles at (8, ~ 0.43, y ~ 33°) and (B, ~
0.49, y ~ 24°) (Fig. 7). The PES of the DD-MES functional
has a completely different topology. Although the (8, ~
0.20, y ~ 15°) saddle is lower in energy than the axial saddle
by approximately 1 MeV, the axial saddle is located only
~0.2MeV below the triaxial saddles at (8, ~ 0.33, y ~ 25°)
and (B, ~ 0.45, y ~ 33°).

The presence of these saddles leads to several fission paths
which have been discussed in detail in Ref. [11]. Although this
discussion is based on RMF + BCS results with NL3*, we
found that it is still valid for the TRHB results with DD-ME?2,
PC-PK1, NL3*, and DD-PCI. This is because for a given
functional the topology of PES obtained in triaxial RMF +
BCS and RHB calculations is similar. The situation is different
for DD-MES§, which has an axial saddle located at 8, ~ 0.13
(Fig. 7). Thus, the fission path will proceed from the oblate
minimum via the triaxial saddle at (8, ~ 0.20, y ~ 0.15)
which has a low excitation energy of only 3 MeV.
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FIG. 9. The spreads AES of the energies of axial [panel (a)], triaxial [panels (b), (c), (d)], and the lowest in energy [panel (d)] saddles
for a selected set of the Z = 112—120 nuclei as a function of proton and neutron number. AES(Z,N) = |ES _(Z,N) — E3. (Z,N)|, where,

max min

for given Z and N values, ES_(Z,N) and E3, (Z,N) are the largest and smallest energies of the saddles obtained with the set of functionals

max

NL3*, DD-ME2, DD-MES, DD-PC1, and PC-PK1. Note that the same color map as in Fig. 3 is used here.

As shown in Ref. [11], the axial saddle becomes en-
ergetically more favored as compared with triaxial saddles
on moving away from the particle numbers Z = 120 and
N = 184. This is clearly seen in the nucleus 2112, in
which the axial saddle at 8, ~ 0.32 is lower in energy than
the triaxial saddles located around (8, ~ 0.38, y ~ 34°) and
(B2 ~ 047,y ~26°). This feature is also seen in Fig. 4
of Ref. [11], which compares the results for selected Z =
112,114, and 116 nuclei obtained in the RMF + BCS
calculations with NL3*.

To simplify the further discussion, we follow the notation
of Ref. [11] and denote the axial saddle as Ax, the triax-
ial saddle with (8, ~ 0.3,y ~ 10°) as Ax-Tr, the triaxial
(B2 ~ 0.4,y ~ 35°) saddle as Tr-A, and the triaxial saddle
with (B8, ~ 0.5, y ~ 22°) as Tr-B. Although the positions of
these saddles move somewhat in the deformation plane with
the change of proton and neutron numbers, they appear in the
majority of nuclei under study.

Figure 10 summarizes the results of the calculations for
the inner fission barrier heights. The DD-ME?2 and DD-ME§
functionals provide the highest and the lowest fission barriers

among those obtained in the calculations with five CEDFs. The
results of the calculations with the CEDFs NL3*, DD-PC1,
and PC-PK1 are located in between of these two extremes.
Note that these three functionals have been benchmarked in
the actinides in Refs. [11,12,38,52], where they provide a good
description of experimental data.

Figure 10 clearly shows that different functionals are
characterized by different isotopic and isotonic dependencies
for the inner fission barrier heights. As a result, the functionals,
which give similar results in one part of the (Z, N) plane, could
provide substantially different results in another. This leads to
the spreads in the predictions of the inner fission barrier heights
which are presented in Figs. 9 and 11. The strongest correlation
between these spreads is observed for the Ax and Ax-Tr
saddles; this is seen both for the set of five [Figs. 9(a) and 10(b)]
and the set of three [Figs. 11(a) and 11(b)] functionals. This is
because these saddles are closely located in the deformation
plane so that the change in the energy of the Ax saddle
affects in a similar way the energy of the Ax-Tr saddle. The
correlations in the spreads of the energies of the Ax saddle on
one hand and the Tr-A and Tr-B saddles, on the other hand,
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FIG. 10. The heights of inner fission barriers in selected nuclei as obtained in the TRHB calculations with indicated CEDFs. The style of
the symbol filling indicates the type of the lowest in energy saddle. Note that the TRHB results in a few N ~ 166 and N = 172 nuclei (see
Fig. 9 below) and the trends of the evolution of PES with particle number allow us to firmly establish the axially symmetric nature of the lowest
saddle in the Z = 112 and 114 nuclei (as well as in Z = 116 nuclei for the NL3* and DD-ME2 functionals) for neutron numbers between 164
and approximately N = 172. For some of these nuclei, we use axial RHB results when the TRHB results are not available.

depend on how many functionals are used in the analysis. On
average, they are strongly correlated for the set of the DD-PCI1,
NL3*, and PC-PK1 functionals [compare Figs. 11(a), 11(c),
and 11(d)], which have large similarities in the topology of
PESs (see Figs. 7 and 8) and for which the AES spreads are
typically below 2 MeV (see Fig. 11). Note that these three
functionals successfully describe experimental fission barriers
in the actinides [12,51,52]. These correlations decrease with
the addition of the functionals DD-MES§ and DD-ME2; the
AE® spreads are typically smaller for the Tr-A and Tr-B
saddles as compared with the Ax one [compare Figs. 9(a),
10(c), and 10(d)].

It is important that the spreads for the axial Ax saddles and
the lowest in energy saddles are strongly correlated [compare
Figs. 9(a) and 10(d) and Figs. 11(a) and 11(d)]. This suggests
that also for other regions of nuclear chart, not covered by
the present TRHB calculations, the spreads in inner fission
barrier heights obtained in the axial RHB calculations could
be used as a reasonable estimate of the spreads which would
be obtained in the calculations with triaxiality included.

VI. COMPARISON OF FISSION BARRIERS
IN DIFFERENT MODELS

It is necessary to recognize that the CDFT represents only
one of the classes of nuclear structure models. Other classes
are represented by nonrelativistic DFTs based on zero-range
Skyrme and finite-range Gogny forces as well as microscopic
+ macroscopic approaches based on phenomenological folded
Yukawa and Woods-Saxon potentials. As can be seen for in-
stance in Refs. [11,58], these models accurately reproduce the

inner fission barriers in the actinides. This is in part due to the
fact that the heights of fission barriers and/or the energy of the
fission isomers have been used in their fitting protocols.

Thus, it is important to understand how these models
extrapolate to the edge on the known region of superheavy
nuclei and its vicinity. This is because the differences in
their predictions define the systematic uncertainties. Figure 12
shows the heights of inner fission barriers of the Z = 112-120
superheavy nuclei for various relativistic and nonrelativistic
models. While providing similar predictions in the actinides,
they do extrapolate in very different ways to the superheavy
region. Their predictions vary significantly and the inner
fission barrier heights found within these models can differ
by up to 6 MeV. The substantial differences in the predictions
of the two macroscopic + microscopic (MM) are in particular
surprising. Unfortunately, at present, there are only very few
experimental data available on fission barriers in superheavy
elements and they are not reliable enough to distinguish
between theoretical predictions of the various models (see
discussion in Ref. [11]).

Figure 12 also compares the energies of the lowest inner
fission barriers obtained in triaxial RMF + BCS (Ref. [11])
and RHB (present paper) calculations with the CEDF NL3*.
Pairing correlations are treated in these two calculations in
a very different way. Monopole pairing with a finite pairing
window is used in the RMF + BCS calculations of Ref. [11]. Its
strength is adjusted to the empirical pairing gaps of Ref. [61].
In the RHB calculations, the separable form of the finite-range
Gogny pairing interaction [47] is used. As discussed in Sec. II,
this pairing well reproduces physical observables sensitive to
pairing in the actinides. The differences in the calculated inner
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FIG. 11. The same as in Fig. 9 but for the case when the DD-ME2 and DD-ME§ CEDFs are excluded from consideration.

fission barriers seen in Fig. 12 are (i) due to different extrapola-
tion properties of these two types of pairing on going from ac-
tinides to the superheavy region and (ii) due to the dependence
of fission barrier heights on the pairing window used for the
monopole force [62]. Because of these reasons the inner fission
barriers are found to be roughly 1 MeV higher in the RHB
results than in the RMF+BCS calculations for N < 174 (N >
176). For these neutron numbers, the RHB results come closer
to the mic-mac model predictions MM (Kowal). However,
the difference between the TRHB and RMF + BCS results
decreases at higher N. Note that for the Z = 118 and 120
nuclei the TRHB results are close to the MM (Kowal) results.

Of course, it is very difficult to measure the fission barriers.
On the other hand, one can consider also the spontaneous
fission half-lives tgr, which are directly measurable quantities.
Their calculations, however, represent a real challenge. The
values of spontaneous fission half-lives depend strongly on the
underlying theory used to describe the collective motion, such
as the generator coordinate method (GCM) or the adiabatic
time-dependent HFB (ATDHFB) theory (for details, see
Refs. [63,64]) and the corresponding collective Hamiltonian,
in particular, on the inertia parameters. Typical differences
between the tgy values calculated with ATDHFB and GCM
can reach many orders of magnitude [65].

In addition, the uncertainties (both systematic and statisti-
cal) in the calculated heights of inner fission barriers discussed
above will also have a profound effect on the calculated
spontaneous fission half-lives. For example, it is well known
that the change of fission barrier height by 1 MeV leads to a
change of the calculated spontaneous fission half-lives tsr by
6 orders of magnitude [65]. It is more difficult to quantify the
impact of the change of the topology of the PES on 75f, but it
is reasonable to expect that it is substantial.

As a result, the absolute values of calculated spontaneous
fission half-lives gy cannot be used with confidence since
they have extremely large theoretical uncertainties spanning
many orders of magnitude. However, it is frequently argued
that isotopic and/or isotonic trends in the description of
spontaneous half-lives are expected to be reproduced with
much higher accuracy [65]. However, such arguments are
usually based on a single functional. On the contrary, the
current analysis based on a set of the state-of-the art CEDFs
as well as the comparison with other models shown in Fig. 12
indicates substantial theoretical uncertainties in isotopic and
isotonic trends for the inner fission barriers, even for the func-
tionals which are benchmarked in the actinides. In addition,
these uncertainties have a chaotic component which randomly
changes from nucleus to nucleus. These uncertainties will

054324-14



ASSESSING THEORETICAL UNCERTAINTIES IN ...

PHYSICAL REVIEW C 95, 054324 (2017)

[a—
O

_ (a) _
8 .P. |

E:ob:gfﬁ‘o? ;
g

[ 7=112(Cn) |

o0

(o)

N

\S)

[S—Y
03] [a)
I | |
_~

o,

~
%
|
~

(¢

~

;

}

Inner fission barrier height B, [MeV]

Z=116 (Lv) |
' NI

170 180

. B—1 RMF+BCS (Ax)
22— RMF+BCS (Ax-Tr)
O——{ RMF+BCS (Tr-A)

)| A~ — A MM (Moller)

O = = & MM (Kowal)

® — - @ Skyrme DFT (Staszczak)

190

>k A TRHB (Ax)

| Z=118 (Og) ] 7=120 TRHB (Ax-Tr)
LAl L L I Ll L 1 I Ll L 1 | I LAl L 1 I bl bl TRHB (Tr—B)
160 170 180 170 180 1 TRHB (Tr-A)

Neutron number N

FIG. 12. Inner fission barrier heights B, as a function of the neutron number N. The position of the inner fission barrier saddle in
deformation space varies as a function of particle number. Thus, the lowest saddles are labeled by Ax, Ax-Tr, Tr-A, and Tr-B (see text for
details). The results of triaxial RMF 4 BCS calculations are taken from Ref. [11]. The results of Skyrme DFT calculations with SkM* have
been taken from Ref. [40]. The results of the MM calculations are taken from Ref. [59] [labeled as MM (Moller)] and Ref. [60] [labeled as
MM (Kowal)]. Note that the style of Fig. 1 is used here for easy comparison between two figures.

definitely affect the calculated spontaneous fission half-lives
by many orders of magnitude. This fact is important not
only for our understanding of SHEs but also for fission
recycling in neutron star mergers [66]. The latter process will
be definitely affected by the increased (as compared with the
actinides) uncertainties of the inner fission barrier heights seen
in neutron-rich nuclei (see Fig. 3).

VII. CONCLUSIONS

Theoretical uncertainties in the predictions of inner fission
barrier heights in SHEs have been investigated for the first time
in a systematic way for covariant energy density functionals.
The analysis is based on the state-of-the-art functionals
NL3*, DD-ME2, DD-MES$, DD-PC1, and PC-PK1 which
represent major classes of CEDFs with different basic model
assumptions and fitting protocols. These functionals have
been used earlier in the assessment of theoretical uncertain-
ties in the description of various ground-state observables
in Refs. [3,15,16,18,20]. The following results have been
obtained:

(1) Systematic theoretical uncertainties in the predictions
of inner fission barriers and their propagation towards
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unknown regions of higher Z values and of more
neutron-rich nuclei have been quantified. These uncer-
tainties are substantial in SHEs. Statistical uncertainties
are smaller than systematic ones. It is clear that the
differences in the basic model assumptions such as
a range of the interaction and the form of the density
dependence together with the different fitting protocols
based only on nuclear matter and bulk properties data
lead to these uncertainties.

Systematic theoretical uncertainties in the inner fission
barrier heights do not form a smooth function of
proton and neutron numbers; there is always a random
component in their behavior. This is a consequence of
the fact that fission barrier height is the difference of
the energies between the ground state and saddle point.
Any differences in the predictions of their energies,
which are not acting coherently as a function of
proton and neutron numbers, will lead to this random
component.

Benchmarking of the functionals to the experimental
data on fission barriers in the actinides allows us
to reduce the theoretical uncertainties for the inner
fission barriers of unknown SHEs. However, even
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then they increase on moving away from the region
where benchmarking has been performed. This feature
is seen not only for different CEDFs but also for
different classes of the models such as microscopic
+ macroscopic and nonrelativistic DFTs. The re-
sulting uncertainties in the heights of inner fission
barriers will result in uncertainties of many orders
of magnitude for spontaneous fission half-lives. The
increased theoretical uncertainties in the fission barriers
of neutron-rich SHEs could have a substantial impact
on fission recycling modeling in r-process simulations
of neutron-star mergers.

(4) Comparing different functionals, one can see that the
results (including the topology of the PES) obtained
with DD-MES§ differ substantially from the results of
other functionals. The heights of the inner fission barri-
ers obtained with this functional are significantly lower
than the experimental estimates in the Z = 112-116
nuclei and the values calculated in all other models.
In addition, this functional does not lead to octupole
deformation in those actinides, which are known to be
octupole deformed [18]. Thus, this functional is not
recommended for future investigations in the actinides
and superheavy nuclei in spite of the fact that it provides
a good description of masses and other ground-state
observables in the Z < 82 nuclei [15].

The analysis of the description of fission barrier heights
is frequently performed in terms of the parameters which are
related to bulk properties (see, for example, the discussion

PHYSICAL REVIEW C 95, 054324 (2017)

in Ref. [6]). However, this is only part of the physics which
affects the heights of fission barriers. Indeed, it is well known
that in actinides the lowering of the inner and outer fission
barriers due to triaxial and octupole deformations is caused by
relevant changes in the single-particle density which affect
the shell correction energy [11,59]. Substantial differences
in the predictions of the ground-state deformations by the
state-of-the-art CEDFs along the Z = 120 and N = 184 lines
(see Ref. [3]) are also caused by the differences in the
underlying single-particle structure. The differences among
the models in the single-particle structure of superheavy nuclei
are substantially higher than in the region of known nuclei
[3,67]. It is clear that this is one of the major contributors
to the systematic theoretical uncertainties in the description of
inner fission barriers. A further improvement in the description
of the single-particle energies within DFT is needed in
order to reduce the systematic theoretical uncertainties in the
description of fission barriers.
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