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Toroidal high-spin isomers in the nucleus 304120
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Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear
structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is
endowed with a large angular moment about the symmetry axis with I = Iz. The toroidal high-K isomeric states
at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock
method.
Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin
isomers in the superheavy nucleus 304120184.
Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-
Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these
toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular
momentum I = Iz about the symmetry z axis and search for the energy minima of the system as a function of
the deformation. In the last step, if a local energy minimum with I = Iz is found, we perform at this point the
cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal
high-spin isomeric state in free convergence.
Results: We have theoretically located two toroidal high-spin isomeric states of 304120184 with an angular
momentum I = Iz = 81h̄ (proton 2p-2h, neutron 4p-4h excitation) and I = Iz = 208h̄ (proton 5p-5h, neutron
8p-8h) at the quadrupole moment deformations Q20 = −297.7 b and Q20 = −300.8 b with energies 79.2 and
101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal
high-spin isomers 304120184 (Iz = 81h̄ and 208h̄) have the maximum density close to the nuclear matter density,
0.16 fm−3, and a torus major to minor radius aspect ratio R/d = 3.25.
Conclusions: We demonstrate that aligned angular momenta of Iz = 81h̄ and 208h̄ arising from multiparticle-
multihole excitations in the toroidal system of 304120184 can lead to high-spin isomeric states, even though the
toroidal shape of 304120184 without spin is unstable. Toroidal energy minima without spin may be possible for
superheavy nuclei with higher atomic numbers, Z � 122, as reported previously [A. Staszczak and C. Y. Wong,
Acta Phys. Pol. B 40, 753 (2008)].
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I. INTRODUCTION

The landscape of the total energy surface of a nucleus
in the deformation degrees of freedom is central to our
understanding of the equilibrium shapes and the evolutionary
paths in nuclear dynamics. In Fig. 1, one can see the total
energy surface for the superheavy nucleus 304120184 as a
function of the quadrupole and octupole degrees of freedom
calculated in the constrained Hartree-Fock-Bogoliubov (HFB)
approach with the Skyrme energy density functional. In
addition to the spherical ground-state minimum, the land-
scape contains the symmetric-elongated-fission (sEF) and
asymmetric-elongated-fission (aEF) paths leading to fission.
These features have important experimental implications in the
multimodal fission decay properties of heavy and superheavy
nuclei (cf. Refs. [1–3]).

The potential energy surface in Fig. 1 pertains to reflection-
symmetric and reflection-asymmetric prolate shapes. How
does the energy surface look in the oblate deformation region?
What kinds of the nuclear (equilibrium) shapes may there be
in this oblate deformation region?

To gain the proper perspective, it is informative to discuss
some general features of our results in the prolate and oblate
regions and then examine in detail in this paper how oblate

region results are obtained. The total HFB energy of 304120184

as a function of the quadrupole moment Q20 is shown in
Fig. 2. On the prolate deformation side, the prescission density
configurations for the sEF and aEF paths are shown at the ends
of both paths (at Q20 ≈ 360 b for sEF and Q20 ≈ 650 b for
aEF). The effects of triaxiality on the change of the inner
and outer axial-symmetric barriers are shown in the insert of
Fig. 2. On the oblate deformation side with a negative Q20,
one starts from the energy minimum for a spherical ground
state to go to the higher energies for oblate spheroids. As
the oblate Q20 magnitude increases, the oblate spheroidal
density changes into a biconcave disk with flattened center
density. At Q20 ≈ −200 b, the biconcave disk energy surface
reaches an energy about 72 MeV above the spherical ground
state. Upon a further increase in the oblate deformation, a
sudden shape transition from a biconcave disk to a torus takes
place with a reduction of the total energy of the nucleus by
10.8 MeV.

The geometry of the toroidal nuclear densities can be
characterized by the aspect ratio R/d, where R is the major
radius, the distance from the center of the torus hole to the
center of the torus tube, and d is the minor radius, the radius of
the tube. As is shown in Fig. 2 for Q20 � −158 b, the aspect
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FIG. 1. Total HFB energy surface of 304120184 as a function of
the quadrupole Q20 and octupole Q30 moments. The HFB energy is
normalized to the ground state energy. The dashed lines show the
symmetric (sEF) and asymmetric elongated fission (aEF) paths along
different valleys.

ratio R/d of the toroidal solution of the Skyrme-HFB model
increases as the oblate Q20 magnitude increases.

With regard to the emergence of toroidal nuclear matter
densities, Wheeler suggested long ago that under appropriate
conditions the nuclear fluid may assume a toroidal shape [4].
Conditions that are favorable for the formation of nuclei with
a toroidal shape are the cases of excess charge, excess angular
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FIG. 2. Total HFB energy curve of 304120184 as a function of the
quadrupole moment. The thick solid (blue color) and gray dashed
(orange) lines show the symmetric (sEF) and asymmetric (aEF)
elongated fission pathways along different valleys, respectively. The
effects of triaxiality on the inner and outer barriers are shown in the
inset, where the axially symmetric sEF (γ = 0◦) fission pathway
is marked by solid thin (black) line. The nuclear matter density
distributions with toroidal shapes appear at the region of large oblate
deformation Q20 � −158 b dark gray (red) solid circles.

momentum, and nuclear shell effects [5,6]. In the semiclassical
liquid-drop model, nuclei with a toroidal shape begin to
develop as the fissility parameter x exceeds 0.964. However,
the toroidal nucleus is plagued with various instabilities [5],
and the search for toroidal nuclei continues [7]. When a
toroidal nuclear system is endowed with an angular momen-
tum along the symmetry axis, I = Iz, the variation of the
rotational energy of the spinning nucleus can counterbalance
the variation of the toroidal bulk energy to lead to toroidal
isomeric states at their local energy minima, when the angular
momentum I = Iz is beyond a threshold value [6]. A rotating
liquid-drop toroidal nucleus can also be stable against sausage
instabilities (known also as Plateau-Rayleigh instabilities, in
which the torus breaks into smaller fragments [8,9]), when
the same mass flow is maintained across the toroidal meridian
to lead to high-spin isomers within an angular momentum
window [6].

The rotating liquid-drop model is useful as an intuitive,
qualitative guide to point out the essential balance of forces
leading to possible toroidal figures of equilibrium. The
quantitative assessment of toroidal high-spin isomer (THSI)
relies on microscopic descriptions that include both the bulk
properties of the nucleus and the single-particle shell effects
in self-consistent mean-field theories, such as the Skyrme-
Hartree-Fock (Skyrme-HF) approach. Self-consistent mean-
field theories are needed because noncollective rotation with
an angular momentum about the symmetry axis is permissible
quantum mechanically for an axially symmetric toroid only
by making single-particle particle-hole excitations to align the
angular momenta of the constituents along the symmetry axis
[10–15]. As a consequence, only a certain discrete, quantized
set of total angular momentum I = Iz states is allowed. We
shall adopt the simplified notation that all spins and angular
momenta are implicitly in units of h̄ except otherwise explicitly
indicated to resolve ambiguities.

It was recently found that the THSI with I = 60 may be
in the local energy minimum in the excited states of 40Ca by
using a cranked Skyrme-HF method starting from the initial
ring configuration of 10 α particles [16,17]. Using a cranked
Skyrme-HF approach, it was found that toroidal high-spin
isomeric states have actually a rather general occurrence for an
extended region of even-even light nuclei with 28 � A � 52
[18]. With different rings of α particles as initial states, it
was also subsequently confirmed that there are THSI solutions
in the extended region of 36 � A � 52 [19]. The particle-
hole nature of the light high-spin toroidal isomers has been
examined in Ref. [20], the toroidal high-spin isomers with
N �= Z have been located [21], and the THSIs in 56Ni have
been described in Ref. [22]. For the nucleus 24Mg, a toroidal
diabatic excited state without spin has also been found [23].

In addition to the high-spin toroidal isomers in the light
mass region, the superheavy nuclei with large atomic num-
bers provides another favorable region for toroidal nuclei
formation, because the large Coulomb repulsion tends to
push the nuclear matter outward to make it energetically
advantageous to assume a toroidal shape. A previous work
in the superheavy region in the self-consistent constraint
Skyrme Hartree-Fock+BCS (Skyrme-HF+BCS) framework
indicates that toroidal energy minima are present at various
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energies as the atomic number increases beyond Z � 122
[7]. For example, the superheavy nuclei 316122194, 340130210,
and 352134218 have toroidal local potential energy minima
lying at about 50, 25, and 12 MeV above their corresponding
deformed oblate ground-state energy minimum, respectively.
The superheavy nucleus 364138226 has a toroidal local potential
energy minimum that lies even below the oblate spheroidal
energy minimum.

Our purpose in the present paper is to explore the closed-
shell superheavy nucleus 304120184 which is localized close to
the center of the island of stability (cf. Refs. [3,24]). A toroidal
system of 304120184 without a spin may not be stable [25]. It is
of interest to find out whether the superheavy nucleus 304120184

with a toroidal density may become stabilized by the addition
of a large nuclear spin.

This paper is organized as follows. In Secs. II A–C, we
describe the theoretical model. In Sec. III A, we examine
properties of the toroidal system of 304120184 without spin and
study the single-particle states in the constrained Skyrme-HFB
calculations as a function of the quadrupole moment. In
Sec. III B, we present results of the cranked Skyrme-HF
calculations for 304120184 with a toroidal density and a spin.
The properties of 304120184 toroidal high-spin isomers are
presented in Sec. III C. Finally, we summarize our studies
in Sec. IV.

II. DESCRIPTION OF THE MODEL

A. The Skyrme energy density functional

In the local density approximation, the Skyrme energy
density functional (EDF), up to second order in derivatives
of the density (i.e., the most general quadratic EDF), can
be expressed in terms of seven proton and neutron local
densities: the particle (scalar) density ρq(r), kinetic energy
(scalar) density τq(r), spin-current (pseudotensor) density
Jq(r), current (vector) density jq(r), spin (pseudovector)
density sq(r), spin-kinetic (pseudovector) density T q(r),
and tensor-kinetic (pseudovector) density Fq(r), where q =
{p,n}; see Refs. [26–29].

The above local densities are all real, and ρq(r), τq(r),
and Jq(r) are time even, whereas jq(r), sq(r), T q(r),
and Fq(r) are time odd. The spin-current pseudotensor
density Jq(r) can be decomposed into trace, antisymmet-
ric, and symmetric parts, giving the pseudoscalar Jq(r),
vector Jq(r), and (traceless) pseudotensor Jq(r) densities,
respectively.

The time reversal and spatial symmetries impose restric-
tions on the local densities [30,31]. In spherical nuclei [the
rotational and mirror symmetry, O(3)], the pseudoscalarJq(r),
all the pseudovector [sq(r), T q(r), Fq(r)], and the pseu-
dotensor Jq(r) local densities vanish. In the case of axial and
reflection symmetry, only the pseudoscalar component Jq(r)
vanishes. For the description of static properties in even-even
nuclei, all the time-odd densities must vanish to preserve
the time-reversal invariance of the density matrix in the
particle-hole channel.

The standard proton-neutron separable Skyrme EDF can
be divided into two parts, built of the seven isoscalar (t = 0)

and seven isovector Tz = 0 component (t = 1) single-particle
densities [30]

ESk =
∑
t=0,1

∫
d3r

[Heven
t (r) + Hodd

t (r)
]
, (1)

where the isoscalar densities are the total (n + p) densities,
while the isovector densities are the differences of the neutron
and proton (n − p) densities. The energy densities Heven

t (r)
and Hodd

t (r) are the real, time-even, scalar, and isoscalar
functions of local densities and their derivatives. The time-even
part of Skyrme EDF

Heven
t (r) = C

ρ
t [ρ0]ρ2

t + C
�ρ
t ρt�ρt + Cτ

t ρt τt

+CJ0
t J 2

t + CJ1
t J2

t + CJ2
t J2

t

+C∇J
t ρt∇ · J t , (2)

is expressed as a bilinear form of the time-even densities and
their derivatives. The time-odd Skyrme EDF

Hodd
t (r) = Cs

t [ρ0]s2
t + C�s

t st · �st + CT
t st · T t + C

j
t j2

t

+C
∇j
t st · (∇ × j t )

+C∇s
t (∇ · st )

2 + CF
t st · Ft (3)

contains all time-odd densities and their derivatives written
in a bilinear form. The terms proportional to the coupling
constants C∇s

t and CF
t occur for tensor force only and both

are equal zero in the standard parametrizations of the Skyrme
effective interactions.

Invariance under local gauge transformations of the Skyrme
energy density (1) links pairs of time-even and time-odd terms
in the energy functional provided that the coupling constants
fulfill the constraints [32]:

Cτ
t = −C

j
t ,

CJ0
t = − 1

3CT
t − 2

3CF
t ,

CJ1
t = − 1

2CT
t + 1

4CF
t ,

CJ2
t = −CT

t − 1
2CF

t ,

C∇J
t = C

∇j
t . (4)

The spin-orbit terms are proportional only to C∇J
t = C

∇j
t in the

standard Skyrme functionals. However, with the generalized
spin-orbit interaction (with the full isovector freedom in the
spin-orbit term [33])

C∇J
0 = −b− 1

2b′,
(5)

C∇J
1 = − 1

2b′,

where b and b′ are the new parameters.
Four zero-order coupling constants of the Skyrme EDF

(Cρ
t [ρ0], Cs

t [ρ0]) can be expressed in terms of the Skyrme force
parameters [34] (t0, x0, t3, x3, α) and the rest (24 second-order)
coupling constants can be expressed in terms of the other
seven Skyrme force parameters (t1, x1, t2, x2, W0, te, to), and
therefore, the time-odd coupling constants in the Skyrme EDF
are linear combination of the time-even ones [32]; see also
Refs. [26,28,29] for further discussion.
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The total energy in the Skyrme-HFB approach is

Etot[ρ̄] ≡ Etot[ρ,τ,J; s,T , j ,F; ρ̃]

=
∫

d3r[Ekin(r) + ESk(r)]

+
∫

d3r
[Edir

Coul(r) + Eex
Coul(r)

]

+
∫

d3rEpair(r) + Ecorr, (6)

where Ekin = τ0(r)(h̄2/2m) is a kinetic energy density of both
protons and neutrons (for the neutron and proton masses being
approximated by their average value), ESk is the Skyrme EDF,
Eq. (1), and Edir

Coul, Eex
Coul are direct and exchange Coulomb

energy densities, respectively.
The Epair is the isovector |Tz| = 1 pairing energy density,

corresponding to a density-dependent δ interaction

Epair =
∑

q=p,n

V 0
q

4

[
1 − V 1

(
ρ0(r)

ρst

)β]
ρ̃2

q (r), (7)

where ρst is the saturation density of nuclear matter that
approaches the density inside the nucleus, β = 1 (usually), and
V 1 = 0, 1, or 1/2 for volume-, surface-, or mix-type pairing,
and ρ̃q(r) is the paring density for protons and neutrons
[35]. The volume pairing interaction acts primarily inside
the nuclear volume, while the surface pairing acts on the
nuclear surface. A correction term, Ecorr, includes corrections
for spurious motions caused by symmetry violation in the
mean-field approximation [36].

B. The method of Lagrange multipliers

The constrained and/or cranked Skyrme-HF(B) approach
is equivalent to minimization of the Etot EDF, Eq. (6),
with respect to the densities and currents. Using the method
of Lagrange multipliers, we solve an equality-constrained
problem (ECP) for the objective function Etot:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
ρ̄

Etot[ρ̄]

subject to: 〈N̂q〉 = Nq, (q = p,n),

〈Q̂λμ〉 = Qλμ,

〈Ĵi〉 = Ii, (i = x,y,z),

(8)

where the constraints are defined by average values Np/n = Z

or N for the proton and neutron particle-number operator N̂p/n,
the constrained values Qλμ for the mass-multiple-moment
operators Q̂λμ, and the constrained value Ii for the angular
momentum operator Ĵi along the i axes.

To solve the above ECP, one can use the standard method
of Lagrange multipliers, e.g., the quadratic penalty method
or the augmented Lagrangian method. A comparison of both
methods can be found in Ref. [37].

The augmented Lagrangian functional (or Routhian) asso-
ciated with ECP is defined as

E
′
c[ρ̄,λ,�,ω] = Etot[ρ̄] −

∑
q=p,n

λq〈N̂q〉

+
∑
λμ

Cλμ(〈Q̂λμ〉 − Qλμ)2

+
∑
λμ


λμ(〈Q̂λμ〉 − Qλμ)

−
∑

i=x,y,z

ωi〈Ĵi〉, (9)

where λp, λn, 
λμ, and ωi are the Lagrange multipliers, and
Cλμ > 0 are the penalty parameters. In the ALM, the Lagrange
multipliers 
λμ are iterated according to


k+1
λμ = 
k

λμ + 2Ck
λμ(〈Q̂λμ〉 − Qλμ); (10)

see Ref. [37] and references cited therein.
In an adiabatic approximation, nuclear collective and in-

trinsic degrees of freedom can be decoupled and the collective
motion of nucleus can be described in terms of a few collective
variables describing shape evolution. Using a primal function
of ECP,

Etot(Qλμ; I) = min
〈Q̂λμ〉=Qλμ, 〈Ĵi 〉=Ii

Etot[ρ̄], (11)

one can characterize these shapes by the mean values of
external fields represented by the multipole moments and
angular momentum operators.

C. The Skyrme-HFB calculations

The Hartree-Fock wave function is the Slater determinant
of single-particle orbitals. Thus the orbitals depend on the
single-particle Hamiltonian ĥ, which depends on the densities
and currents. The densities and currents in turn depend on the
orbitals, so we must solve ECP, Eq. (8), self-consistently (by
iteration until convergence).

The above ECP was solved using the augmented La-
grangian method with the symmetry-unrestricted code HFODD

[38], which solves the Skyrme-HFB equations in the Cartesian
deformed harmonic-oscillator (h.o.) basis. In the particle-hole
channel, the Skyrme SkM* force [39] was applied and a
density-dependent mixed pairing [1,40] interaction with the pa-
rameters V 0

n = −268.9 MeV fm3 and V 0
p = −332.5 MeV fm3

in the particle-particle channel was used.
The code HFODD calculates parameters of the h.o. basis

using geometrical consideration [41]. The relative values of
the frequencies of the deformed h.o. in the three Cartesian
directions are defined by the condition ωho

x Rx = ωho
y Ry =

ωho
z Rz, while the overall factor is given by (ωho

x ωho
y ωho

z )1/3 =
ω0, where h̄ω0 = f × 41 MeV/A1/3 is the spherical h.o.
frequency and f = 1.2 is a scaling factor [41]. In the
above condition, Rx = R(π/2,0), Ry = R(π/2,π/2), and
Rz = R(0,0) are the lengths of principal axes of a sharp-edge
reference body surface, defined by deformation parameters
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αλμ in terms of multipole expansion

R(θ,φ) = c(α)

⎡
⎣1 +

λmax∑
λ=0

λ∑
μ=−λ

αλμYλμ(θ,φ)

⎤
⎦, (12)

where c(α) is a function of αλμ such that the volume enclosed
by the surface does not depend on α. In the present study, we
have used the axially deformed h.o. basis with the deformation
parameter α20 chosen to be equal to the mean-field value
calculated in the code for a given value of 〈Q̂20〉, cf. Eq.
(1.35) of Refs. [12,42]. For example, this procedure for the
quadrupole moment constraint Q20 = −200 b gives α20 =
−0.70, which corresponds to h̄ω⊥ = h̄ωho

x = h̄ωho
y = 5.96

and h̄ωho
z = 11.03. We keep this deformed h.o. basis when

we examine toroidal shapes with the large oblate deformation
Q20 < −200 b. The basis was composed of the 1140 lowest
states taken from the N0 = 26 h.o. shells. With this basis size,
our tests show that we can properly describe toroidal shapes
up to Q20 � −600 b deformation.

Our objective is to locate local toroidal figures of equi-
librium, if any, in the multidimensional search space of
{A,Q20,I }. We first use the quadrupole moment Q20 con-
strained Skyrme-HFB approach to search for the nuclear
density distributions with toroidal shapes. Next, using as
starting configurations the toroidal solutions, we apply the
constrained and cranked around the symmetry z-axis Skyrme-
HF approach to map out the energy landscape for axially
symmetric toroidal shapes under Q20 and I = Iz constraints.
If the states with I = Iz as a function of Q20 deformation
reveal a local energy minimum, then the quadrupole constraint
is removed at that minimum and symmetry-unrestricted free
convergence is tested to ensure that the noncollectively rotating
toroid nucleus is indeed a figure of equilibrium. It is worth
noting that in the unconstrained and symmetry-unrestricted
cranked Skyrme-HF calculations we do not impose the axial
and reflection symmetries to the toroidal system to ensure its
stability with respect to these modes.

D. Pairing correlations

As mentioned above, in the present calculations we use the
constrained Skyrme-HFB approach only during the first stage
of our method, when we try to establish the region of Q20

deformation with the toroidal solutions. In the following cal-
culations, we apply the cranked Skyrme-HF model (neglecting
the pairing correlations) trying to locate the THSIs.

A quantal system such as axially symmetric toroid cannot
rotate around a symmetry axis. In the cranking approach, the
Lagrangian multiplier ωz allows one to solve the ECP (8) with a
supplementary condition on an angular momentum 〈Ĵz〉 = Iz,
where the z axis is chosen as the symmetry axis. The total
angular momentum I = Iz, in a case when ωx = ωy = 0, is
built up by selecting nucleonic orbitals that are most favorable
in creating the states with required angular momentum and
with the lowest energy, the so-called optimal configurations
(cf. Refs. [10–15]). This noncollective rotation around the
symmetry axis is permissible quantum mechanically only by
particle-hole excitations with respect to the uncranked state,
leading to aligned single-particle angular momenta along the

symmetry axis

Iz = 〈Ĵz〉 =
A∑

i=1

〈ĵz〉i =
A∑
i

(�z)i

=
∑
i exc

(
�part

z − �hole
z

)
i
, (13)

where �z = 
z ± 1/2 denotes the projection of the single-
particle angular momentum onto the symmetry z axis and
in the second equation the sum runs over the particle-hole
excitations.

The Cooper pairs in a nucleus are composed of the pairs
of nucleons in the time-reversal conjugate orbitals with �z =
±�. The pairing correlation diminishes with each particle-hole
excitation, which successively breaks down the Cooper pairs.
When the seniority of a configuration increases, the blocking
effect [12,15] is effective in reducing the pairing correlations
in the toroidal high-spin states. We neglect the pairing in the
present study of the THSIs. It would certainly be interesting
to examine the effect of weak pairing correlations on toroidal
high-spin isomers, but that will be left for a future study.

III. RESULTS AND DISCUSSIONS

A. Toroidal system of 304120184 without spin

Using the above self-consistent Skyrme-HFB mean-field
theory, we study first the nucleus 304120184 under the constraint
of a fixed Q20 without spin. We obtain the total energy of the
system with a toroidal density as a function of the constrained
Q20, as shown in Fig. 2. It indicates that even though 304120184

without spin may have a toroidal density for Q20 � −158 b,
its total energy curve as a function of Q20 lies on a slope.
This implies that the toroidal system of 304120184 without spin
is unstable against the tendency to return to a sphere-like
geometry; cf. Ref. [25]. For future exploration of possible
superheavy toroidal nuclear system without spin, it will be
necessary to go to systems with a greater charge numbers with
Z � 122 as in Ref. [7] or alternatively to find single-particle
“shells” in proton and neutron numbers in regions of sparse
single-particle level densities at the top of the Fermi surface,
for which the shell effects may provide a sufficiently shell
correction [43] to stabilize a toroidal nuclear system.

To study the shell effects in superheavy toroidal nuclear
system without spin, we examine the single-particle states of
304120184 with a toroidal density as a function of the quadrupole
moment Q20 in self-consistent Skyrme-HFB calculations. The
self-consistent single-particle potential will also assume a
toroidal shape. The proton and neutron single-particle energy
levels (in the canonical basis) for 304120184 are shown in Figs. 3
and 4, respectively. Each single-particle state is labeled by
the Nilsson quantum numbers [N,nz,
]� of the dominant
component and is twofold degenerate, with �z = ±�. Solid
and dashed curves are used to distinguish positive- and
negative-parity levels, respectively. We find from Figs. 3 and
4 that the densities of neutron and proton single-particle
states are far from uniform. There are regions of sparse
single-particle level densities which can be identified as the
shells associated with enhanced stability [43]. For brevity of

054315-5



A. STASZCZAK, CHEUK-YIN WONG, AND A. KOSIOR PHYSICAL REVIEW C 95, 054315 (2017)

-330 -320 -310 -300 -290 -280
-6

-5

-4

-3

-2

Quadrupole moment Q20 (b)

S
in

gl
e-

pr
ot

on
 e

ne
rg

ie
s 

e i
 (

M
eV

)

112

114
116

118

120

130
132

134

[12,1,3]5/2
[13,1,2]5/2

[11,1,8]17/2

[14,0,8]17/2
[13,0,3]7/2
[14,0,12]25/2
[12,1,3]7/2

[10,2,0]1/2
[13,0,1]1/2
[9,2,1]3/2

[11,1,8]15/2

[12,0,8]15/2
[14,0,2]3/2
[14,0,4]9/2
[13,1,4]9/2
[10,2,2]5/2

[11,0,7]15/2

[11,0,11]23/2
[10,1,7]13/2

[11,1,4]7/2
[10,1,3]7/2

[11,0,7]13/2
[8,2,0]1/2

[11,0,1]1/2

[9,2,1]3/2

[12,0,2]3/2
[11,1,8]17/2

[8,2,2]5/2

[11,1,4]9/2
[10,2,4]9/2

[11,0,11]21/2

304120184

FIG. 3. Proton single-particle levels in the canonical basis for
304120184 in the toroidal configuration as a function of the constraining
quadrupole moment Q20, obtained in the Skyrme-HFB calculations.
The levels with positive parity are drawn with solid (black) lines,
while those with negative parity are drawn with gray dashed (blue
color) lines. The circled numbers denote the occupation numbers at
regions of spare single-particle energy level density (“shells”).

notation, we shall call these shells associated with a toridal
nuclear density and potential the toroidal shells.

For the nucleus 304120184 in the toroidal configuration at
Q20 ≈ −300 b, Figs. 3 and 4 show that the proton Fermi
surface for Z = 120 resides in the low single-particle level
density region of a proton shell at Z = 120, but the neutron
Fermi surface for N = 184 resides in a region of high single-
particle level density. The stabilizing effects for the toroidal
proton shell at Z = 120 with a negative proton shell correction
is counterbalanced by the destabilizing effect for N = 184
with a positive neutron shell correction, in the region of
deformation Q20 ≈ −300 b. Furthermore, the bulk Coulomb
interaction in 304120184 nucleus is just below the threshold to
open up a hole for a toroidal system, as it is for a nucleus with
Z � 122 [7]. As a consequence, in the Skyrme-HFB approach,
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FIG. 4. The same as in Fig. 3, but for the neutron single-particle
levels.

which takes into account both the bulk properties and the shell
effects, the combined total energy of 304120184 without spin in
the toroidal configuration does not possess an energy minimum
as a function of Q20.

Even though Figs. 3 and 4 pertain to the self-consistent
single-particle states for 304120184, we expect that as the
mean-field potential varies only slightly as a function of the
atomic number and the neutrons number, and as it depends
more sensitively on the spatial shape of the nuclear density
distribution, the single-particle state diagrams in Figs. 3 and
4 can therefore be approximately applied as single-particle
states for the deformations Q20 in the toroidal configuration in
an extended region around 304120184. One can therefore read
out various toroidal shells for protons and neutrons at various
deformations Q20 in Figs. 3 and 4. One finds proton shells
at Z = 116, 118, 120, 132, and 134, and neutron shells at
N = 180, 182, 186, 194, and 198. In our future work, we will
exploit the property of the extra stability of superheavy nuclei
for which the toroidal proton and neutron shells are located at
the same deformation.

B. Construction of toroidal configurations of 304120184

with high spin

As the toroidal configurations of 304120184 nucleus are
unstable without spin, we like to examine here whether
toroidal 304120184 may be stabilized when it possesses an
angular momentum aligned along the symmetry axis such that
I = Iz. Following Bohr and Mottelson [11], we can construct a
nucleus with an aligned angular momentum Iz by particle-hole
excitations. Specifically, referring to the single-particle states
in Figs. 3 and 4 for toroidal system of 304120184 at Q20 =
−300 b without spin, we can make a hole at a state with angular
momentum component −|�hole

z | and place it at a particle
state with angular momentum �

part
z . The particle-hole pair

will generate an aligned angular momentum Iz of magnitude
�

part
z + |�hole

z |; see Eq. (13). By making many such particle-
hole excitations, a nucleus with a very high spin, I = Iz, can
be constructed, especially when the number of particle-hole
excitations and the magnitudes |�z| of these participating
particle and hole states are large. Because Iz depends on �z and
the number of particle-hole excitations, it assumes quantized
nontrivial values that can only be obtained from a detailed
examination of the structure of the single-particle state energy
diagram of the nucleus of interest.

There are two equivalent ways to construct a high-spin state
with the spin aligned along the symmetry axis: (i) the method
of employing the tilted Fermi surfaces and (ii) the plots of the
single-particle Routhians e′

i = ei − h̄ω · (�z)i as a function
of h̄ω ≡ h̄ωz.

The single-particle energy level diagram at a fixed
quadrupole moment, say Q2 = −300 b, can be expanded out
to include the additional dependence of �z as the horizontal
axis, as shown in Figs. 5 and 6. The Fermi surface for this
case without spin shows up as a horizontal line and all levels
below it are occupied; see an inset in Fig. 5. A high-spin
state can be constructed by tilting the Fermi level in the
expanded single-particle diagram; cf. Ref. [13]. The degree
of tilt can be specified in the Skyrme-HF calculations by
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FIG. 5. The proton single-particle energy levels of 304120184 in the
toroidal configuration at Q20 = −300 b, as a function of 2�z. The
thin gray dashed (red color) lines give the tilted proton Fermi surfaces
which lead to the proton spin value Iz = 26 for h̄ω1 ≈ 0.1 MeV and
Iz = 79 at h̄ω2 ≈ 0.28 MeV. In the case of Iz = 79, the occupied
states are shown as solid circular points, and the unoccupied states as
open circles.

the Lagrange multiplier h̄ω which describes the constraint
Iz = 〈Ĵz〉 = ∑A

i=1(�z)i , with each I = Iz spanning a small
region of h̄ω [12].

We collect in Table I the particle-hole excitation con-
figurations leading to the states of 304120184 with Iz = 81
and 208. They are particle-hole excitations relative to the
Skyrme-HFB states without spin, as labeled by the quantum
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FIG. 6. The neutron single-particle energy levels of 304120184 in
the toridal configuration at Q20 = −300 b, as a function of 2�z. The
thin dashed lines give the tilted neutron Fermi surfaces which lead
to the neutron spin value Iz = 55 for h̄ω1 ≈ 0.1 MeV, and Iz = 129
for h̄ω2 ≈ 0.28 MeV. In the case of Iz = 129, the occupied states
are shown as solid circular points, and the unoccupied states as open
circles.

TABLE I. The particle-hole excitation configurations leading to
the states of 304120184 with Iz = Iz(proton) + Iz(neutron) = 26 +
55 = 81 and Iz = 79 + 129 = 208.

Hole states Particle states

[11,1,−4] −7/2 [11,0,11] 21/2
Iz(proton) = 26 [12,1,−3] −7/2 [11,1,8] 17/2

[11,0,−7] −13/2 [12,0,8] 17/2
[10,1,−7] −13/2 [12,0,12] 25/2

Iz(proton) = 79 [11,0,−11] −23/2 [11,1,8] 15/2
[10,2,−4] −7/2 [13,0,5] 9/2
[11,1,−4] −7/2 [13,0,9] 17/2
[10,1,−9] −17/2 [13,1,6] 13/2

Iz(neutron) = 55 [13,0,−13] −27/2 [10,2,6] 13/2
[12,0,−12] −23/2 [9,2,5] 11/2
[13,0,−9] −19/2 [13,1,10] 21/2
[12,1,−9] −19/2 [14,0,10] 21/2

Iz(neutron) = 129 [10,2,−4] −9/2 [13,0,13] 25/2

numbers [N,nz,
z]�z for the optimal toroidal configurations
of 304120184 at Q20 = −300 b in Figs. 5 and 6.

In addition to the tilted Fermi surface method, there is
another equivalent method using the diagrams of single-
particle Routhians vs h̄ω. Upon using a Lagrange multiplier
h̄ω to describe the constraint of an aligned angular momentum
I = Iz along the symmetry z axis, the constrained single-
particle Hamiltonian becomes ĥ′ = ĥ − h̄ωĵz, where ĵz is
the z component of the single-particle angular momentum
operator along the symmetry axis with eigenvalue �z. The
single-particle Routhian e′

i is the eigenvalues of ĥ′ for the
single-particle state i. A nucleus in the state with a total
aligned angular momentum Iz along the symmetry axis can
be constructed by populating states below the Fermi level in
the single-particle Routhian level diagram. As the Routhian
e′
i(h̄ω) for the state �z is shifted from the corresponding single-

particle energy without spin e′
i |h̄ω=0 by a term proportional

to −h̄ω(�z)i , different Lagrange multipliers h̄ω will result in
different ordering of the single-particle Routhians and different
Iz, for a given occupation number Z or N . In Figs. 7 and 8,
we give the proton and neutron single-particle Routhians as
a function of the constraining Lagrange multiplier h̄ω, for a
toroidal system of 304120184 with Q20 = −300 b, obtained in
self-consistent cranked Skyrme-HF calculations.

We can use single-particle Routhians in Figs. 7 and 8 to
determine Iz as a function of the nucleon occupation number
Np/n and h̄ω. For a given Np/n and h̄ω, the aligned Iz

angular momentum can be obtained by summing �z over
all states below the Fermi surface, cf. Eq. (13). For the
occupation numbers of Z = 120 and N = 184 in Figs. 7
and 8, there are shells, regions of low Routhian energy level
density, for different Iz configurations at different values of h̄ω.
They represent configurations with relative enhanced stability
[5,43]. In the corresponding Skyrme-HF calculation, they
may lead to local energy minima for various allowed angular
momenta.

Figure 7 shows that for the proton occupation number Z =
120, possible shells are located at Iz(proton) = 0, 26, 41,
60, and 79 at different values of h̄ω. Figure 8 shows that for

054315-7



A. STASZCZAK, CHEUK-YIN WONG, AND A. KOSIOR PHYSICAL REVIEW C 95, 054315 (2017)

0.0 0.1 0.2 0.3
-7

-6

-5

-4

-3

-2

[11,0,11] 23/2
[13,0,7] 15/2

[12,1,3] 5/2
[11,1,2] 5/2

[10,1,7] 13/2

[11,0,7] 13/2

[12,1,3] 7/2
[11,1,4] 7/2

[8,2,0] 1/2
[11,0,11] 21/2

[9,2,1] 1/2
[11,1,8] 17/2
[9,2,1] 3/2

[12,0,8] 17/2
[12,0,2] 3/2

[8,2,2] 5/2

[10,2,4] 9/2
[11,1,4] 9/2

[12,0,12] 25/2

[11,1,8] 15/2

[13,0,3] 5/2
304120184 (SkM*)
Q20= -300 b

60

41

26

S
in
gl
e-
pr
ot
on
R
ou
th
ia
ns
e'
i
(M
eV
)

ω (MeV)

0

79

120

FIG. 7. Proton single-particle Routhians of 304120184 in the
toroidal configuration with Q20 = −300 b, as a function of the
cranking frequency h̄ω. The states are labeled by the Nilsson quantum
numbers [N,nz,
]�. Solid (black) and dark gray dashed (red color)
curves are used to distinguish even and odd principal quantum number
states, respectively. The aligned angular momenta Iz for Z = 120
protons are shown at various h̄ω locations.

the neutron occupation number N = 184, possible shells are
Iz(neutron) = 0, 20, 55, 92, 112, and 129 at various values
of h̄ω. For a nucleus to have a local minimum with a total
aligned angular momentum Iz = Iz(proton) + Iz(neutron), the
h̄ω locations of the proton and neutron shells need to be close to
each other. We find that by combining the proton and neutron
spins, the total spin of the system can be Iz = 81 at h̄ω ≈
0.1 MeV and Iz = 208 at h̄ω ≈ 0.28 MeV for Q20 = −300 b.

Referring to the proton single-particle Routhians diagram
at h̄ω ≈ 0.1 MeV in Fig. 7, the proton spin of Iz(proton) = 26
for the 2p-2h excitation arises by emptying the [11,1,−4]−7/2
and [12,1,−3]−7/2 states and occupying [11,0,11]21/2 and
[11,1,8]17/2 states. This result in the alignment of Iz = 7 from
the holes, Iz = 19 from particles, and Iz(proton) = 7 + 19 =
26; cf. Eq. (13). In Fig. 8, the neutron spin of Iz(neutron) =
55 arises by emptying [10,2,−4]−7/2, [11,1,−4]−7/2,
[10,1,−9]−17/2, and [13,0,−13]−27/2 states, and populat-
ing [13,0,5]9/2, [13,0,9]17/2, [13,1,6]13/2, and [10,2,6]13/2
states. This results in Iz(neutron) = 29 + 26 = 55 for which the
neutron holes provide 29 units and the neutron particles 26. The
total spin of the toroidal system of 304120184 at h̄ω ≈ 0.1 MeV
is Iz = Iz(proton) + Iz(neutron) = 26 + 55 = 81.

For the nuclear total spin of Iz = 208 at h̄ω ≈ 0.28 MeV,
one observes from Fig. 7 that the proton spin of
Iz(proton) = 79 from the 5p-5h excitation arises by
emptying the proton states [11,1,−4]−7/2, [12,1,−3]−7/2,
[11,0,−7]−13/2, [10,1,−7]−13/2, and [11,0,−11]−23/2,

0.0 0.1 0.2 0.3
-9

-8

-7

-6

-5

-4

[13,0,13] 25/2

[14,0,6] 11/2

[14,1,1] 3/2
|[3,1,2] 3/2

[12,1,5] 9/2
[9,2,5] 9/2

[14,0,10] 21/2
[13,1,0] 1/2
[14,1,1] 1/2

[13,1,10] 21/2

[9,2,5] 11/2

[13,1,6] 13/2
[10,2,6] 13/2

[13,0,9] 17/2
[13,0,5] 9/2
[10,2,4] 7/2
[11,1,4] 7/2

[10,1,9] 17/2
[13,0,13] 27/2

[9,2,3] 5/2
[10,2,4] 9/2

[12,1,3] 5/2

[12,0,12] 23/2

[13,0,9] 19/2
[12,0,4] 7/2

184

[12
,1,
9]
19
/2

304120184 (SkM*)
Q20= -300 b

S
in
gl
e-
ne
ut
ro
n
R
ou
th
ia
ns
e'
i
(M
eV
)

ω (MeV)

55
92 112 129

20

FIG. 8. The same as in Fig. 7, but for the neutron single-particle
Routhians of 304120184 in the toroidal configuration. The aligned
angular momenta Iz for N = 184 neutrons are shown at various h̄ω

locations.

and occupying proton states [11,0,11]21/2, [11,1,8]17/2,
[12,0,8]17/2, [12,0,12]25/2, and [11,1,8]15/2. This result
in the alignment of IZ = (63/2) from the holes, and
IZ = (95/2) from particles. The proton 5p-5h excitation
gives Iz(proton) = (63/2) + (95/2) = 79. In Fig. 8, the
neutron spin of Iz(neutron) = 129 arises from the 8p-8h
excitation by emptying [10,2,−4]−7/2, [11,1,−4]−7/2,
[10,1,−9]−17/2, [13,0,−13]−27/2, [12,0,−12]−23/2,
[13,0,−9]−19/2, [12,1,−9]−19/2, [10,2,−4]−9/2 states,
and populating [13,0,5]9/2, [13,0,9 ]17/2, [13,1,6]13/2,
[10,2,6]13/2, [9,2,5]11/2, [13,1,10]21/2, [14,0,10]21/2, and
[13,0,13]25/2 states. The neutron 8p-8h excitation gives
Iz(neutron) = 64 + 65 = 129.

The self-consistent single-particle Hamiltonian ĥ′ under
an aligned angular momentum constraint depends on the
Hamiltonian operator ĥ that is a self-consistent function of
the nuclear density and nuclear current. The latter nuclear
current depends on the aligned angular momenta Iz, which
depends in turn on the Lagrange multiplier h̄ω. Therefore,
the single-particle Routhian, e′

i , which is the eigenvalue of
ĥ′, can acquire an additional self-consistency dependence
on h̄ω, in addition to the explicit dependency on −h̄ω�z.
We find that the self-consistent Skyrme-HF single-particle
Routhians e′

Nnz
z�z
(h̄ω) in Figs. 7 and 8 can be approximately

represented by

e′
Nnz
z�z

(h̄ω) ≈ e′
Nnz
z�z

|h̄ω=0 + ah̄ω − h̄ω�z, (14)
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FIG. 9. The deformation energies of 304120184 in the toroidal
configuration as a function of the quadrupole moment Q20 for
Iz = 0, 71, 81, 126, 144, and 208. The locations of the toroidal
high-spin-isomers (THSIs) for Iz = 81 and 208 are indicated by star
symbols. All deformation energies are measured relative to the energy
of the spherical ground state.

where the additional term ah̄ω with a parameter a ≈ 0.5
arises from the effect of self-consistency of the single-particle
Routhian Hamiltonian ĥ′. It affects mostly those states with a
small value of �z and is unimportant for states with large �z.
In the present case for proton occupation number at Z = 120,
an �z = 1/2 state occurs by chance at the top to the Fermi
surface, as in Fig. 7.

C. The toroidal high-spin isomers in 304120184

The tilted Fermi surface method or the Routhian single-
particle method in the last subsection deals only with the
construction of a state with an aligned angular momentum
along the toroidal symmetry axis. The question of the stability
for such a nucleus needs to be examined by studying the
dependence of the total energy as a function of Q20 and Iz. The
investigation can be carried out by extending the Skyrme-HFB
calculations further to include both the quadrupole moment
Q20 constraint and the angular momentum constraint, I = Iz

using a Lagrange multiplier h̄ω as the cranking frequency.
As stated in Sec. II D, we have carried out the cranking
calculations without the pairing interaction, using the cranked
Skyrme-HF approach.

Applying an additional constraint of an angular momentum
I = Iz about the symmetry z axis in the cranked Skyrme-HF
calculations, we search for the energy minima of 304120184 in
the toroidal configuration as a function of the deformation
Q20 and aligned angular momentum Iz. If a local energy
minimum with I = Iz is found, we perform at this point
the cranked symmetry-unrestricted and deformation uncon-
strained Skyrme-HF calculations to locate a stable THSI state
in free convergence.

The results of such calculations for 304120184 are presented
in Fig. 9, where we plot the deformation energy (relative to the
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FIG. 10. Neuron, proton, and total density profiles of the THSIs
304120184(I = 81 and 208) as a function of x for a cut in y = 0 and
z = 0.

spherical ground state energy) of the high-spin toroidal states
as a function of the constrained Q20, for different quantized
Iz. For each point (Q20,Iz) on an Iz curve, it was necessary to
adjust h̄ω to ensure that the total aligned angular momentum
of all nucleons in the occupied states gives the quantized Iz

value of interest.
From the energy surface of 304120184 (Iz = 81) in the

toroidal configuration in Fig. 9, we find that when we vary
the constrained Q20 with h̄ω ≈ 0.1 MeV, the deformation
energy of the nucleus in the toroidal configuration as a
function of Q20 has a minimum. Similarly, from the energy
surface of 304120184 (Iz = 208), we find that when we vary the
constrained Q20 with h̄ω ≈ 0.28 MeV, the deformation energy
of the nucleus as a function of Q20 has a minimum. Thus, we
have theoretically located two THSI states of 304120184 with
an angular momentum I = Iz = 81 (proton 2p-2h, neutron
4p-4h excitation) and I = Iz = 208 (proton 5p-5h, neutron
8p-8h) at Q20 = −297.7 b and Q20 = −300.8 b with energies
79.2 and 101.6 MeV above the spherical ground-state energy,
respectively. In Fig. 9, deformation energies for I = Iz = 126
at Q20 ∼ −275 b and I = Iz = 144 at Q20 ∼ −280 b are also
exhibited. As there are no energy minima for these Iz states,
there are no toroidal high-spin isomers with these aligned
angular momenta.

After the THSIs 204120184 with I = Iz = (81 and 208) have
been located, we can examine their properties. Their density
profiles as a cut in the plane of positive x is shown in Fig. 10
and as density contours in Fig. 11. The corresponding density
profile for the superheavy nucleus in the spherical ground state
is also exhibited in Fig. 10. It is interesting to note that the
density profiles of the two THSIs with Iz = 81 and Iz = 208
are nearly the same, as shown indistinguishably in Fig. 10.

One observes in Fig. 10 that the maximum magnitude of
the total densities in the 204120184 THSIs with I = 81 and 208
are about the same as those of the nucleus with a spherical
shape. This is in contrast to the case of THSI nuclei in the light
mass region where the maximum density of the THSI nuclei
are only about half of the equilibrium nuclear matter density
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FIG. 11. Contours of the total nuclear densities of 304120184

(Iz = 81) in cuts x − y (a) and x − z (b).

of the nuclei in the ground state [18]. This arises because
the occurrence of THSI nuclei in the light-mass region is
dominated by the nuclear shell effect and the occupation of the
lowest displaced harmonic oscillator states with nρ = nz = 0.
For the superheavy nuclei region, the Coulomb repulsion
dominates and there are many states involved. Hence, the
nuclear density is not greatly affected by the change from
a spherical shape to a toroidal shape.

The density contours in Figs. 10 and 11 indicate a
well-developed hole in the density of the nucleus. One can
characterize the THSI 304120184 (Iz = 81) by the average
geometry parameters of

ρmax = 0.161/fm3, R = 9.76 fm, d = 3.00 fm, (15)

which yields R/d = 3.25. They have the maximum density
close to the nuclear matter density, 0.16 fm−3. The density
profile for the THSI at Iz = 208 is very similar and will not be
exhibited.

IV. SUMMARY

Because of the strong Coulomb repulsion, there is a
tendency for the shape of a nucleus with excess charge
to bifurcate from a spheroidal into a toroidal shape in the
superheavy region. We examine the case of 304120184. Without
spin, the Coulomb repulsion and shell effects are not sufficient
to allow an equilibrium toroidal shape for 304120184. Toroidal
minima without spin are possible for superheavy nuclei with
greater atomic numbers, as reported earlier [7].

The spin of a nucleus with an angular momentum about the
toroidal symmetry axis has a stabilizing tendency. We have
theoretically located two toroidal high-spin isomeric states of
304120184 with an angular momentum I = Iz = 81 (proton 2p-
2h, neutron 4p-4h excitation) and I = Iz = 208 (proton 5p-5h,
neutron 8p-8h) at Q20 = −297.7 b and Q20 = −300.8 b with
energies 79.2 and 101.6 MeV above the spherical ground-
state energy, respectively. The nuclear density distribution of
the THSIs 304120184 (Iz = 81 and 208) have the maximum
density close to the nuclear matter density, 0.16 fm−3, and a
toroidal major to minor radius aspect ratio R/d = 3.25 with
R = 9.76 fm.

Our search to locate the THSIs in 304120184 was focused on
the region −320 b < Q20 < −265 b of deformation and it is
hard to predict whether two found toroidal isomers are yrast
states. Figure 9 shows that the 304120184 (Iz = 81) THSI may
appear to lie on the yrast line as there is no energy minimum
with a lower spin lying below this state. Whether the higher
304120184(Iz = 208) THSI state is an yrast state is not known
as it depends on the energies of the band of collective states
built on the toroidal intrinsic high-spin state of 304120184 (Iz =
81), by rotating about an axis perpendicular to the toroidal
symmetry axis. A further investigation is required to study
this question.

The results of the single-particle state diagrams and
Routhian diagrams obtained in the present calculations as a
function of deformation Q20 and the Lagrange multiplier h̄ω
indicate that there are shells in the toroidal shape and the
spin degrees of freedom. Extra stability can be maintained
at appropriate occupation numbers, deformations, and spin.
Hence, there may be many toroidal superheavy nuclei as a
function of (Z,N,Q20, and Iz) that need to be uncovered. The
region of toroidal superheavy nuclei may provide an interesting
area for further explorations. Future investigations on ways to
produce and to detect these states with toroidal densities will
be of great interest.
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A 268, 205 (1976).

[11] A. Bohr and B. R. Mottelson, Nucl. Phys. A 354, 303c (1981).
[12] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer-Verlag, Berlin, New York, 1980).
[13] M. J. A. de Voigt, J. Dudek, and Z. Szymański, Rev. Mod. Phys.
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