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Triaxiality in the proton emitter 109I
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We study the role of triaxial deformation in the proton-emitting nucleus 109I. We analyze the rotational spectrum
as well as the decay width within the nonadiabatic quasiparticle approach. The parent nuclear wave functions are
calculated using a modified rotation-particle coupling where the matrix elements of the Hamiltonian representing
the rotational states of the parent nucleus are written in terms of the rotational energies of the daughter nucleus.
The measured spectrum of the daughter nucleus 108Te suggests a strong role of either triaxial or vibrational
degrees of freedom which is applicable for 109I also. With these results we successfully explain the spectra of the
parent and daughter and also the decay width in a unified way which enables us to establish the configuration of
the rotational bands and the decaying state.
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I. INTRODUCTION

The spontaneous proton emission from 109I was observed
for the first time in 1984 [1]. 109I lies near the double shell
closure ( Z = N = 50), which forms the island of α and proton
emission. 109I is preponderantly a proton emitter [1,2], but it
has also a small branch (1.4 ± 0.4) × 10−4 [3] of α emission.
The interpretation of these decays and the knowledge of the
nuclear structure properties of 109I will be quite important to
the understanding of astrophysical events [3]. Knowledge of
the Q value for the α decay of 109I allows the determination
of the Q value of proton emission from 105Sb [3]. 105Sb takes
part in the Sn-Sb-Te cycle, which burns hydrogen through
the rapid proton-capture process and gives rise to type 1
x-ray bursts. 109I is proposed to be a ground-state proton
emitter, but the exact proton decaying state is not assigned yet.
Many of the theoretical calculations within the strong coupling
limit have suggested the �π = 1/2+ [4–6] state of the g7/2

orbital as the ground state, where � is the z projection of the
total angular momentum of the single particle. Microscopic
calculation [6] of the half-life for proton emission from 109I
in the strong coupling limit and the nonadiabatic method
based on the coupled-channel Schrödinger equation [7] also
predicted the same decaying state, but with a slightly different
quadrupole deformation of β2 = 0.14 and β2 = 0.10, respec-
tively. Within the relativistic Hartree-Bogoliubov model the
proton decaying state is calculated as the � = 3/2+ [8] state of
the d5/2 orbital. On the experimental side, from the observation
and measurements of the energy levels and half-life for proton
emission, it was suggested that the 5/2+ state [3,9,10] coming
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from the d5/2 is the ground state. The γ transitions proposed
in Refs. [11,12] show some discrepancies but the positive and
negative parity yrast bands were further revised in [10,13].
This revision of γ transitions [10] and further analysis with
the cranked shell model suggested a triaxial deformation, also
consistent with the predictions of macroscopic-microscopic
calculations [14]. So far, the role of triaxiality has been ignored
while calculating the proton emission half-life of 109I.

Here we apply the nonadiabatic quasiparticle approach
[15] in which the structure and decay properties of triaxially
deformed proton emitters can be investigated by the coupling
of the rotor energies directly with the particle states. This
is a modified form of the conventional particle-rotor model
(PRM) [16–19] where the rotor spectrum may deviate from the
rotational spectrum of a rigid rotor. In the following sections,
we discuss our theoretical framework and its application to
studying proton emission from 109I and its rotational spectra.

II. THEORETICAL FRAMEWORK

The properties of a triaxial proton emitter is studied with the
microscopic nonadiabatic coupling of the quasiparticle (in a
triaxial mean field) and the triaxial rotor. The total Hamiltonian
for the particle-plus-rotor system is given by

H = Havg + Hpair + Hrot, (1)

where Havg and Hpair correspond to the deformed mean field of
the particles and the pairing interaction, respectively. Havg +
Hpair gives the quasiparticle energy and Hrot is the triaxial rotor
Hamiltonian given by

Hrot =
∑

k=1,2,3

h̄2

2Ik

R2
k . (2)

Here Ik and Rk are the moments of inertia and angular
momenta, respectively, in the three directions (1,2,3). The rotor
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energies (ERi) corresponding to the above Hamiltonian can be
expressed as

Hrot|RMRi〉 = ERi |RMRi〉, (3)

with the eigenfunctions [20]

|RMRi〉 =
∑
KR

cRi
KR

|RMRKR〉, (4)

where the index MR and KR are the projections of R on the
third axes in the laboratory frame (the z axes) and the intrinsic
frame (the three axes) of the rotor, respectively, and i labels
the different eigenstates for a given R. Since the nucleus need
not be a rigid rotor, the above mentioned moments of inertia
might not be constants. We consider the variable moment of
inertia (VMI) given by [21]

IkRi = I0Ri sin2

(
γ − 2πk

3

)
. (5)

The total energy can be written as (including the potential
energy term [22])

ET Ri = 1

2
C(I0Ri − I0)2 + 1

2I0Ri

ηRi . (6)

Here, ηRi = 2I0RiERi is a dimensionless quantity. C and I0

are the VMI parameters. The parameter C is related to the
stiffness of the nucleus against vibrational degrees of freedom.
The moment of inertia I0Ri can be calculated [15] from the
parameter I0 using the equilibrium condition for the total
energy, ∂ET Ri/∂I0Ri = 0. These parameters are calculated
by fitting the theoretical energies ET Ri to the experimental
energies. Thus we can calculate the total energies (6) as well
as the wave functions for the rotor. This method [15] is an
extension to the triaxial case, of the method given in Ref. [22]
for the axially symmetric even-even rotor. The fitting of
parameters C and I0 is done at every γ deformation. Hence the
calculated rotor energies (fitted with experimental energies)
will not have explicit dependence on the γ deformation.

To demonstrate the influence of γ deformation in a rotor
spectrum, we use a simpler method where Ik is given by the
hydrodynamical relation

Ik = I0(R) sin2

(
γ − 2πk

3

)
,

where I0(R) = I0

√
1 + bR(R + 1), (7)

with the VMI parameter b [23]. I0 is calculated with the
expression h̄2

2I0
√

1+6b
= E2+

6 [24]. b is related to the nonrigidity
of the rotor. If b = 0, then the rotor is a pure rigid rotor and the
moment of inertia does not depend on the angular momentum
of the rotor.

The matrix element of the total Hamiltonian (1) for the
particle-plus-rotor system in the K representation is given by

〈q ′K ′,IM|H |qK,IM〉 = εq δK ′Kδq ′q +
∑

lj�p′ �p

WK ′K
j�p′�p

×
∫

dr fuv φIK ′∗
lj�p′ (r) φIK

lj�p
(r), (8)

where q specifies the single-particle state. K and M are the
projections of the total angular momentum I on the three
axes in the intrinsic frame and the z axis of the laboratory
frame, respectively. The orbital and total angular momentum
of the particle are given by l and j , respectively, and �p is the
projection of j on the third-axis in the intrinsic frame of the
nucleus. εq are the quasiparticle energies given by

εq =
√

(eq − λ)2 + 
2, (9)

where eq are the single-particle energies and φIK
lj�p

(r) are
the single-particle wave functions calculated by using the
Woods-Saxon potential along with the Coulomb and spin-orbit
potentials [15]. The chemical potential λ is calculated through
the BCS approach with the pairing gap fixed at 
 =
12/

√
A MeV. The matrix element between single-particle

states is transformed to the matrix element between
quasiparticle states by multiplying it with the factor fuv =
(UqUq ′ + VqVq ′ ), where Uq and Vq are the BCS unoccupation
and occupation probabilities, respectively. The transformation
to quasiparticles enables us to identify the ground state
configuration, since the yrast level naturally comes out to be
the lowest in energy. The WK ′K

j�p′�p
are the matrix elements of

Hrot in the K representation, which can be written as [15]

WK ′K
j�p′�p

= 〈lj�p′K ′,IM|Hrot|lj�pK,IM〉
=

∑
R,KR′ ,KR

AIK ′
j�p′ ,RKR′

∑
i

cRi
KR′ ET Ric

Ri
KR

AIK
j�p,RKR

,

(10)

with the transformation amplitude

AIK
j�p,RKR

=
√

2R + 1

2I + 1
〈j�pRKR|IK〉√1 + δKR,0. (11)

The rotational energies and the wave functions of the
particle-plus-rotor system are calculated by diagonalizing the
Hamiltonian (1). Hence we can have the one-quasiparticle ro-
tational spectrum for the triaxial odd-A nucleus. The resulting
wave functions are used in the calculation of the decay width
and hence the half-life for proton emission.

The decay width is obtained from the overlap of initial
(parent) and final-state wave functions. The final-state wave
function is given by the coupling of the daughter nucleus and
the outgoing proton wave function [25]. Thus the partial decay
width for the triaxial odd-A nucleus is given by

�IR
lj = 2(2R + 1)

2I + 1

h̄2κ

μ

∣∣∣∣∣∣
′∑

q,K,�,KR

gτ
RKR

〈RKRj�|IK〉

× aI
q,K Uf

q

φ
q�
lj (r)

Gl(κr) + iFl(κr)

∣∣∣∣∣
2

, (12)

where κ is the wave vector of the emitting proton and μ is
the reduced mass of the proton-core system. The prime on the
summation denotes the constraint that K − � must be an even
integer. For proton decay to the ground state of the daughter
nucleus, R = KR = τ = 0 and g0

0,0 = 1. For the decay to the
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lowest 2+ state (τ = 1)

g1
2,KR

= 1√
1 + |KR|/2

[
1

2
+ (−1)KR/2F(γ )

]
, (13)

where

F(γ ) = sin γ sin 3γ + 3 cos γ cos 3γ

2(9 − 8 sin2 3γ )1/2
. (14)

The eigenvectors aI
q,K are obtained by diagonalizing the

Hamiltonian (1). The |Uf
q |2 is the probability that the proton

single-particle state in the daughter nucleus is empty. The
quantity φ

q�
lj (r) is the radial component of the single-particle

wave function. F and G are regular and irregular Coulomb
wave functions, respectively.

The total decay width is obtained by summing these partial
decay widths over all the possible combinations of l and j
values and hence,

�IR =
j=R+I∑
j=|R−I |

�IR
lj . (15)

The half-lives are obtained using the expression T1/2 =
h̄ ln 2/�. The full description of decay width and half-life
is given in Refs. [17–19].

III. RESULTS AND DISCUSSIONS

We have applied the above formalism to study the structure
and decay properties of 109I. The deformation parameters
β2 = 0.16, β4 = 0.06, and γ = 10◦ are predicted for 109I ac-
cording to the macroscopic-microscopic calculations [14,27].
A moderate quadrupole deformation β2 = 0.143 (β4 = 0.04)
and triaxiality γ = 10◦ are suggested by cranking calculations
and an analysis with experimental spectra suggests a predom-
inant πg7/2 configuration for the ground-state band [10]. To
ascertain the deformation, we start our calculations with the
rotational spectrum of the daughter nucleus 108Te. Since the
experimental value of the first 2+ excitation energy E+

2 of 108Te
is 652.2 keV [26], using the Grodzins empirical formula [28], a
quadrupole deformation β2 = 0.18 can be obtained. The rotor
108Te also exhibits the quadrupole vibration [29] and octupole
collectivity [26,30]. In such cases, the rotational spectrum is
quite compressed when compared to a rigid-rotor spectrum.
Alternatively, such a spectrum can be obtained within a rotor
formalism but with a high γ value. For analyzing the triaxial
deformation γ for 108Te, we obtain the ground-state rotational
spectrum through the VMI models.

In Fig. 1, the rotor energies shown are calculated by using
two methods given by Eqs. (6) and (7). The results of the
parameter b dependent VMI clearly indicate that the data can
be explained only with a large γ . However, the results from
this method are very sensitive to b and γ , but one may not
get a good fit [Fig. 1(a)] when there is a strong influence of
a vibration. A better fit is achieved by the other VMI model
where the vibrational degrees of freedom are taken care of in a
simple way through the parameters C and I0 of Eq. (6). For the
best fitting case, we get γ = 30◦. The parameter I0 can have a
negative value also as depicted in the figure, but it always yields

FIG. 1. Energy spectrum of 108Te calculated with different triaxial
deformations compared with the experimental data [26] represented
by grey lines. In the case (a), the variable moment of inertia (VMI)
is represented by the parameter b [Eq. (7)]; for (b)–(d) the VMI is
represented by the parameters C and I0 [Eq. (6)]. The magnitude of
the axial deformation (β2) is contained in the energy of the 2+ state
which is taken as a reference here.

a positive moment of inertia (IkRi). The negative value of I0

increases the potential energy term [Eq. (6)] which corresponds
to the vibrational degrees of freedom. This entails that if one
wants a good fit for 108Te at zero or low γ , the vibration like
component will increase. In this model, the role of γ is crucial
only for the γ band, for which the data are not available. Hence
the fit is visibly good at all the γ (0◦, 15◦, and 30◦) and the χ2

value is least for γ ∼ 30◦. When the vibrations are not taken
care of properly, we have a good fit with large γ only [as seen
in Fig. 1(a)]. On the other hand when vibrations are taken care
of in a better way, we have a reasonable fit independent of
the choice of γ [as seen in Figs. 1(b)–1(d)]. This allows us to
conclude that either the vibrational or the triaxial degrees of
freedom play a very vital role in 108Te because the spectrum
deviates significantly from that of an axially deformed rotor.
The spectrum of 108Te does not allow us to determine the value
of γ , but the spectrum of 109I may carry this signature.

To analyze the properties of 109I, rotational spectra are
calculated by the coupling of the valence proton with the rotor
as discussed in the formalism. These calculations are based on
the single-particle and quasiparticle states which are presented
in Fig. 2. Figures 2(a) and 2(b) show these energies as
a function of the quadrupole deformation β2 (γ = 0◦) and
Figs. 2(c) and 2(d) are with respect to the triaxial deformation
γ . The relation between β4 and β2 is taken to satisfy the
β4 and β2 predicted in Ref. [27]. Esbensen-Davids’ set of
parameters [31] are utilized in the mean-field calculations with
a triaxially deformed Woods-Saxon potential. From Fig. 2(a),
we can observe that the valence proton is in the state � = 3/2
of the d5/2 orbital till β2 ∼ 0.1 and then in the state � = 1/2
of the g7/2 orbital up to β2 ∼ 0.2. In an adiabatic approach, the
band head (decaying state) can be any of the valence Nilsson
state [6]. But in the nonadiabatic approach the band heads are
a mixture of Nilsson states interacting with each other through
the Coriolis interaction. In the single-particle representation,
the levels near the valence orbital [denoted by green dashed
line in Fig. 2(a)] can contribute significantly to the ground state.
The quasiparticle representation takes care of the proximity to
the chemical potential [through the term (eq − λ) in Eq. (9)]
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FIG. 2. Single-particle and quasiparticle energies of 109I as a
function of deformation parameters β2 and γ , calculated with the
Esbensen-Davids set of parameters [31]. The choice of β2 and β4

are consistent with the finite-range droplet model calculations [27].
The solid and dashed lines correspond to the positive and negative
parity states, respectively. The green dashed line represents the states
of the valence particle. At zero deformation the degenerate states are
labeled by the quantum numbers nlj .

and hence the valence level comes out to be the lowest in
energy. From Fig. 2(c), we can identify that the single-particle
energy levels are not very sensitive to γ . In the quasiparticle
representation [Fig. 2(d)], one can identify subtle changes
in the level ordering beyond γ � 20◦. However, the lower
lying states are almost unaffected by γ . For β2 = 0.16 and
positive parity, the two levels with � = 3/2 from d5/2 and
� = 1/2 from g7/2 contribute significantly to the positive
parity band irrespective of γ , but many other neighboring
levels also contribute substantially with the change in β2. For
negative parity, it is obvious that the major contribution is from
levels of the h11/2 orbital. These levels identified to be relevant
are considered as the basis for the rotation particle coupling
calculations for the particle-plus-rotor system.

For the calculation of negative parity angular momentum
states of 109I, we have included all the levels of the h11/2 orbital.
Another input for our calculations are the energies of the rotor
which are available experimentally up to Rπ = 14+. Beyond
this angular momentum, the rotor energies calculated through
the VMI model (6) are used. In Fig. 3(a), the measured band
built on the negative parity isomeric state of 109I is shown
along with the calculated results. The rotational state with
Iπ = 11/2− has a dominant contribution from the negative
parity valence level having � = 1/2 originating from the

h11/2 orbital [Fig. 2(a)]. This is a good example of rotation
alignment leading to a decoupled band where the states with
Iπ = 13/2−,17/2−,21/2−, . . . lie higher in energy. From
Fig. 3(a), we can say that the negative parity spectrum of
109I has a good agreement with the data at lower triaxial
deformations (γ � 15◦). The spectrum looks less sensitive to
γ , because most of the role of γ deformation is already built
in the experimental core energies which are provided as input
for these calculations. For the particle-plus-rotor system, if one
employs a rigid rotor or a simple VMI model [like the one given
by Eq. (7)] where the rotor energies also change significantly
with γ , then the spectrum would be very sensitive to γ .

For the positive parity spectrum, all the single-particle
levels originating from the 1g9/2, 2d5/2, and 1g7/2 orbitals
are included. When we count the positive parity levels from
the bottom (1s1/2) of the energy level diagram, the lowest
energy level of 2d5/2 orbital is the 13th positive parity level
while β2 → 0. In our calculations, we achieve convergence at
all the considered deformations, while considering the 11th
to 19th positive parity levels which include the single-particle
levels of 1g9/2, 2d5/2 and 1g7/2 orbitals. It has to be noted
that for the triaxial case, � is not a good quantum number
and hence it cannot be used to label the single-particle levels.
In such cases, we employ the counting from the bottom to
index these energy levels. In Fig. 3(b) the calculated positive
parity band along with the data are shown. Similar to the
negative parity band, the positive parity band is also not very
sensitive to the γ deformation. Both the positive and negative
parity bands of 109I agree well with the data at the same β2.
The calculated positive parity spectrum has a good agreement
with the data for a wide range of γ but the fit is better for
the range 15◦ � γ � 25◦. This band turns out to be built on
the I = 7/2+ state in the range 0.04 � β2 � 0.24 where the
agreement is good as shown in Fig. 3(c). After β2 ∼ 0.25, the
level ordering changes with the 11/2+ state coming down.
The abrupt change in the energies for larger deformation is
coming from the � = 9/2 of the 1g9/2 that is crossing the
Fermi energy [green dashed line in Fig. 2(a)]. This gives a
band starting with Iπ = 9/2+ that becomes lower than the
band starting with Iπ = 7/2+ that was the yrast at lower
deformation. The results in Fig. 3(c) is presented in a different
form in Fig. 4, along with the data of the ground band in 108Te.
In rotation-particle coupling calculations, when β2 → 0, the
low-lying one-quasiparticle bands match the ground band of

FIG. 3. Negative parity band (a) and positive parity band [(b) and (c)] of 109I are shown as functions of deformation parameters. The grey
lines indicate the experimental data [10,13].
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FIG. 4. Experimental data of the ground band in 108Te [26] (a) and
the calculated positive parity band of 109I at quadrupole deformations
β2 = 0 [(b) and (c)] and β2 = 0.16 (β4 = 0.375β2) (d) are shown
here. (b) and (c) represent the same results but the energy of the 7/2+

state of 109I is matched with the 0+ and 2+ states, respectively, in
108Te.

the rotor. As shown in Fig. 4(b), the above criterion is not
satisfied for the positive parity band in 109I if we assume the
band to be built on the 7/2+ state. But as shown in Fig. 4(c),
if we assume the band to be built on the 5/2+ state, then the
energies of 7/2+, 11/2+, 15/2+, . . . match the rotor energies
corresponding to the 2+, 4+, 6+, . . ., respectively. Thus, while
β2 → 0, the positive parity band in 109I has the configuration
of 2d5/2, at a larger deformation, e.g. at β2 = 0.16 as shown
in Fig. 4(d), we can interpret the band to be built on the g7/2

state. It is known [32] that the energies of decoupled band are
not very sensitive to the β2 deformation for moderate prolate
deformations. Hence, in Fig. 4(d), the energies of 7/2+, 11/2+,
15/2+, . . . match the rotor energies corresponding to the 0+,
2+, 4+, . . ., respectively. This match is valid in a wider range
where 0.04 � β2 � 0.24 as shown in Fig. 3(c).

According to the systematics presented in Ref. [10], the
5/2+ state lies very close to the 7/2+ state and hence it is
difficult to predict the exact ground state. The results in Ref. [6]
also suggest that the ground state is a positive parity state
below the 7/2+ state. The positive parity energy levels with
energies lesser or equal to that of the 7/2+ state are shown
in Fig. 5 as a function of β2. At zero deformation, the lowest
energy state is 5/2+ and other states 1/2+ and 3/2+ are almost
degenerate with the 7/2+ with the spacing from the 5/2+
equal to the E2+ of the rotor. This degeneracy and spacing
indicates that these levels correspond to the coupling between
R = 2 and j = 5/2 (2d5/2). In other words, at β2 ∼ 0, the
states 1/2+, 3/2+, and 7/2+ are built on the state 5/2+ which
turns out to be the ground state at lower deformation. As the
deformation increases, the drastic deviation of this spacing
from the E2+ of the rotor indicates that the contribution from
the 1g7/2 increases significantly. At larger deformations of our
interest (β2 ∼ 0.16), the contribution to 7/2+ state from the
2d5/2 should be substantially less than the contribution at zero
deformation. The ordering of levels changes considerably with
the deformation. For β2 ∼ 0.16 the energy separation between

FIG. 5. Yrast states of 109I calculated with the parameters of [31]
are shown as a function of β2 at γ = 0◦.

different states are not very large and hence these states have
similar probability of being the ground state.

We present in Fig. 6, the contribution of various single-
particle angular momentum (j ) to the state Iπ = 7/2+ of the
particle-plus-rotor system as a function of β2 (β4). At smaller
β2, the maximum contribution is from j = 5/2 (d5/2). As the
deformation increases, the contribution from j = 7/2 (g7/2)
increases and j = 5/2 (d5/2) decreases. At β2 = 0.16 the
contributions from j = 5/2 and 7/2 are nearly equal. At higher
deformations, j = 9/2 (g9/2) becomes dominant. Thus we can
observe that the lowest positive parity state has j = 5/2 at very
low β2, at moderate deformations there is a strong admixture of
1g7/2 and 2d5/2 states, and at very high deformations j = 9/2
becomes the most prominent. In Ref. [10], the positive parity
band is proposed to be associated with the πg7/2 orbital
(supported by cranking calculations also) but the relative
placement of 5/2+ and 7/2+ is uncertain.

Utilizing the wave functions of the particle-plus-rotor
system (109I), we calculate the proton emission half-lives. The
results with the Esbensen-Davids parameter set is presented
in Fig. 7. The comparison between experimental and theoret-
ical proton-decay half-lives using a deformed single-particle
Nilsson model [6] suggests that the ground state could be a
1/2+ or 3/2+ state decaying by proton emission. From 109I,

FIG. 6. Probability density of different single-particle angular
momentum (j ) states |aj |2 in the Iπ = 7/2+ state of 109I as a function
of β2 (β4) at γ = 15◦.
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FIG. 7. Half-life of proton emission from the the yrast states of 109I shown with the parameter set in [31] as a function of deformation
parameters (a) γ , (b) β2 at γ = 30◦, and (c) β2 at γ = 15◦. The grey line corresponds to the experimental half-life [3,33] with its width
representing the uncertainty in data. The yellow area represents the possible error in the calculated half-life due to the uncertainty in the
experimental values of Qp [34] used as an input in our calculations.

proton decays to the ground state of the daughter nucleus.
If the proton is emitted from the ground state of the parent
nucleus, then from the half-life calculation we can find the
proton emitting state which will be the ground state also.
In Fig. 7(a), the calculated half-lives of different angular
momentum states are shown as functions of γ , at a fixed
β2(β4) [27]. In the Figs. 7(b) and 7(c), γ is fixed at 15◦
and 30◦, respectively and the half-life is calculated as a
function of β2(β4). Here the half-life calculated from the
7/2+ state is much higher than the measured half-life. The
half-lives of 1/2+ and 5/2+ are far from the data by an
order of magnitude. The angular momentum state 3/2+ yields
the proton emission half-life conforming the data [3,33].
Figure 7(a) suggests that the half-life is not very sensitive to γ
deformation and the half-life of 5/2+ is quite independent of
γ . From Figs. 7(b) and 7(c), we observe that only for β2 ∼ 0.16
(with β4 = 0.375β2 consistent with macroscopic-microscopic
calculations [27]) the calculated results could explain
the data.

To check the impact of the parameters of the mean-field
potential on the above inference, we repeated our calculations
with Chepurnov’s parameters [35]. These results (not shown
here) are similar to those obtained with the Esbensen-Davids
parameters. The major difference between the two parameter
sets is the strength of the spin-orbit potential.

IV. SUMMARY

To understand the structure of 109I through the phenomenon
of proton emission, we have performed calculations with
a nonadiabatic quasiparticle approach with the inclusion of
the triaxial degree of freedom. We observe that either the
vibrational or triaxial degrees of freedom play a very vital role
in 108Te because the spectrum deviates significantly from that
of an axially deformed rotor. This argument can be carried
forward to 109I, since the core energies (108Te) are taken as
input, while studying the properties of 109I. We get a good fit
for both the positive and negative parity bands of 109I with the
same set of deformation parameters. We find that the positive
parity band has strong admixture of 1g7/2 and 2d5/2 states. The
configuration for the negative parity band is predominantly
1h11/2. In 109I, the comparison of calculated proton emission
half-lives with data enables us to conclude that the proton is
emitted from the 3/2+ state originating from the admixture of
1g7/2 and 2d5/2 states.
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