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Influence of complex configurations on the properties of the pygmy dipole
resonance in neutron-rich Ca isotopes
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Starting from the quasiparticle random phase approximation based on the Skyrme interaction SLy5, we study
the effects of phonon-phonon coupling (PPC) on the low-energy electric dipole response in 40−58Ca. Using the
same set of parameters we describe available experimental data for 40,44,48Ca and give the prediction for 50−58Ca.
The inclusion of the PPC results in the formation of low-energy 1− states. There is an impact of the PPC effect
on low-energy E1 strength of 40,44,48Ca. The PPC effect on the electric dipole polarizability is discussed. We
predict a strong increase of the summed E1 strength below 10 MeV, with increasing neutron number from 48Ca
until 58Ca.
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I. INTRODUCTION

Collective dipole excitations are a common phenomenon
of finite fermion systems. In atomic nuclei they can arise,
for instance, from out-of-phase oscillations of the proton and
neutron “fluids” giving the well-known giant dipole resonance
(GDR) [1]. Systematic investigations established it to be a
global feature of nuclei from the very light to the heaviest
nuclei [2,3]. In recent years, the interest is more focused
on the low-lying dipole strength, which is located below
the GDR energies. The concentration of the E1 strength
around the particle separation energy is commonly called
the pygmy dipole resonance (PDR) because of its weak
strength in comparison with the GDR, which dominates the
E1 strength distribution in nuclei [4]. In analogy to the
GDR, the PDR was interpreted as a collective oscillation
of the neutron skin with respect to a N≈Z inert core (see
Ref. [5] and references therein). The total sum of the measured
energy-weighted sum rule of such E1 distributions is less than
1%–2% of the Thomas-Reiche-Kuhn (TRK) sum rule value for
stable nuclei and less than 5%–6% for unstable neutron-rich
nuclei [4]. Recent theoretical calculations indicate that such
a low-energy peak is a common property of neutron-rich
nuclei lying in different mass regions [6,7]. The occurrence
of non-negligible low-lying E1 strength can influence the
radiative neutron capture cross section by orders of magnitude
and, consequently, also the rate of the astrophysical r-process
nucleosynthesis [8]. The PDR study is expected to provide
information on the symmetry energy term of the nuclear
equation of state [9,10].

The strong proton shell closure at Z = 20 and the already
good experimental knowledge of the chain of calcium isotopes
makes [11–14] calcium an attractive clement for a PDR
study. Indeed, indications of a trend for increasing low-energy
dipole strength with increasing mass can be observed in the
dipole excitation functions (above neutron separation energy)
in the stable Ca isotopes [11,12]. The results were generally
consistent with the theoretical prediction regarding the shifting
of dipole strength to lower energies; see, e.g., Refs. [6,15–17].
Moreover, recent experimental studies indicate N = 32 as a

new magic number in Ca isotopes because of the high energy
of the first 2+ state in 52Ca [18] and the trend obtained for the
two-neutron separation energies [19]. The first experimental
spectroscopic study of low-lying states in 54Ca was performed
at RIKEN [20]: The 2+

1 energy in 54Ca was found to be only
∼500 keV below that in 52Ca, suggesting a N = 34 new shell
closure. Finally, we note that new progress in the production
of neutron-rich Ca isotopes can be expected at the NSCL
at Michigan State University [21]. Future measurements of
excited states and masses for the neighboring Ca isotopes
will further enhance our understanding of nuclear states in
very neutron-rich systems. Thus, the spectroscopy of neutron-
rich calcium isotopes provides a valuable information, with
important tests of theoretical calculations.

A powerful microscopic approach is the quasiparticle-
phonon model (QPM) [22]. Its ability for describing the
low-energy nuclear spectroscopy was recently reviewed in
Ref. [23]. The model Hamiltonian is diagonalized in a
space spanned by states composed of one, two, and three
phonons which are generated in quasiparticle random phase
approximation (QRPA) [24,25]. The separable form of the
residual interaction is the practical advantage of the QPM
which allows one to perform the structure calculations in
large configurational spaces. The mean field is modelized by
a Woods-Saxon potential well. These are the basic ingredients
of the QPM. The single-particle energies and ground-state
properties in general are critical quantities for extrapolations
of QRPA and QPM calculations into unknown mass regions.
A special emphasis on a reliable description of the mean-
field part, reproducing as closely as possible the ground-
state properties of nuclei along an isotopic chain was done
in [26,27]. This is achieved by solving the ground-state
problem in a semimicroscopic approach based on a Skyrme
energy density functional (EDF) [26,27]. The EDF + QPM
calculations have been applied for calculating the low-energy
dipole strength [26,27], as well as used for astrophysical
applications [28]. The results indicate that the radiative capture
cross sections are underestimated by a factor of about two
by the QRPA for the N = 50 nuclei. This sensitivity is the
cause of the importance of the multiphonon coupling and of
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the relevance of the EDF + QPM approach for astrophysical
applications.

The QRPA with a self-consistent mean-field derived from
Skyrme EDF is one of the most successful methods for
studying the low-energy dipole strength; see, e.g., [16,29–32].
Such an approach describes the properties of the low-lying
states less accurately than more phenomenological ones, but
the results are in reasonable agreement with experimental data.
On the other hand, because of the anharmonicity of vibrations
there is a coupling between one-phonon and more complex
states [22,23]. The main difficulty is that the complexity of
calculations beyond standard QRPA increases rapidly with the
size of the configuration space, so that one has to work within
limited spaces. Using a finite-rank separable approximation
(FRSA) [33–36] for the residual interaction one can overcome
this difficulty. Alternative schemes to factorize the residual
Skyrme interaction have also been considered in Refs. [37–39].
The FRSA was thus used to study the electric low-energy
excitations and giant resonances within and beyond the
QRPA [35,36,40,41]. In this paper our approach applied
for PDR features of neutron-rich nuclei. We will give an
illustration of our approach for 48Ca with closed neutron shell
in comparison to the N = 30 isotope 50Ca. Preliminary results
of our studies for neutron-rich Sn isotopes are reported in
Refs. [31,42,43].

The paper is organized as follows. A brief summary of
the formalism including the effects of the phonon-phonon
coupling is given in Sec. II. Some details about the numerical
calculations are presented in Sec. III, while in Sec. IV, results
are analyzed and compared with available experimental data.
Finally, our conclusions are laid in the last section.

II. THE FRSA MODEL

The starting point of the method is the Hartree-Fock (HF)-
BCS calculation [44] of the ground state based on Skyrme
interactions. Spherical symmetry is imposed on the quasipar-
ticle wave functions. The continuous part of the single-particle
spectrum is discretized by diagonalizing the Skyrme HF
Hamiltonian on a harmonic oscillator basis. In the particle-hole
(p-h) channel we use the Skyrme interaction with the tensor
components and their inclusion leads to the modification of
the spin-orbit potential [45,46]. The pairing correlations are
generated by a density-dependent zero-range force:

Vpair(r1,r2) = V0

[
1 − η

(
ρ(r1)

ρ0

)
γ

]
δ(r1 − r2), (1)

where ρ(r1) is the particle density in coordinate space, ρ0 being
the nuclear matter saturation density; γ , η, and V0 are adjusted
parameters. The parameters are determined by adjusting the
empirical odd-even mass differences of the nuclei in the region
under study.

To build the QRPA equations on the basis of HF-BCS
quasiparticle states, the residual interaction is consistently
derived from the Skyrme force in the p-h channel and from
the zero-range pairing force in the particle-particle (p-p)
channel [47]. The FRSA for the residual interaction enables
us to find QRPA eigenvalues as the roots of a relatively
simple secular equation [33,36]. The cutoff of the discretized

continuous part of the single-particle spectra is at the energy
of 100 MeV. This is sufficient to exhaust practically all the
sum rules and, in particular, the TRK sum rule with the
enhancement factor κ for the EDF. The FRSA is discussed
in more detail in Refs. [36,41,48].

To take into account the effects of the phonon-phonon
coupling (PPC) we follow the basic QPM ideas [22,23]. We
construct the wave functions from a linear combination of
one-phonon and two-phonon configurations,

�ν(λμ) =
(∑

i

Ri(λν)Q+
λμi

+
∑

λ1i1λ2i2

P
λ1i1
λ2i2

(λν)
[
Q+

λ1μ1i1
Q+

λ2μ2i2

]
λμ

)
|0〉, (2)

where λ denotes the total angular momentum and μ its z
projection in the laboratory system. The ground state is the
QRPA phonon vacuum |0〉. The unknown amplitudes Ri(λν)
and P

λ1i1
λ2i2

(λν) are determined from the variational principle,
which leads to a set of linear equations [35,41]:

(ωλi − Eν)Ri(λν) +
∑

λ1i1λ2i2

U
λ1i1
λ2i2

(λi)P λ1i1
λ2i2

(λν) = 0,

(3)

2(ωλ1i1 + ωλ2i2 − Eν)P λ1i1
λ2i2

(λν) +
∑

i

U
λ1i1
λ2i2

(λi)Ri(λν) = 0.

(4)

The rank of the set of linear equations (3) and (4) is equal to
the number of one- and two-phonon configurations included in
the wave function (2). Its solution requires one to compute the
Hamiltonian matrix elements coupling one- and two-phonon
configurations:

U
λ1i1
λ2i2

(λi) = 〈0|QλiH
[
Q+

λ1i1
Q+

λ2i2

]
λ
|0〉. (5)

Equations (3) and (4) have the same form as the QPM
equations [22,23], where the single-particle spectrum and the
residual interaction are derived from the same Skyrme EDF.

III. DETAILS OF CALCULATIONS

We apply the above approach to study the influence of
the PPC on the strength E1 distributions of the neutron-rich
Ca isotopes. We use the Skyrme interactions SLy5 [49]
and SLy5+T [50] in the p-h channel. The parameters of
the force SLy5 have been adjusted to reproduce nuclear
matter properties, as well as nuclear charge radii, binding
energies of doubly magic nuclei. The force SLy5+T involves
the tensor terms added without refitting of the parameters
of the central interaction (the tensor interaction parame-
ters are αT = −170MeVfm5 and βT = 100MeVfm5). These
parametrizations describe correctly the binding energies of
even-even Ca isotopes. This is illustrated in Fig. 1(a), where the
calculated binding energies for 40−60Ca and the experimental
and extrapolated data [51] are shown. The agreement between
the SLy5 results and data is reasonable, the deviations being
less than 1%. On the other hand, comparing SLy5 and SLy5+T
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FIG. 1. (a) Binding energies of the even-even Ca isotopes as
a function of neutron number, compared with experiment and
extrapolated energies (filled circles) from the AME2012 atomic mass
evaluation [51]. Results of the calculations within the HF-BCS with
the SLy5 EDF (open triangles) and with SLy5+T (filled triangles).
(b) The neutron skin thickness 
Rnp of the Ca isotopes calculated
within the HF-BCS approach with the SLy5 EDF (open triangles)
and with SLy5+T (filled triangles). Experimental data of the neutron
skin thickness are taken from Ref. [52] (filled circles).

results shows that the maximum relative difference between
the binding energies is about 2% for the case of 52Ca. In the
case of the SLy5+T EDF, these deviations are connected with
the central Skyrme parameters which have not been refitted
after including the tensor terms [50].

In Fig. 1(b), we show the neutron skin thickness of Ca
isotopes as a function of the neutron number. The neutron skin
thickness 
Rnp is defined as


Rnp=
√

〈r2〉n −
√

〈r2〉p. (6)

As can be seen from Fig. 1(b), the proton-neutron rms
differences become larger when the neutron number increases.
The same evolution is obtained with other Skyrme EDF’s [6].
In the case of 48Ca, the experimental neutron skin thickness
(0.14–0.20 fm) was determined from the E1 strength distribu-
tion which is extracted from proton inelastic scattering [52].
HF-BCS analysis gives the neutron skin 
Rnp of 48Ca to
be 0.16 and 0.14 fm with the SLy5 and SLy5+T EDF’s,
respectively. The theoretical “model-averaged” estimate for

Rnp is 0.176±0.018 fm [53]. In addition, the ab initio
calculations for the neutron skin in 48Ca is 0.12�
Rnp

� 0.15 fm [54].
For the interaction in the p-p channel, we use a zero-range

volume force, i.e., η = 0 in Eq. (1). The strength V0 is taken

FIG. 2. (a) One- and (b) two-neutron separation energies for Ca
isotopes as a function of neutron number, calculated with the SLy5
EDF (open triangles) and with SLy5+T (filled triangles). The ex-
perimental and extrapolated energies (filled circles) are from the
AME2012 atomic mass evaluation [51].

equal to −270MeVfm3. This value of the pairing strength is
fitted to reproduce the experimental neutron pairing energies
of 50,52,54Ca obtained from binding energies of neighboring
isotopes. This choice of the pairing interaction was also used
for a satisfactory description of the experimental data of
70,72,74,76Ni [48], 90,92Zr, and 92,94Mo [41]. Thus, hereafter
we use the Skyrme interaction SLy5 with and without tensor
components in the particle-hole channel together with the
volume zero-range force acting in the particle-particle channel.

Valuable information about nuclear properties can be
obtained from studies of the one-neutron (S1n) and two-
neutron (S2n) separation energies. In addition, the separation
energies are very important for the nuclear shell structure.
Therefore, it is interesting to further investigate the evolution
of one- and two-neutron separation energies with both Skyrme
interactions. The neutron separation energies are defined as

Sxn = B(Z,N ) − B(Z,N − X). (7)

The calculated S1n and S2n values in the even Ca isotopes are
compared with the experimental data [51] (or values deduced
from systematic trends) in Fig. 2. Despite the overestimation
of the Ca binding energies, the effective interactions SLy5 and
SLy5+T give a reasonable reproduction of the experimental
trends in stable nuclei. It should be noted that the binding
energies of the odd Ca isotopes are calculated with the blocking
effect for unpaired nucleons [55,56]. For 39Ca, the neutron
quasiparticle blocking is based on filling the ν1d 3

2 subshell
while the ν1f 7

2 subshell should be blocked for 41,43,45,47Ca.
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TABLE I. Energies and B(Eλ) values for up-transitions to the λπ
1

states in 46,48,50Ca. Experimental data are taken from Refs. [60–63].

λπ
1 Energy B(Eλ; 0+

gs → λπ
1 )

(MeV) (e2bλ)
Expt. Theory Expt. Theory

46Ca 2+
1 1.346 2.05 0.0127±0.0023 0.0070

3−
1 3.614 4.57 0.006±0.003 0.0049

4+
1 2.575 2.30 0.00035

5−
1 4.184 4.67 0.00027

48Ca 2+
1 3.832 3.19 0.00968±0.00105 0.0065

3−
1 4.507 4.47 0.0083±0.0020 0.0038

4+
1 4.503 3.51 0.00035

5−
1 5.729 4.52 0.00026

50Ca 2+
1 1.027 1.50 0.00375±0.00010 0.0018

3−
1 3.997 4.36 0.0045

4+
1 4.515 3.75 0.00051

5−
1 5.110 4.45 0.00029

The neutron ν2p 3
2 , ν2p 1

2 , and ν1f 5
2 subshells are chosen to

be blocked in the cases of the 49,51Ca, 53Ca, and 55,57,59Ca
isotopes, respectively. The existing experimental data show
a different A behavior, namely, the factor 5 reduction of S1n

values and the seven-time reduction of S2n values from 40Ca to
58Ca. In general, both the SLy5 and SLy5+T interactions give
an excellent description of S1n and S2n for 50,52Ca isotopes.
Most notably, the major shell closure at the magic neutron
number N = 20 is too pronounced. Also, sharp decreases in
separation energies are seen at the magic neutron number N =
28. Significant differences are developed starting from 52Ca.
In the case of the SLy5 interaction our calculations predicted
a monotonic decrease of S2n when going from 52Ca to 60Ca.
On the other hand, the presence of tensor components brings a
drop in the theoretical S2n in 52,54Ca [57]. This corresponds to
the hypothetical shell closures at N = 32,34. This suggests
that these nuclei are magic for the used interaction [see
in Fig. 2(b)], thus matching predictions from shell model
calculations including three-body forces [58,59]. This view
is supported by precision mass measurements [19,20]. Thus,
this jump is a shell effect, and the results indicate that the
various forces lead to different detailed shell structures.

To construct the wave functions (2) of the 1− states, in
the present study we take into account all two-phonon terms
that are constructed from the phonons with multipolarities
λ�5 [31,42,43]. As an example the energies and reduced
transition probabilities of the first 2+, 3−, 4+, and 5− phonons
for 46,48,50Ca are presented in Table I. The QRPA results ob-
tained with the SLy5 EDF are compared with the experimental
data [60–63]. As one can see, the overall agreement of the
energies and B(Eλ) values with the data looks reasonable. All
dipole excitations with energies below 35 MeV and 15 most
collective phonons of the other multipolarities are included in
the wave function (2). We have checked that extending the
configuration space plays a minor role in our calculations.

It is interesting to examine the energies and transition
probabilities of the first collective phonons which leads to the

FIG. 3. Energies (a) and B(E2) (b) values for up-transitions to the
2+

1 states in the neutron-rich Ca isotopes. Results of the calculations
within the QRPA (open triangles) with the SLy5 EDF and the
QRPA plus PPC (filled triangles) are shown. Experimental data (filled
circles) are taken from Refs. [18,20,63].

minimal two-phonon energy and the maximal matrix elements
for coupling of the one- and two-phonon configurations (5).
The calculated 2+

1 energies and transition probabilities in the
neutron-rich Ca isotopes are compared with existing experi-
mental data [18,20,63] in Fig. 3. The first 2+ states of the even-
even 46−58Ca isotopes exhibit pure neutron two-quasiparticle
(2QP) excitations (>72%). It is worth mentioning that a similar
observation was found in Ref. [16], where the SkM∗ interaction
was used. There is a marked increase of the 2+

1 energy of 48Ca
in comparison with those in 46Ca and 50Ca. It corresponds to
a standard evolution of the 2+

1 energy near closed shells. It
should be noted that including the tensor components changes
the contributions of the main configurations only slightly,
but the general structure of the 2+

1 state remains the same.
In the following, we analyze the PPC effects in the case of
the first 2+ excitations. In these calculations all two-phonon
configurations below 20 MeV are used. In 46−58Ca isotopes, the
crucial contribution in the wave function structure of the first
2+ state comes from the [2+

1 ]QRPA (> 89%) configuration, i.e.,
R2

i=1(λ=2ν=1)>0.89. Using the set of linear equations (3)
and (4), one can get E1�ω21. Because the transition matrix
elements for direct excitation of two-phonon components from
the ground state are about two orders of magnitude smaller
as compared to the excitation of one-phonon components, it
follows that B(E2)PPC�B(E2)QRPA in the case of the first 2+
state. The decrease of the 2+

1 energies and the B(E2) values is
shown in Fig. 3. It is worth mentioning that the first discussion
of the PPC effect for the 2+

1 properties based on QRPA
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FIG. 4. Low-energy E1 strength distributions of 40Ca (respec-
tively, 48Ca) are shown in (a) and (b) [respectively, (c) and (d). The
dashed and solid lines correspond to the SLy5 calculations within the
RPA and taking into account the PPC effects, respectively. (b) and
(d) Experimental data are from Ref. [14].

calculations with Skyrme forces was done in Ref. [35]. Figure 3
demonstrates that the calculated energies and B(E2) values of
the first 2+ excited states deviate from the experimental data.
In the case of 46Ca, the B(E2) value is about 1.5 times less than
the data. This probably points to a particular problem from
the EDF used here rather than to a deficiency of our model
space.

IV. RESULTS AND DISCUSSION

As a first step in the present analysis, we examine the
PPC effects on the E1 strength distributions for doubly magic
40,48Ca isotopes. A comparison of such calculations with recent
experimental data [14] demonstrates that the RPA approach
cannot reproduce correctly the low-energy E1 strength distri-
butions; see Fig. 4. Let us discuss the properties of the lowest
dipole state. For 48Ca this state is mainly characterized by the
two-phonon component [2+

1 ⊗ 3−
1 ] arising from the coupling

between the first quadrupole and octupole phonons. We find a
nice agreement with the data, where the candidate for the two-
phonon 1− state is expected at an energy of 7.298 MeV with
B(E1; 0+

gs → 1−
1 ) = 18.6±1.8×10−3e2fm2 [11]. For 40Ca the

PPC calculation predicts the first 1− state significantly higher
than the experimental two-phonon candidate [64] (see Fig. 4).
It is worth pointing out that our results for 40,48Ca are in
good agreement with the RQTBA calculations taking into
account the effects of coupling between quasiparticles and
phonons [17]. In addition, we discuss the GDR energy
region. For 48Ca, the photoabsorption process is well studied
experimentally. The photoabsorption cross section up to
27 MeV is displayed in Fig. 5(a). The cross section is
computed by using a Lorentzian smearing with an averaging
parameter 
 = 1.0 MeV. The PPC effects yield a noticeable
redistribution of the GDR strength in comparison with the
RPA results. It is worth mentioning that the coupling increases
the GDR width from 6.9 to 7.3 MeV in the energy region
10–26 MeV. Also, the PPC induces a 300-keV downward shift
of the GDR energy (19.3 MeV for the RPA). The experimental
GDR width and energy are 6.98 MeV and 19.5 MeV [65],

FIG. 5. (a) The estimated photoabsorption cross section for 48Ca
(filled circles) is taken from Ref. [65]. The dotted and solid lines
correspond to the calculations within the RPA with the SLy5 EDF
and taking into account the PPC, respectively. (b) Running sum of
the electric dipole polarizability for 48Ca calculated within the RPA
with the SLy5 EDF (dotted line) and the RPA plus PPC (solid line)
in comparison to experimental determination of αD (the two dashed
lines indicate upper and lower limits) [52].

respectively. The calculated characteristics of the GDR are in
agreement with the observed values. The general shapes of
the GDR obtained in the PPC are somewhat close to those
observed in experiment. This demonstrates the improvement
of the PPC description in comparison with RPA. We conclude
that the main mechanisms of the GDR formation in 48Ca can
be taken into account correctly and consistently in the PPC
approach.

As proposed in Ref. [66], we can estimate the M1
contribution to the photoabsorption process calculated in
the case of the SLy5 EDF. For 48Ca, we find that the M1
contribution plays a minor role (<1%) for the integrated cross
section. It was shown in the experimental papers [12,13] that
the contribution of 1+ components to the total dipole strength
below 10 MeV is negligible. For 44Ca, the contribution of
M1 in the region of 3–10 MeV to the total dipole strength
is less than 3% [13]. In the GDR energy region, the M1
contribution was zero within error bars and was replaced by a
phenomenological background in the case of 208Pb [67]. Thus,
the magnetic counterparts have been omitted in our analysis.

To perform further investigations on the 48Ca nucleus we
have extracted the electric dipole polarizability [1,68,69],
which represents a handle to constrain the equation of state
of neutron matter and the physics of neutron stars [9,10]. The
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electric dipole polarizability αD is written as

αD = 8π

9

∑
μαμ

∑
iα

E−1
1−

iα

[〈
1−

iαμα

∣∣M̂1μ|0+
gs

〉]2
, (8)

where

M̂1μ = −Z

A
e

N∑
k=1

rkY1μ(r̂k) + N

A
e

Z∑
k=1

rkY1μ(r̂k). (9)

Here, N , Z, and A are the neutron, proton, and mass numbers,
respectively; rk indicates the radial coordinate for neutrons
(protons); and Y1μ(r̂k) is the corresponding spherical harmonic.
The definition of the dipole operator eliminates contaminations
of the physical response from the spurious excitation of the
center of mass. In Ref. [70] it was shown that eliminating the
spurious state by means of effective charges or the alternative
ways lead to very similar results.

Running sums of αD values for 48Ca in the energy region
below 27 MeV are given in Fig. 5(b). It is shown that the
PPC does not affect the description of the electric dipole
polarizability. The results differ insignificantly. Moreover, we
have checked that inclusion of the tensor components does not
change the value of αD obtained by integrating the E1 strength
up to 60 MeV: αD = 2.28 fm3 in the case of the SLy5 EDF
and αD = 2.20 fm3 in the SLy5+T. Both effective interactions
reproduce the experimental data αD = 2.07±0.22 fm3 [52]
and they are in good agreement with the “model-averaged”
value of 2.306±0.089 fm3, which is predicted in Ref. [53].
Although the GDR strength dominates, contributions to αD

value at lower and higher excitation energies must be taken
into account.

To complete the discussion we consider αD as a function of
the neutron number for Ca isotopes; see Fig. 6. The result of the
SLy5 calculation with the PPC predicts a monotonic increase
of the αD value with neutron number, and only a small kink in
the calculated excitation energies is found at the N = 28 shell
closure. The calculated polarizabilities αD of 40Ca and 48Ca
are in excellent agreement with the experimental data [52].
As shown in Fig. 6(a), the SLy5 and SLy5+T EDF’s produce
qualitatively the same results. We find that the correlation
between the value of αD and neutron skin 
Rnp is discerned;
see Fig. 6(b). With the increase of the neutron skin one observes
a smooth increase of αD . Thus, the αD value and the neutron
skin 
Rnp are correlated as predicted in Ref. [69]. In addition
to this, the αD value can be measured in finite nuclei and, as a
result, the 
Rnp value can be extracted.

For 48−58Ca, we recognize the PDR energy below 10 MeV.
The difference of the structure of the 1− states below and
above 10 MeV is illustrated with the QRPA transition densities
in the cases of 50Ca and 56Ca; see Fig. 7. For the 1− states
below 10 MeV, the proton and neutron densities in the nuclear
interior region are in phase. However one can see the neutron
dominance when r > 6 fm. For the 1− states about 10 MeV,
the corresponding transition proton and neutron densities are
very similar to each other (see Fig. 7). These states can be
identified as an isoscalar mode in the low-energy E1 strength.
This is not the PDR where the neutron skin oscillates against
the inner core. The next fairly collective 1− state at 12.2 MeV in
50Ca and 12.1 MeV in 56Ca has neither the isoscalar character

FIG. 6. (a) The electric dipole polarizability αD as a function of
neutron number, calculated with the SLy5 EDF (open triangles) and
with SLy5+T (filled triangles). Experimental values (filled circles) of
αD are taken from [52]. (b) The same as (a) but as a function of the
neutron skin thickness 
Rnp .

nor the isovector character. Increasing further the excitation
energy we observe the low-energy GDR tail. Note that the
PDR energy region for the neutron-rich Ca isotopes was found
in the framework of other theoretical approaches [6,17,71].

Let us now discuss the low-energy E1 strength. The
collectivity of the PDR can be studied by plotting the evolution

FIG. 7. Transition proton (dotted line) and neutron (dashed line)
densities to selected QRPA 1− states of 50Ca (respectively, 56Ca) in (a)
and (b) [respectively, (c) and (d)] panels. Panels (a) and (b) correspond
to the transition densities for the states at 9.1 and 10.3 MeV in 50Ca,
while (c) and (d) show the transition densities for the QRPA 1− states
at 8.7 and 10.7 MeV in 56Ca, respectively. All transition densities are
multiplied by r2.
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FIG. 8. (a) Summed dipole strength below 10 MeV calculated in
the QRPA (open triangles) with the SLy5 EDF, PPC (filled triangles),
and with RQTBA (filled stars) [17]. Experimental data (filled circles)
are taken from Refs. [12]. (b) Ratio of the PDR energy-weighted
strength to the TRK sum rule for various Ca isotopes as a function of
the neutron skin thickness 
Rnp . The open triangles indicate discrete
QRPA results, while the filled triangles are PPC results.

of its summed strength
∑

B(E1) with respect to the mass
number. The calculated PDR is integrated up to 10 MeV.
As shown in Fig. 8(a), the behavior of the PDR summed
strength can be divided into two categories: light and heavy
Ca isotopes. In particular, we find that there is a sharp increase
after the doubly magic isotope 48Ca in the QRPA with the
SLy5 EDF. In light Ca isotopes a completely different behavior
is observed in Ref. [12]: the measured summed strength in
44Ca is 18 times larger than in 40Ca and 1.3 times in the
case of 48Ca. From Fig. 8(a), one can see that the QRPA
calculations fail to reproduce the experimental data. This result
is in agreement with the nonrelativistic [16] and relativistic
QRPA [71] calculations. Thus, the correlation between the
PDR integrated strength and the neutron excess of Ca isotopes
is nontrivial and it is necessary to go beyond QRPA to explain
the properties of the PDR.

Let us now discuss the strong increase of the summed E1
strength below 10 MeV [

∑
B(E1)], with increasing neutron

number from 48Ca until 58Ca. In Fig. 9(a) the calculated
running sum for 48Ca is plotted as a function of the excitation
energy. In the same plot the calculated S1n values are shown.
In the case of the RPA, there is no 1− state below 10 MeV;
see Fig. 4. The RPA calculations predict the first dipole
state around 10.5 MeV. In contrast to the RPA case, the
PPC results in the formation of low-lying 1− states in this
energy region. The dominant contribution in the wave function

FIG. 9. Running sums of the low-lying dipole strengths in 48Ca (a)
and 50Ca (b). The dotted and solid lines correspond to the calculations
within the QRPA with the SLy5 EDF and taking into account the PPC,
respectively. Experimental data (dashed line) are taken from Ref. [12].
The calculated S1n energy is indicated by the solid arrow.

of the 1− states comes from the two-phonon configurations
(>60%). These states originate from the fragmentation of
the RPA states above 10 MeV. As one can see in Fig. 9(a),
the calculated running sum of the

∑
B(E1) value is close

to the experimental
∑

B(E1) value. The PPC calculations
give a total dipole strength of 0.063 e2fm2. The experimental
value of

∑
B(E1) is 0.0687±0.0075 e2fm2 in the same

interval [12]. The PPC effects produce a sizable impact on
the low-energy E1 strength of 48Ca. It is remarkable that the
contributions of the low-lying 1− states to the value of αD is
small (0.033 fm3), three times as much as the value deduced
experimentally [52]. It is shown that the αD value is more
sensitive to the fine structure of the E1 strength distribution.
The PPC calculations reproduce the observed trend in light
Ca isotopes, although the theoretical value of

∑
B(E1) for

44Ca underestimates the experimental value by a factor of 2. It
is worth mentioning that in the relativistic quasiparticle time
blocking approximation (RQTBA) [17], the value of

∑
B(E1)

is also substantially less than the experimental one. As shown
in Fig. 8(a), the two models produce qualitatively the same
results.

Moving from 48Ca to 50Ca, the QRPA calculations predict
a jump of the

∑
B(E1) value. N = 30 corresponds to the

occupation of ν2p 3
2 subshell, resulting in the two somewhat

pronounced states below 10 MeV being pure neutron 2QP ex-
citations: 99%{3s 1

2 2p 3
2 }ν and 98%{2d 5

2 2p 3
2 }ν . The summed

E1 strength of these states is 0.54 e2fm2. As can be seen
from Fig. 9(b), two states determine the value of

∑
B(E1)
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FIG. 10. Running sums (solid lines) of the B(E1; 0+
gs → 1−

1 ) as
a function of the two-quasiparticle energy included in the QRPA
calculations for 48Ca (a) and 50Ca (b). Dashed and dotted lines
correspond to the results for the proton and the neutron components
of the dipole operator (9), respectively.

calculated below 10 MeV. There is no contribution from the
2QP proton excitations. This structure is very different from
that of the first 1− state in 48Ca, where the leading proton
2QP configuration {2p 3

2 1d 3
2 }π gives a contribution of 96%.

For 48Ca, the closure of the neutron subshell ν1f 7
2 leads to the

vanishing of the neutron pairing.
Figure 10 shows the running sums for the QRPA value

of B(E1; 0+
gs → 1−

1 ) as a function of the proton and neutron
2QP energies. In the case of 48Ca, the B(E1; 0+

gs → 1−
1 )

is exhausted by the proton 2QP configurations, while the
largest part of the B(E1) value for 50Ca is generated by
neutron excitations in the low-energy region. For 50Ca, the
proton and neutron components contribute coherently. The
main difference between these isotopes is that the neutron
2QP configurations contribute more than proton ones. This
competition is mainly responsible for the

∑
B(E1) increase.

In contrast to the case of 48Ca, the PPC effects on the
low-energy dipole spectrum of 50Ca is weak [see Fig. 9(b)].
Thus, the

∑
B(E1) values for 50Ca results predominantly

from the QRPA distribution of E1 strength. As can be seen in
Fig. 8(a) a similar result is observed in the case of 52,54,56,58Ca
isotopes. The separation energies decrease much faster than
the value of

∑
B(E1). This means, of course, that the

observation of the PDR in (γ,γ ′) experiments will be strongly
hindered.

Let us now examine the correlation between the PDR prop-
erties and the neutron skin 
Rnp. To quantify the low-energy

E1 strength in a systematic analysis, we use the PDR fraction,

fPDR =
∑E1−

iα
�10MeV

iα
E1−

iα

∑
μαμ

[〈
1−

iαμα

∣∣M̂1μ|0+
gs

〉]2

14.8NZ/Ae2fm2MeV
. (10)

One of the basic ingredients for the fitting protocol of the
SLy5 EDF is the enhancement factor of the TRK sum rule κ =
0.25 [49]. Therefore, the total dipole strength exhausts 125%
of the TRK sum rule, i.e., 18.5NZ/Ae2fm2MeV. In Fig. 8(b)
the 
Rnp dependence of the fPDR for Ca isotopes is shown.
The filled triangles indicate the PPC effects, which can be
compared with QRPA results indicated by the open triangles.
The 48Ca(γ,γ ′) experiments give fPDR = 0.33±0.04 % [12],
while the calculations with the PPC effects lead to 0.28%
(to be compared with the RQTBA result of 0.55% [17]). The
QRPA calculations predict that the visible fPDR kink can be
identified at the magic neutron number N = 28. The PDR
fractions suddenly increase from N = 28−30 and continue
to increase until N = 34 where the ν2p 1

2 subshell is filled.
Beyond N = 34, the neutrons start filling the ν1f 5

2 subshell,
thus reducing the slope of fPDR. The correlation between the
fPDR and 
Rnp turn out to be somewhat complex, depending
on the neutron number.

V. CONCLUSIONS

The electric dipole polarizability is a particularly important
observable, as it can be measured in finite nuclei and it
provides important information on the neutron skin thickness
that can be extracted. In this study, Skyrme QRPA calculations
including the phonon-phonon coupling have been performed
for the E1 response in neutron-rich Ca isotopes, some of
which should become experimentally accessible in the near
future. The FRSA enables one to perform the calculations in
large configuration spaces. The SLy5 EDF and its modification
including the tensor components SLy5+T reproduce the data
for the neutron skin thickness and neutron separation energies.
Among our initial motivation there was the estimation of dipole
polarizability for 50,52Ca in comparison to the N = 28 isotope
48Ca. Our results describe the experimental data of 40,48Ca
and they give a sizable increase from the neutron shell closure
effect. It is shown that the phonon-phonon coupling has small
influence on the dipole polarizability.

For 48Ca, the PPC effect have a damping and smoothing ac-
tion which yields a GDR cross section close to the experimental
one in shape and magnitude. We find the impact of the shell
closure N = 28 on the summed E1 strength below 10 MeV.
There is also the 64% decrease of one-neutron separation
energy from 48Ca to 50Ca. This is from the pairing effect on
the neutron ν2p 3

2 subshell for 50Ca. The dipole response for
52−58Ca is characterized by the fragmentation of the strength
distribution and its spreading into the low-energy region.

The model can be extended by enlarging the variational
space for the 1− states with the inclusion of the three-phonon
configurations. The computational developments that would
allow us to conclude on this point are underway.
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