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The relativistic mean field theory with the Green’s function method is extended to study � hypernuclei. Taking
the hypernucleus 61

� Ca as an example, the single-particle resonant states for � hyperons are investigated by
analyzing the density of states, and the corresponding energies and widths are given. Different behaviors are
observed for the resonant states, i.e., the distributions of the very narrow 1f5/2 and 1f7/2 states are very similar
to bound states while those of the wide 1g7/2 and 1g9/2 states are like scattering states. Besides, the impurity
effect of � hyperons on the single-neutron resonant states is investigated. For most of the resonant states, both
the energies and widths decrease with adding more � hyperons due to the attractive �N interaction. Finally, the
energy level structure of � hyperons in the Ca hypernucleus isotopes with mass number A = 53−73 are studied;
obvious shell structure and small spin-orbit splitting are found for the single-� spectrum.
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I. INTRODUCTION

Since the first discovery of a � hypernucleus by Danysz
and Pniewski in 1953 [1], the study of hypernuclei has
been attracting great interest from nuclear physicists [2–5].
An important goal of hypernuclear physics is to extract
information on the baryon-baryon interactions including the
strangeness of freedom, which are crucial not only for the
understanding of hypernuclear structure [6–9] but also for
the study of neutron stars [10–13]. However, due to the
difficulty of the hyperon-nucleon (YN ) and hyperon-hyperon
(YY ) scattering experiments, there are very limited YN
scattering data and no YY scattering data at all. Thus, in order
to shed light on baryon-baryon interactions, the study of the
hypernuclei structure is very important.

The most extensively studied hypernuclear system is the
single-� hypernucleus which consists of one � hyperon
coupled to a nuclear core. Until now, more than 30 �
hypernuclei ranging from 3

�H up to 208
� Pb have been produced

experimentally [2,3]. Several properties of hypernuclei such as
the mass number dependence of single-� binding energy and
spin-orbit splitting have been revealed. Double-� hypernuclei
such as 6

��He [14] have been observed experimentally and
demonstrated the weakly attractive �� interaction by the
small positive �� bond energy.

Being an additional strangeness degree of freedom, a
hyperon is free from nucleon’s Pauli exclusion principle, and
it may induce many effects on the nuclear core as an impurity,
such as the shrinkage of the size [15–17], the change of the
shape [18,19], the modification of its cluster structure [20], the
shift of neutron drip line to a neutron-rich side [21–23], and
the occurrence of nucleon and hyperon skin or halo [20,22,24].

Theoretically, many different models have been con-
tributed to study the structure of � hypernuclei, such as
the cluster model [15,16,25,26], antisymmetrized molecular
dynamics [27–30], shell model [31–34], mean field approaches
[18,21,35–44], and ab initio method [45]. Among these
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methods, the mean field approach has an advantage in that
it can be globally applied from light to heavy hypernuclei.
Recently, both the Skyrme-Hartree-Fock (SHF) [35–39] and
the relativistic mean field (RMF) models [18,21,40–44] have
been applied to hypernuclear physics.

During the last few decades, the RMF model has achieved
great success in ordinary nuclei [46–51]. In 1977, Brockmann
and Weise applied this approach to hypernuclei [40]. At that
time, it had been already observed experimentally that the
spin-orbit splittings in hypernuclei are significantly smaller
than those in ordinary nuclei [52]. The relativistic approach is
suitable for a discussion of spin-orbit splittings in hypernuclei,
because the spin-orbit interaction is naturally emerged with
the relativistic framework. It has been applied to describe
single- and multi-� systems, including the single-particle
(s.p.) spectra of � hypernuclei and the spin-orbit interaction,
and extended beyond the � to other strange baryons using
SU(3) [7,21,42,53–62].

Hyperon halos may occur with the rapid development
of radioactive ion beam facilities. For the halo structure,
continuum and resonant states play crucial roles, especially
those with low orbital angular momenta l [50,63–65]. For
example, in ordinary nuclei, further studies have shown that
the s.p. resonant states are key factors to many exotic nuclear
phenomena, such as the halo [64,66], giant halo [65,67–71],
and deformed halo [72,73]. To study the s.p. resonant states,
many techniques have been developed based on conventional
scattering theory [74–81] or the bound-state-like methods
[82–84]. Meanwhile, combinations of a number of techniques
for the s.p. resonant states with the RMF theory have been
developed. For example, the RMF theory with the S-matrix
(RMF-S) [78], the RMF theory with the analytic continuation
in the coupling constant approach (RMF-ACCC) [85–88], the
RMF theory with the real stabilization method (RMF-RSM)
[89], the RMF theory with complex scaling method (RMF-
CSM) [90], and the RMF theory with Green’s function method
(RMF-GF) [91,92].

Green’s function method [93,94] has been demonstrated
to be an efficient tool for describing the s.p. resonant states
[91,92]. It has been widely applied in nuclear physics to
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properly take into account the continuum, e.g., the ground state
studies based on (nonrelativistic) Hartree-Fock-Bogoliubov
(HFB) theory [95–98], and the excited state studies based
on the quasiparticle random-phase-approximation (QRPA)
theory [99,100] and the relativistic continuum random-phase-
approximation (RCRPA) theory [101,102]. It is found that the
Green’s function method has the following advantages: (a)
treating the discrete bound states and the continuum on the
same footing, (b) giving both the energies and widths of the
resonant states directly, and (c) taking into account the correct
asymptotic behaviors for the wave functions.

In this paper, we extend the RMF-GF model to include the
� hyperon in coordinate space and present detailed formulas
of �N interaction and construction of Green’s function for �
hyperons. We apply this newly developed theory to three cases.
First, taking 61

� Ca as an example, we apply the RMF-GF model
to study the single-� resonant states. By analyzing the density
of states, the s.p. energies for bound states and energies and
widths for the resonant states are given. Second, taking 60Ca,
61
� Ca, and 62

2�Ca as examples, we investigate the impurity effect
of the � particle and focus on the influences of � hyperons
on the single-neutron resonant states. Third, the s.p. level for
� hyperon in the Ca hypernucleus isotopes are given and the
shell structure and spin-orbit splitting are discussed.

The paper is organized as follows. In Sec. II, we present
the formalism of the RMF-GF model for � hypernuclei. After
the numerical details in Sec. III, we present the results and
discussions in Sec. IV. Finally a summary is drawn in Sec. V.

II. THEORETICAL FRAMEWORK

A. RMF model for � hypernuclei

The starting point of the meson-exchange RMF model for
� hypernuclei is a covariant Lagrangian density

L = LN + L� , (1)

where LN is the standard RMF Lagrangian density for
nucleons [48,50,51,103], and L� is the Lagrangian density
for � hyperons [42]. Since the � hyperon is charge neutral
with isospin 0, only the couplings with σ and ω mesons are
included,

L� = ψ̄�

[
iγ μ∂μ − m� − gσ�σ − gω�γ μωμ

− fω�

2m�

σμν∂νωμ

]
ψ�, (2)

where m� is the mass of the � hyperon, and gσ� and gω� are
the coupling constants with the σ and ω mesons, respectively.
The last term in L� is the tensor coupling with the ω field
[104], which is related to the s.p. spin-orbit splitting of �
hyperons.

For a system with time-reversal symmetry, the space-like
components of the vector ωμ field vanish, only leaving
the time components ω0. With the mean field and no-sea
approximations, the s.p. Dirac equations for baryons and
the Klein-Gordon equations for mesons and photons can be
obtained by the variational procedure.

The Dirac equation for � hyperon is

[α · p + β(m� + S(r)) + V (r) + T (r)]ψi,�(r) = εiψi,�(r),

(3)

where α and β are the Dirac matrices, S(r), V (r), and T (r)
are the scalar, vector, and tensor potentials for � hyperons,
respectively, and

S = gσ�σ, (4a)

V = gω�ω0, (4b)

T = − fω�

2m�

iγ · ∇ω0, (4c)

with the γ matrix, i.e., γ k = ( 0 σ k

−σ k 0 ) where k runs from 1

to 3 and σ k are Pauli matrices.
The Klein-Gordon equations for the σ and ω mesons are

changed to ( − � + m2
φ

)
φ = Sφ, (5)

with the source terms

Sφ =
⎧⎨
⎩

−gσρS − gσ�ρS� − g2σ
2 − g3σ

3 for σ ,

gωρV + gω�ρV � + fω�

2m�

∂k j0k
T � − c3ω

3
0 for ω,

(6)

where mφ(φ = σ,ω) are the corresponding meson masses,
gσ , gω, g2, g3, and c3 are the parameters for the nucleon-
nucleon (NN ) interaction in the Lagrangian density LN ,
ρS(ρS�), ρV (ρV �) are the scalar and baryon densities for the
nucleons(hyperons), respectively, and j0

T � is the tensor density
for � hyperons.

With the upper Gi,�(r) and lower Fi,�(r) components of
the Dirac spinor ψi,�(r), the densities for � hyperons can be
expressed as

ρS�(r) =
A�∑
i=1

[Gi,�(r)G∗
i,�(r) − Fi,�(r)F ∗

i,�(r)], (7a)

ρV �(r) =
A�∑
i=1

[Gi,�(r)G∗
i,�(r) + Fi,�(r)F ∗

i,�(r)], (7b)

j0
T �(r) =

A�∑
i=1

[Gi,�(r)F ∗
i,�(r) + Fi,�(r)G∗

i,�(r)]n, (7c)

where n is the angular unit vector. The number of � hyperons
A� is calculated by the integral of the hyperon density ρV �(r)
in the coordinate space as

A� =
∫

d3rρV �(r). (8)

And the total baryon (mass) number A in hypernuclei is the
summation of the neutron, proton, and � hyperon particle
numbers.

The Dirac equation for nucleons and Klein-Gordon equa-
tions for ρ mesons and photons are the same as those in the
standard RMF model. All these coupled equations together
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with Eqs. (3)–(8) are solved by iteration in the coordinate
space.

B. Green’s function method

Green’s function G(r,r ′; ε) describes the propagation of
a particle with an energy ε from coordinate r to r ′. In the
RMF-GF theory [91,92], the Green’s function method is taken
to solve the Dirac equation in coordinate space, and the
relativistic s.p. Green’s function obeys

[ε − ĥ(r)]G(r,r ′; ε) = δ(r − r ′), (9)

where ĥ(r) is the Dirac Hamiltonian, and energy ε can be any
value on a energy complex plane. For � hyperons, ĥ(r) =
α · p + β(m� + S(r)) + V (r) + T (r). With a complete set of
eigenstates ψi,�(r) and eigenvalues εi , Green’s function for �
hyperons can be represented as

G(r,r ′; ε) =
∑

i

ψi,�(r)ψ†
i,�(r ′)

ε − εi

, (10)

where �i is summation for the discrete states and integral
for the continuum explicitly. Green’s function in Eq. (10)
is analytic on the complex energy plane with the poles at
eigenvalues εi . Corresponding to the upper Gi,�(r) and lower
Fi,�(r) components of the Dirac spinor ψi,�(r), Green’s
function for the Dirac equation is in a form of a 2 × 2 matrix,

G(r,r ′; ε) =
(G(11)(r,r ′; ε) G(12)(r,r ′; ε)

G(21)(r,r ′; ε) G(22)(r,r ′; ε)

)
. (11)

According to Cauchy’s theorem, the nonlocal scalar den-
sity ρS�(r,r ′), vector density ρV �(r,r ′), and tensor density
j0
T �(r,r ′) for � hyperons can be calculated by the integrals of

Green’s function on the complex energy plane,

ρS�(r,r ′) =
A�∑
i=1

[Gi,�(r)G∗
i,�(r ′) − Fi,�(r)F ∗

i,�(r ′)]

= 1

2πi

∮
Cε

dε[G(11)(r,r ′; ε) − G(22)(r,r ′; ε)],

(12a)

ρV �(r,r ′) =
A�∑
i=1

[Gi,�(r)G∗
i,�(r ′) + Fi,�(r)F ∗

i,�(r ′)]

= 1

2πi

∮
Cε

dε[G(11)(r,r ′; ε) + G(22)(r,r ′; ε)],

(12b)

j0
T �(r,r ′) =

A�∑
i=1

[Gi,�(r)F ∗
i,�(r ′) + Fi,�(r)G∗

i,�(r ′)]n

= 1

2πi

∮
Cε

dε[G(12)(r,r ′; ε) + G(21)(r,r ′; ε)]n,

(12c)

where Cε is the contour path for the integral of Green’s function
on the complex energy plane shown in Fig. 1.

FIG. 1. Contour path Cε to perform the integrals of Green’s
function on the complex energy plane. The path is chosen to be a
rectangle with height γ and enclose only the 1s1/2 orbit. The red
crosses denote the discrete single-� states and the green thick line
denotes the continuum.

With the spherical symmetry, Green’s function and densi-
ties can be expanded as radial and angular parts,

G(r,r ′; ε) =
∑
κm

Y l
jm(θ,φ)

Gκ (r,r ′; ε)

rr ′ Y l∗
jm(θ ′,φ′), (13a)

ρS�(r,r ′) =
∑
κm

Y l
jm(θ,φ)ρS�,κ (r,r ′)Y l∗

jm(θ ′,φ′), (13b)

ρV �(r,r ′) =
∑
κm

Y l
jm(θ,φ)ρV �,κ (r,r ′)Y l∗

jm(θ ′,φ′), (13c)

j0
T �(r,r ′) =

∑
κm

Y l
jm(θ,φ) j0

T �,κ (r,r ′)Y l∗
jm(θ ′,φ′). (13d)

And they are only decided by the radial part, which is char-
acterized by the quantum number κ = (−1)j+l+1/2(j + 1/2)
and orbits with the same κ is defined as a “block”. The radial
parts of the local scalar density ρS�(r) = ρS�(r,r), vector
density ρV �(r) = ρV �(r,r), and tensor density j0

T �(r) =
j0
T �(r,r) can be expressed by the radial part of Green’s

function as

ρS�(r) = 1

4πr2

1

2πi

∑
κ

(2j + 1)

×
∮

Cε

dε
[G(11)

κ (r,r; ε) − G(22)
κ (r,r; ε)

]
, (14a)

ρV �(r) = 1

4πr2

1

2πi

∑
κ

(2j + 1)

×
∮

Cε

dε
[G(11)

κ (r,r; ε) + G(22)
κ (r,r; ε)

]
, (14b)

j0
T �(r) = 1

4πr2

1

2πi

∑
κ

(2j + 1)

×
∮

Cε

dε
[G(12)

κ (r,r; ε) + G(21)
κ (r,r; ε)

]
n, (14c)
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Note that for the � hyperons occupying the 1s1/2 orbit,
the degeneracy is 2j + 1 = 2. It is half occupied for single-�
hypernuclei and fully occupied for double-� hypernuclei.

Different from the standard RMF model, in the RMF-GF
model, from the densities given by Green’s function (14), one
can solve the Klein-Gordon equation (5) to obtain the σ and
ω fields, and then calculate the single-� potentials V (r), S(r),
and T (r) in Eq. (4), and the Dirac equation is solved again to
provide new Green’s functions. In this way, the RMF coupled
equations can be solved by iteration self-consistently.

In the RMF-GF theory, the energies of the s.p. bound states
as well as the energies and widths of the s.p. resonant states
can be extracted from the density of states n(ε) [91,92],

n(ε) =
∑

i

δ(ε − εi), (15)

where εi is the eigenvalue of the Dirac equation, ε is a real s.p.
energy,

∑
i includes the summation for the discrete states and

the integral for the continuum, and n(ε)dε gives the number
of states in the interval [ε,ε + dε]. For the bound states, the
density of states n(ε) exhibits a discrete δ function at ε = εi ,
while in the continuum n(ε) has a continuous distribution.

In the spherical case, Eq. (15) becomes

n(ε) =
∑

κ

nκ (ε), (16)

where nκ (ε) is the density of states for a block characterized
by the quantum number κ . By introducing an infinitesimal
imaginary part iε to energy ε, it can be proved that the density
of states can be obtained by integrating the imaginary part of
Green’s function over the coordinate space, and in the spherical
case, it is [91]

nκ (ε) = −2j + 1

π

∫
drIm

[G(11)
κ (r,r; ε + iε)

+G(22)
κ (r,r; ε + iε)

]
. (17)

Moreover, with this infinitesimal imaginary part iε, the density
of states for discrete s.p. states in shape of a δ function (no
width) is simulated by a Lorentzian function with the FWHM
of 2ε.

C. Construction of Green’s function

In the spherical case, for a given single-� energy ε
and quantum number κ , Green’s function Gκ (r,r ′; ε) for the
radial form of the Dirac equation (3) can be constructed as
[91,92,94,101,102]

Gκ (r,r ′; ε) = 1

Wκ (ε)

[
θ (r − r ′)φ(2)

κ (r,ε)φ(1)†
κ (r ′,ε)

+ θ (r ′ − r)φ(1)
κ (r,ε)φ(2)†

κ (r ′; ε)
]
, (18)

where θ (r − r ′) is the radial step function, φ(1)
κ (r,ε) and

φ(2)
κ (r,ε) are two linearly independent Dirac spinors for �

hyperons,

φ(1)
κ (r,ε) =

(
G(1)

κ (r,ε)

F (1)
κ (r,ε)

)
, φ(2)

κ (r,ε) =
(

G(2)
κ (r,ε)

F (2)
κ (r,ε)

)
, (19)

and Wκ (ε) is the Wronskian function defined by

Wκ (ε) = G(1)
κ (r,ε)F (2)

κ (r,ε) − G(2)
κ (r,ε)F (1)

κ (r,ε), (20)

and it is independent with coordinate r , i.e., dWκ (ε)/dr = 0.
The Dirac spinor φ(1)

κ (r) is regular at the origin and φ(2)
κ (r)

at r → ∞ is oscillating outgoing for ε > 0 and exponentially
decaying for ε < 0. Explicitly, the Dirac spinor φ(1)

κ (r,ε) at
r → 0 satisfies

φ(1)
κ (r,ε) −→ r

(
jl(kr)

κ
|κ|

ε−V −S
k

jl̃(kr)

)
,

−→
(

r
(2l+1)!! (kr)l

κ
|κ|

r(ε−V −S)
k(2l̃+1)!!

(kr)l̃

)
, (21)

where k2 = (ε − V − S)(ε − V − S + 2m�) > 0, quantum
number l̃ is defined as l̃ = l + (−1)j+l+1/2, and jl(kr) is the
spherical Bessel function of the first kind.

The Dirac spinor φ(2)
κ (r,ε) at r → ∞ satisfies

φ(2)
κ (r,ε) −→

(
rh

(1)
l (kr)

κ
|κ|

ikr
ε+2m�

h
(1)
l̃

(kr)

)
,

−→
(

1
κ
|κ|

ik
ε+2m�

)
eikr , (22)

for ε > 0 and

φ(2)
κ (r,ε) −→

⎛
⎝ r

√
2Kr
π

Kl+ 1
2
(Kr)

−Kr
ε+2m�

√
2Kr
π

Kl̃+ 1
2
(Kr)

⎞
⎠,

−→
(

1
− K

ε+2m�

)
e−Kr, (23)

for ε < 0. Here, K2 = (V − S − ε)(ε − V + S + 2m�) > 0,
h

(1)
l (kr) is the spherical Hankel function of the first kind, and

Kl+ 1
2
(Kr) is the modified spherical Bessel function.

III. NUMERICAL DETAILS

In the present RMF-GF calculations, for the NN inter-
action, the effective interaction PK1 [105] is taken. For the
�N interaction, with � hyperon mass m� = 1115.6 MeV, the
scalar coupling constant gσ� = 0.618gσ is fixed to reproduce
the experimental binding energies of � in the 1s1/2 state of
hypernucleus 40

� Ca (B�
1s = 18.7 MeV) [106] based on the NN

interaction; the vector coupling constant gω� = 0.666gω is
determined from the näive quark model [107]; and the tensor
coupling constant fω� = −1.0gω� is taken as in Ref. [42]
which is related to the spin-orbit splitting of � hyperons. With
those NN and �N interactions, the single-� binding energy
B� for hypernuclei from 12

� C to 208
� Pb are well described and

consistent results with the experimental data [2,3] are obtained
as shown in Fig. 2.

The RMF Dirac equation is solved in a box of size R =
20 fm and a step size of 0.05 fm. In the present work, single-
or double-� hypernuclei are studied, in which the � hyperons
occupy the 1s1/2 orbit. To perform the integrals of Green’s
function in Eq. (14), the contour path Cε is chosen to be a
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FIG. 2. Single-� binding energies B� for the � hypernuclei from
12
� C to 208

� Pb calculated with the RMF-GF method and compared with
the experimental data [2,3].

rectangle with height γ = 0.1 MeV and it encloses only the
bound state 1s1/2 on the complex energy plane as shown in

Fig. 1. The energy step is taken as dε = 0.005 MeV on the
contour path for the integral. With these parameters of the
contour path Cε, the convergence of the obtained densities for
� hyperons in Eq. (14) is up to 10−14 fm−3. To calculate the
density of states nκ (ε) along the real-ε axis, the parameter ε in
Eq. (17) is taken as 1 × 10−6 MeV and the energy step along
the real-ε axis is 1 × 10−4 MeV. With this energy step, the
accuracy for energies and widths of the s.p. resonant states can
be up to 0.1 keV.

IV. RESULTS AND DISCUSSION

In this part, first we take 61
� Ca as an example and extend the

RMF-GF model to investigate the s.p. spectrum of hypernuclei.
In Fig. 3, the density of states nκ (ε) in different blocks κ for
the � hyperon in hypernucleus 61

� Ca are plotted as a function
of single-� energy ε. The dotted line in each panel indicates
the continuum threshold. The peaks of the δ-functional shape
below the continuum threshold correspond to bound states and
spectra with ε > 0 are continuous. By comparing density of
states for 61

� Ca (denoted by blue solid line) and those for free
particles obtained with zero potential V = S = 0 (denoted by
the red solid line), one can easily find the resonant states in the
continuum. It is clear that the density of states nκ (ε) for the

FIG. 3. Density of states nκ (ε) of � hyperon for different blocks κ in 61
� Ca calculated with RMF-GF method (blue solid line) and compared

with nκ (ε) for free particles obtained with potentials V = S = 0 (red solid line). The dotted line in each panel indicates the position of the
continuum threshold.
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TABLE I. Single-� energies in 61
� Ca extracted from nκ (ε) in Fig. 3

by the RMF-GF method. Part (a) is for the bound states, in comparison
with energies εbox obtained by the shooting method with the box
boundary condition. Part (b) is for the resonant states, where both the
energies εres. and widths � are listed. All quantities are in MeV.

(a) 1s1/2 1p3/2 1p1/2 1d5/2 1d3/2 2s1/2

εGF −20.6035 −13.3109 −13.1363 −6.0358 −5.7893 −5.0977
εbox −20.6035 −13.3109 −13.1363 −6.0358 −5.7893 −5.0977

(b) 2p3/2 2p1/2 1f7/2 1f5/2 1g9/2 1g7/2

εres. 0.0774 0.1050 0.6147 0.8215 6.8017 6.9772
� 0.1015 0.1259 0.0124 0.0229 3.2003 3.2926

resonant states sit atop of those for free particles. Accordingly,
the � hyperon bound states are observed in s1/2, p1/2, p3/2,
d3/2, and d5/2 blocks and the resonant states are observed in
p1/2, p3/2, f5/2, f7/2, g7/2, and g9/2 blocks.

From the density of states, we can extract the energies
for the � hyperon bound states and the energies (εres.) and
widths (�) for the resonant states. Here, εres. and � are defined
as the positions and the FWHM of resonant peaks, which
are the differences between the density of states for the �
hyperon in 61

� Ca and free hyperon. We list in part (a) of
Table I the s.p. energies ε for bound states, in comparison with
those obtained by the shooting method with box boundary
condition, and in part (b) the energies εres. and widths �
of resonant states. From Table I, it can be seen that s.p.
energies for bound states obtained by the Green’s function
method and shooting method are equal. Six resonant states
with very different widths are obtained. Very close to the
continuum threshold, resonant states 2p1/2 and 2p3/2 with
width � ∼ 0.1 MeV are observed, and at slightly higher energy
around 0.6–0.8 MeV, very narrow resonant states 1f5/2 and
1f7/2 with � ∼ 0.02 MeV are observed. The behaviors of these
narrow resonant states are similar to those of bound states. At
very high energy regions, much wider resonant states 1g9/2

and 1g7/2 with � > 1.1 MeV are observed; their properties
are similar to those of nonresonant scattering states.

To see the distributions of the � hyperon resonant states
given in Table I, we show in Fig. 4 the integrands for the density
of states nκ (ε), i.e., Im[G(11)

κ (r,r; ε + iε) + G(22)
κ (r,r; ε + iε)],

in Eq. (17) at the resonant energies. The integrand
Im[G(11)

κ (r,r; ε + iε) + G(22)
κ (r,r; ε + iε)], which is calculated

from the s.p. wave functions with Eq. (18), corresponds to the
particle density ρV � of Eq. (14b) at energy ε. From Fig. 4, it
can be seen that the integrands of the resonant states with the
same angular momentum l have very similar distributions and
very different for those with different l. The distributions of
the resonant states are tightly related to their widths. For the
2p resonant states, the distributions at resonant energies are
very extended and have large components at coordinate space
with r > 5 fm. On the contrary, for the very narrow 1f5/2 and
1f7/2 resonant states, the density at resonant energy is mainly
localized around the surface, i.e., 2.5 < r < 7.5 fm with a
maximum around r = 5 fm, the behaviors are very similar to
bound state; and for the very wide 1g7/2 and 1g9/2 resonant
states, the distribution is scattering and outgoing, the behaviors

FIG. 4. Integrands for the density of states,
Im[G(11)

κ (r,r; ε + iε) + G(22)
κ (r,r; ε + iε)], in Eq. (17) at resonant

energy ε = εres. for the single-� resonant states (a) 2p1/2, (b) 2p3/2,
(c) 1f5/2, (d) 1f7/2, (e) 1g7/2, and (f) 1g9/2 in 61

� Ca (blue solid
line), in comparison with those for the free particles obtained with
V = S = 0 (red dotted line). The values of εres. are listed in Table I.
The integrands for 1f5/2, 1f7/2, 1g7/2, and 1g9/2 are divided by a
factor of 10, 20, 0.1, and 0.1, respectively.

are very similar to the nonresonant scattering states shown by
the red dotted lines.

It is well known that neutrons, protons, and � hyperons
obey their own Pauli principle since they are different
fermions. However, in the self-consistent RMF model, �
hyperon is glue-like and will influence the properties of
nucleons. In this section, taking 60Ca, 61

� Ca, and 62
2�Ca as

examples, we investigate the influences of � hyperons on
the single-neutron resonant states. In Table II, the energies
εres. and widths � of the single-neutron resonant states in these
(hyper)nuclei obtained by the RMF-GF method are listed. Four
single-neutron resonant states 1g9/2, 2d5/2, 1g7/2, and 1h11/2

are obtained, and their energies εres. and widths � decrease
with the increase of the number of � hyperons except for state
1g7/2 in which these properties increases slightly.

To investigate the changes of the single-neutron resonant
states brought by adding � hyperons to 60Ca shown in
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TABLE II. Comparison of the energies εres. and widths � of the
single-neutron resonant states in (hyper)nuclei 60Ca, 61

� Ca, and 62
2�Ca

obtained by RMF-GF method. All quantities are in MeV.

1g9/2 2d5/2 1g7/2 1h11/2

60Ca εres. 0.7656 1.0722 5.4906 10.4430
� 0.0012 0.4134 0.8710 1.9785

61
� Ca εres. 0.6679 1.0497 5.4978 10.3981

� 0.0009 0.3915 0.8746 1.9710
62
2�Ca εres. 0.5703 1.0260 5.5049 10.3526

� 0.0007 0.3712 0.8795 1.9644

Table II, the mean field potential V + S as well as the s.p. levels
including the bound states and resonant states for neutrons
in (hyper)nuclei 60Ca, 61

� Ca, and 62
2�Ca are plotted in Fig. 5.

Adding more � hyperons depresses the central part of the
neutron mean field potential by around 1.5 MeV per hyperon
due to the attractive �N interaction. As a result, the s.p. levels
for neutrons go down with the increase of the number of �
hyperons.

Finally, the energy level structures for � hyperons are
studied. In Fig. 6, we plot the single-� energies ε� for the
Ca hypernucleus isotopes as a function of the mass number A.
It can be seen that with increasing hypernuclei mass, the s.p.
levels for � hyperon go down. Obvious shell gaps are found for
� hyperon s.p. levels. Besides, the spin-orbit splitting between
the spin doublet states 1p, 1d, 1f , and 1g are much smaller
than those for nucleons shown in Fig. 5. Experimentally, the

FIG. 5. Mean field potentials V (r) + S(r) as well as the s.p. levels
for neutrons in (hyper)nuclei 60Ca, 61

� Ca, and 62
2�Ca obtained by RMF-

GF method.

FIG. 6. Evolution of the s.p. levels for the � hyperon in the Ca
isotopes as a function of mass number A calculated by RMF-GF
method.

spin-orbit splitting between the 1p1/2 and the 1p3/2 hyperon
states in 13

� C was found to be much smaller than the spin-orbit
splitting in ordinary nuclei by a factor of 20–30 [108]. Other
experiments [52] reached the same conclusion. Our present
results are consistent with those experimental data. In Fig. 6,
low-lying 2p orbits are found in the continuum, which play
important roles in forming hyperon halos. In Ref. [24], the
hyperon halo in 15

3�C and 16
4�C is predicted by the relativistic

continuum Hartree-Bogoliubov theory and caused by the
occupation of the weakly bound state 1p3/2 with extended
density distributions and small separation energy of the �
hyperons. According to those studies, we prefer to say that the
hyperon halo may appear in the Ca hypernucleus isotopes due
to the low-lying or weakly bound 2p orbits.

V. SUMMARY

In this work, the RMF theory with Green’s function method
in coordinate space is extended to investigate � hypernuclei.
Detailed formulas are presented.

First, taking 61
� Ca as an example, the RMF-GF model is

applied to study the single-� resonant states. By analyzing
the density of states, the s.p. energies for bound states and
energies and widths for the resonant states are obtained.
Consistent results for the single-� bound states between the
Green’s function method and shooting method are obtained.
Six resonant states are observed with very different widths,
and the distributions of the very narrow 1f5/2 and 1f7/2 states
are very similar to bound states while the distributions of the
wide 1g7/2 and 1g9/2 states are like scattering states.
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Second, taking 60Ca, 61
� Ca, and 62

2�Ca as examples, we
investigate the influence of � hyperons on single-neutron
resonant states and found that for most resonant states, with
the increase of the number of � hyperons, both the energies
and widths decrease due to the deeper mean field potential.

Finally, the s.p. level for � hyperon in the Ca isotopes are
studied. Obvious shell structure is found for � hyperon and

very small spin-orbit splitting is obtained, which is consistent
with the present experimental results.
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