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Equation of state and radii of finite nuclei in the presence of a diffuse surface layer
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The definitions of nuclear surface and nuclear radii are considered within the Gibbs-Tolman-Rowlinson-Widom
(GTW) approach. We demonstrate the nonmonotonic behavior of the nuclear equimolar radii, which is due to
the shell effects in the chemical potential of finite nuclei. The direct variational method within the extended
Thomas-Fermi approximation is used to establish the equation of state for finite nuclei. We have studied the
influence of the polarization effect caused by the neutron excess on the particle density and the nuclear radii.
This effect increases with the asymmetry parameter X and can be responsible for the appearance of large neutron
halos in nuclei well away from the β stability line. We have performed new calculations of the A dependence
of the radii R(A) of nucleon distribution, which are based on the use of the experimental data for the nuclear
binding energy. We demonstrate the presence of the quantum shell effects in R(A). We have analyzed the value of
the neutron-skin thickness �rnp in the isotopes of the Na, Sn, and Pb nuclei within the GTW approach and show
the appearance of nonmonotonic behavior of �rnp as a function of the neutron excess. We discuss the relative
contributions to the neutron-skin thickness �rnp from the skin and the halo effects.
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I. INTRODUCTION

The nucleon distributions in finite nuclei possess surface
diffuse layers which occur due to the quantum penetration of
particles into the classically forbidden region. This fact creates
the problem of the unambiguous definition of the nuclear
surface and thereby of the nuclear size [1]. In particular, a
strict definition of the nuclear surface and volume is needed to
derive the surface tension σ , the incompressibility coefficient
K , etc. Moreover, in a small finite system, such as a nucleus,
the derivation of the equation of state (EOS) also meets some
difficulties because of the uncertainty for the pressure in a
system with a finite surface layer. In a classical liquid, the
problem of the proper derivation of the surface of the finite
drop in the presence of a diffuse interface was studied by
Gibbs [2] Tolman [3], and Rowlinson and Widom (GTW) [4]
where the concept of the equimolar dividing surface was used.

In the present paper we will apply the classical GTW
approach to the nucleus as a quantum liquid drop focusing
on the presence of the diffusive surface of the nucleon
spatial distribution. The averaged characteristic of nucleon
distribution is given by the root-mean-square (rms) radii for the
neutron and proton, respectively. Evaluating the values of rms
radii and the corresponding neutron-skin thicknesses, we adopt
the extended Thomas-Fermi (ETF) and the direct variational
methods [5,6]. The nucleon densities ρp(r) and ρn(r) are
generated by the profile functions which are determined by the
requirement that the energy of the nucleus should be stationary
with respect to the variations of these profiles. The GTW
concept is employed by introducing a dividing surface into the
profile functions. We also study the problems of the nucleon
redistribution within the surface region (nuclear periphery), in
particular, the neutron coat and the neutron excess for nuclei
far away from the β-stability line as well as the influence
of the skin and halo effects on the value of the neutron-skin
thickness.

This paper is an extension of our previous work [7] where
the general equimolar GTW concept was adopted for nuclei
with finite surface layers. In the present paper we apply
the GTW approach to realistically determine the EOS for
finite nuclei and some nuclear characteristics, such as the
nuclear size, the surface tension, the pressure, etc. Taking
into consideration the presence of a finite diffuse interface
and applying the GTW approach, we redefine the surface and
symmetry energies. The use of the GTW approach allows us
to present a more realistic procedure for the extraction of the
nuclear surface tension coefficient from the experimental data.
In contrast to the previous work [7], we avoid the leptodermous
approximation and improve the evaluation of the Coulomb
energy taking into consideration the finite diffuse layer of the
proton distribution. Following the GTW equimolar concept,
we derive the curvature as well as the halo and skin effects
on the surface energy and the surface component of symmetry
energy.

This paper is organized as follows. In Sec. II we adopt
the GTW model of an equimolar dividing surface for the
two-component liquid drop with a finite surface layer. The
application of the GTW model to some nuclear problems is
considered in Secs. III–V. We conclude and summarize in
Sec. VI.

II. EXTENSION OF THE GIBBS-TOLMAN-
ROWLINSON-WIDOM CONCEPT FOR FINITE NUCLEI

Considering a nucleus which possesses the finite surface
diffuse layer, we will follow the GTW concept of the equimolar
dividing surface. We introduce the formal dividing surface
of radius R, the corresponding volume V = 4πR3/3, and
the surface area S = 4πR2. The dividing surface is arbitrary
but located within the nuclear diffuse layer. The energy of a
nucleus E as well as its mass number A = N + Z and the
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neutron excess A− = N − Z are split into the volume (bulk)
and surface parts,

E = Ebulk + ES + EC, A = AV + AS ,

A− = A−,V + A−,S . (1)

Here the Coulomb energy EC is fixed and does not depend on
the dividing radius R. The bulk energy Ebulk is identified with
the energy E∞ of the homogeneous nuclear matter,

Ebulk = E∞, (2)

and ES is the surface energy [4,8],

ES = (σ + μρS + μ−ρ−,S )S, (3)

with σ being the surface tension coefficient. The considered
nuclear matter is the two-component one with isotopic asym-
metry X = (N − Z)/(N + Z) and chemical potentials,

∂Ebulk

∂N

∣∣∣∣
V,Z

= μn,
∂Ebulk

∂N

∣∣∣∣
V,N

= μp, (4)

where n and p refer to a neutron and a proton, respectively.
The central assumption of the Gibbs-Tolman-Rowlinson-

Widom approach is that the nuclear matter inside the specified
volume V is chosen to have the chemical potentials μn

and μp equal to the experimental values λn and λp of the
corresponding nucleus, see also Ref. [9],

μn(ρn, ρp) = λn − λn,C, μp(ρn, ρp) = λp − λp,C, (5)

where ρn and ρp are the r-independent bulk densities of the
neutrons and protons, respectively. The Coulomb contribution
λq,C to the nucleon chemical potential λq is subtracted in
Eq. (5) because the derivation of μq in Eq. (4) is written for
an uncharged nuclear matter. Here,

λn,C = ∂EC

∂N

∣∣∣∣
Z

, λp,C = ∂EC

∂Z

∣∣∣∣
N

. (6)

We also will use the isoscalar μ = (μn + μp)/2, the
isovector μ− = (μn − μp)/2, chemical potentials, and the
corresponding densities ρ = ρn + ρp and ρ− = ρn − ρp. In
agreement with the definition of the dividing surface adopted
above, both densities ρ and ρ− include the volume and surface
parts,

ρV = AV/V, ρ−,V = A−,V/V and ρS = AS/S,

ρ−,S = A−,S/S. (7)

The bulk energy Ebulk in Eqs. (2) and (4) can be evaluated
using the Skyrme effective nucleon-nucleon interaction for the
nuclear matter,

Ebulk =
∫

d r εtot(r) ≡
∫

d r εtot[ρn(r),ρp(r)]. (8)

The total energy density functional of a nuclear matter
εtot[ρn,ρp] in Eq. (8) includes the kinetic-energy density
εkin[ρn,ρp] and the potential-energy density associated with
the Skyrme interaction εSk[ρn,ρp],

εtot[ρn,ρp] = εkin[ρn,ρp] + εSk[ρn,ρp]. (9)

Considering an asymmetric nuclear matter with X � 1, the
bulk energy per particle can be written as [5]

Ebulk/A ≡ e0(ρ) + e2(ρ)

(
ρ−
ρ

)2

, (10)

where

e0 = h̄2

2m
αρ2/3 + 3t0

8
ρ + t3

16
ρν+1

+ α

16
[3t1 + t2(5 + 4x2)]ρ5/3, (11)

and

e2 = 5

9

h̄2

2m
αρ2/3 − t0

8
(1 + 2x0)ρ − t3

48
(1 + 2x3)ρν+1

+ 5α

72
[t2(4 + 5x2) − 3t1x1]ρ5/3. (12)

Here α = (3/5)(3 π2/2)2/3 and ti , xi, and ν are the Skyrme
force parameters. The isoscalar and isovector chemical poten-
tials are obtained from

∂Ebulk

∂A

∣∣∣∣
V,A−

= μ,
∂Ebulk

∂A−

∣∣∣∣
V,A

= μ−. (13)

The bulk equations (10)–(12) allow us to derive the
equimolar radii of the nuclei. Using the experimental data
for the separation energy sq for each kind of nucleon, we
obtain the corresponding chemical potentials λn = −sn and
λp = −sp. Applying then Eqs. (5), (10), and (13), we evaluate
the bulk densities ρV and ρ−,V and the surface densities
ρS [R] and ρ−,S [R]. Note that the square brackets in ρS [R]
and ρ−,S [R] denote a formal dependence on the dividing
radius R, which is arbitrary and may not correspond to
the actual physical size of a nucleus. To derive the actual
(equimolar) radius Re of a nucleus, an additional condition
on the location of the dividing surface should be imposed. In
general, the surface energy ES [R] for an arbitrary dividing
surface includes the contributions from the surface tension σ
and from the binding energy of the particles within the surface
layer [see the term ∼(ρSμ + ρ−,Sμ−) in Eq. (3)]. In agreement
with the Gibbs-Tolman-Rowlinson-Widom concept, the actual
equimolar radius Re of the droplet is determined by the
requirement that the contribution to ES [R] from the bulk term
in Eq. (3) should be excluded from the surface energy ES [R].
The last requirement can be satisfied if the following condition
is fulfilled:

(ρSμ + ρ−,Sμ−)R=Re
= 0, (14)

where μ and μ− are taken under the condition of Eq. (5).
Equation (14) represents the derivation of the equimolar radius
Re for an asymmetric nucleus with N �= Z.

In the case of finite nuclei, we will adopt the extended
Thomas-Fermi approximation for the kinetic-energy density
[10],

εkin,q[ρq] = h̄2

2m

[
3

5
(3π2)

2/3
ρ5/3

q + β
(∇ρq)2

ρq

+ 1

3
∇2ρq

]
,

(15)
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and the effective Skyrme interaction for the potential energy.
The total energy of the charged nucleus is given by

Etot{ρq,∇ρq} = Ekin{ρq,∇ρq} + ESk{ρq,∇ρq} + EC{ρp},
(16)

where ESk{ρq,∇ρq} is the potential energy of the Skyrme inter-
action, which includes the gradient dependent terms ∼∇ρq,

ESk{ρq,∇ρq} =
∫

d r εSk[ρq,∇ρq]. (17)

εSk[ρq,∇ρq] is the density of the potential energy of the
Skyrme interaction, and EC{ρp} is the Coulomb energy. In our
consideration, the potential-energy ESk{ρq,∇ρq} also includes
the energy due to the spin-orbit interaction.

Following the direct variational method, we choose a trial
function for ρq(r) as a power of the Fermi function for ρq(r)
given by, see also Ref. [6],

ρq(r) = ρ0,q

[
1 + exp

(
r − Rq

aq

)]−ηq

, (18)

where ρ0,q , Rq , aq, and ηq are the unknown variational
parameters. Considering the asymmetric nuclei with X =
(N − Z)/A � 1, we will introduce the isotopic particle
densities, namely, the total density ρ0,+ = ρ0,n + ρ0,p and the
neutron excess density ρ0,− = ρ0,n − ρ0,p with ρ0,− � ρ0,+.

The profile functions ρ+(r) and ρ−(r) have to obey the
condition that the numbers of neutrons and protons are
conserved. For the ground state of the nucleus, the unknown
parameters ρ0,±, Rq, aq, and ηq and the total energy Etot itself
can be obtained from the variational principle,

δ(E − λnN − λpZ) = 0, (19)

where the variation with respect to all possible small changes
in ρ0,±, Rq, aq, and ηq is assumed. The Lagrange multipliers
λn and λp are the chemical potentials of the neutrons and
the protons, respectively, and both of them are fixed by the
condition that the number of particles is conserved.

III. EQUATION OF STATE OF FINITE NUCLEI
AND THE POLARIZATION EFFECT

The introduction of a sharp (nondiffuse) equimolar surface
obviates the ambiguities in the derivation of the pressure, the
incompressibility, and the equation of state for finite systems
with finite diffuse layers of the surfaces. In particular, using the
concept of equimolar radius Re, the total energy (1) of a finite
nucleus can be written in the following form of the Weizsäcker
mass formula:

Etot(ρ0,A,X)/A

= e0(ρ0) + bS(ρ0)A−1/3 + [bV,sym(ρ0)

+ bS,sym(ρ0) A−1/3]X2 + EC(ρ0,A,X)/A, (20)

where e0(ρ0) is the bulk energy of a symmetric nuclear matter,
bS(ρ0) is the surface energy coefficient, bV,sym(ρ0) is the
volume part of the symmetry energy, bS,sym(ρ0) is its surface
part, and

ρ0(Re) = A (3/4π )R−3
e . (21)

The Coulomb energy EC(ρ0,A,X) can be written as

EC(ρ0,A,X) = αC(ρ0)(1 − X)2A5/3 + O(A4/3),

αC(ρ0) = 3

20
e2

(
4πρ0

3

) 1
3

. (22)

The structure of the total energy given by Eq. (20) is
similar to the semiempirical mass formula which describes the
average changes in the nuclear binding energy with the mass
number. However, in contrast to the mass formula, the bulk
density ρ0 and the asymmetry parameter X are not necessarily
at equilibrium. The asymmetry term ∼X2 includes both the
volume bV,sym(ρ0) and the surface bS,sym(ρ0) contributions.
The surface symmetry term bS,sym(ρ0) A−1/3X2 appears in
the advanced mass formula by Myers and Swiatecki [11,12],
and it currently is employed in the description of surface
properties and isovector excitations in finite nuclei, see, e.g.,
Refs. [13,14].

Similar to a classical liquid, the particle density ρ0 in
Eq. (20) is r independent, and the evaluation of the pressure
P (ρ0) and thereby the equation of state can be obtained as in
the classical case [8]. In the two-component nuclei, the form of
the EOS is different for the isobaric case (fixed A and different
X′s) and the isotopic case (fixed Z and different X′s). In the
isobaric case, the EOS is derived as

PA(ρ0,X) = − ∂Etot(ρ0,A,X)

∂V

∣∣∣∣
A,X

= ρ2
0
∂Etot(ρ0,A,X)/A

∂ρ0

∣∣∣∣
A,X

, (23)

where Etot(ρ0,A,X) is given by Eq. (20) with fixed A. In the
isotopic case, the EOS is given by

PZ(ρ0,X) = − ∂Etot(ρ0,Z,X)

∂V

∣∣∣∣
Z,X

= ρ2
0
∂Etot(ρ0,Z,X)/A

∂ρ0

∣∣∣∣
Z,X

, (24)

where Etot(ρ0,Z,X) is given by Eq. (20) with A =
2Z(1 − X)−1 and fixed Z.

For a given bulk density ρ0, one can derive the isobaric
β-stability line X = X∗(A,ρ0) by the condition,

∂Etot(ρ0,A,X)

∂X

∣∣∣∣
A, X=X∗

= 0. (25)

Near the β-stability line, the total energy (20) is written up to
the order (X − X∗)2 as

Etot(ρ0,A,X)

= Etot(ρ0,A,X∗) + [bV,sym(ρ0)A + bS,sym(ρ0)A2/3

−αC(ρ0)A5/3](X − X∗)2. (26)

The isotopic β-stability line X = X∗(Z,ρ0) is obtained from

∂Etot(ρ0,Z,X)

∂X

∣∣∣∣
Z, X=X∗

= 0. (27)

The derivation of nonequilibrium ρ0(Re), Eqs. (20) and
(21), and the corresponding EOS require model assumptions.

054305-3



KOLOMIETZ, LUKYANOV, SANZHUR, AND SHLOMO PHYSICAL REVIEW C 95, 054305 (2017)

0 0.05 0.1 0.15 0.2

-0.6

-0.4

-0.2

0

0.2

0.4

P
( 

 )
 (

M
eV

 f
m

  )

0 (fm  )-3

ρ 0

-3

 .
3

1

2

A

.
B

ρ
0,crit

.C

ρ

FIG. 1. Equation of state for the nucleus of 208Pb. The calculation
was performed for the SkM∗ interaction [15]. The dashed line is the
EOS for the symmetric nuclear matter Pvol(ρ0), solid line 1 is for
Pvol(ρ0) + Pcapil(ρ0,X), solid line 2 is for Pvol(ρ0) + PC(ρ0,X), and
solid line 3 is the total pressure PA(ρ0,X) of Eq. (28).

One of the appropriate models is the semiclassical ETF
approximation which allows us to evaluate the nucleon
density distribution ρq(r) with a finite diffuse layer and the
corresponding chemical potential λq [5]. The calculation of
the bulk density ρ0 and the equimolar radius Re can then
be performed by using the procedure described in Sec. II. In
Fig. 1 we show the isobaric equation of state PA(ρ0,X) for
the nucleus of 208Pb. Note that, in agreement with the general
definition of Eq. (20), the pressure PA(ρ0,X) includes: (i) the
A- and X-independent bulk pressure Pvol(ρ0) caused by the
bulk energy of a symmetric nuclear matter e0(ρ0), (ii) the sur-
face (capillary) pressure PA,capil(ρ0,X) ∼ A−1/3, (iii) the con-
tribution from the symmetry energy PA,sym(ρ0,X) ∼ X2, and
(iv) the Coulomb force contribution PA,C(ρ0,X),

PA(ρ0,X) = Pvol(ρ0) + PA,capil(ρ0,X) + PA,sym(ρ0,X)

+PA,C(ρ0,X). (28)

In agreement with Eq. (23) and the equilibrium condition,

∂Etot(ρ0,A,X)

∂ρ0

∣∣∣∣
ρ0=ρ0,eq

= 0, (29)

the ground state of the nucleus is achieved at
PA(ρ0 = ρ0,eq,X) = 0. Using the SkM∗ [15] nucleon-nucleon
interaction, we present the results for the EOS for the nucleus
of 208Pb in Fig. 1. As seen from Fig. 1, the inclusions of
the surface (capillary) term Pcapil(ρ0,X) shift the equilibrium
point to a larger value of ρ0,eq (point B in Fig. 1) with respect
to the one in a nuclear matter (point A in Fig. 1). Note that the
capillary pressure PA,capil(ρ0,X) is connected to the surface
tension coefficient σ (A,X) by the Laplace relation [16],

PA,capil(ρ0,X) = 2σ (A,X)

Rs

, (30)

where Rs is the radius of tension (Laplace radius). The value
of PA,capil(ρ0,X) is manifested by the straight dotted line BC
in Fig. 1. The action of the Coulomb pressure PA,C(ρ0,X) is

opposite to the capillary pressure PA,capil(ρ0,X) and shifts the
equilibrium point to the smaller values of ρ0,eq.

The radius Rs is shifted with respect to the equimolar radius
Re by a small value of ξ = Re − Rs (Tolman length [3]),
which is caused by the finite diffuse layer in a nucleus [4,7,9].
Note also that the Tolman length ξ regulates the approach of
the surface tension coefficient σ (A,X) to the planar limit σ∞
[4,17] in a semi-infinite system,

σ (Re) = σ∞

(
1 − 2ξ

Re

+ O
(
R−2

e

))
. (31)

The use of the Gibbs-Tolman equimolar radius Re allows us
to provide a more realistic procedure for the extraction of the
nuclear surface tension coefficient from the experimental data.
Note that the equimolar radius Re determines the equimolar
surface area Se = 4πR2

e in the absence of a diffuse layer. This
fact gives the possibility to evaluate both the surface energy
ESe

and the surface tension coefficient σ (A,X) = ESe
/Se. The

surface energy ESe
is obtained by use of the experimental

value of nuclear binding energy Eexp and the earlier derived
bulk energy Ebulk of nuclear matter, see Eq. (10). Namely,

ESe
= Eexp − EC − Ebulk. (32)

The Coulomb energy EC is subtracted from the value of
binding energy Eexp because the derivation of the nuclear
matter energy Ebulk does not include the Coulomb energy
contribution. Using the experimental data within the wide
interval of mass number 40 � A � 220 and the corresponding
values of equimolar radii, one can establish the following A
expansion for the surface tension coefficient,

σ (A,X∗) = ESe

Se

= σ0 + σ1

A1/3
,

σ0 = (0.98 ± 0.03) MeV fm−2,

σ1 = (0.75 ± 0.16) MeV fm−2. (33)

The numerical result of Eq. (33) leads to the following value
for the Tolman length ξ in nuclei:

ξ = (−0.41 ± 0.07) fm. (34)

Note that both values of σ0 and σ1 can also be derived from the
capillary pressure PA,capil(ρ0,X) in Fig. 1. The corresponding
values of σ0 and σ1 are close to those given in Eq. (33).

In Fig. 1, the minimum of the pressure PA(ρ0,X) is located
at ρ0 = ρ0,crit. The nucleus becomes unstable within the spin-
odal instability region ρ0 < ρ0,crit where the incompressibility
coefficient,

KA(A,X) = 9
∂PA(ρ0,X)

∂ρ0

∣∣∣∣
A,X

= 9ρ2
0
∂2Etot(ρ0,X)/A

∂ρ2
0

∣∣∣∣
A,X

(35)

is negative KA(A,X) < 0. In accordance with Eqs. (28) and
(35), the incompressibility coefficient KA(A,X) includes the
volume (nuclear matter) contribution KNM , the surface term
Ksurf(A,X), the term Ksym(A,X) due to the symmetry energy,

054305-4



EQUATION OF STATE AND RADII OF FINITE NUCLEI . . . PHYSICAL REVIEW C 95, 054305 (2017)

and the Coulomb force contribution term KC(A,X). Namely,

KA(A,X) = KNM + Ksurf(A,X) + Ksym(A,X) + KC(A,X).

(36)

The equimolar radius Re is A dependent. In general, the
variation of the equimolar radius Re with the nucleon number
A is caused by two factors. There is the simple variation term of
Re ∝ A1/3 (see Fig. 5) and an additional term which occurs due
to the polarization effect in nuclei away from the β-stability
line because of the neutron excess N − Z. Considering the
polarization effect, we will expand the total energy of Eq. (20)
Etot(ρ0,A,X)/A around the equilibrium bulk density ρ0,eq. By
keeping only terms quadratic in δρ0 = ρ0 − ρ0,eq we rewrite
Eq. (20) as

Etot(ρ0,A,X)/A

= Etot(ρ0,eq,A,X∗)/A + KA(A,X∗)

18ρ2
0,eq

(ρ0 − ρ0,eq)2

+ PA,sym(ρ0,eq,X
∗)

ρ2
0,eq

(X − X∗)2(ρ0 − ρ0,eq), (37)

where

PA,sym(ρ0) = ρ2
0

∂

∂ρ0
[bV,sym(ρ0) + bS,sym(ρ0) A−1/3

−αC(ρ0)A2/3]. (38)

For an arbitrary fixed value of X, the equilibrium density ρ0,X

is derived by the condition,

∂

∂ρ0
Etot(ρ0,A,X)/A

∣∣∣∣
A,ρ0=ρ0,X

= 0. (39)

Using Eqs. (37) and (39), one obtains the polarization effect
on the particle density beyond the β-stability line,

ρ0,X = ρ0,eq(X∗) − 9
PA,sym(ρ0,eq,X

∗)

KA(A,X∗)
(X − X∗)2. (40)

In Fig. 2 we have plotted the partial pressure PA,sym(ρ0,X
∗)

versus the bulk density ρ0 (partial equation of state) for the
nucleus of 208Pb, obtained using the SkM∗ [15], Sly230b
[18], and KDE0v1 [19] Skyrme interactions. The dashed
vertical line shows the position ρ0/ρ0,crit ≈ 0.6 of the spinodal
instability border. On the left side of this line the nucleus is
unstable with respect to the bulk density variations.

As seen from Fig. 2, the equilibrium value of the partial
pressure PA,sym(ρ0,eq) is positive and thereby ρ0,X < ρ0,eq,
see also Refs. [20,21]. The partial pressure PA,sym is rather
sensitive to the Skyrme interaction parametrization (see results
for the SkM∗, SLy230b, and KDE0v1 in Fig. 2). The
polarization effect also influences the equimolar radius Re.
The final result reads

Re(A,X) = R∗
e (A,X∗)

(
1+1

3

PA,sym(ρ0,eq,X
∗)

KA(A,X∗)ρ0,eq
(X − X∗)2

)
.

(41)

The magnitude of the polarization effect on the equimolar
radius Re can also be seen in Fig. 3 where we compare the A
dependence of the equimolar radius Re = R∗

e (A,X∗) for the
nuclei on the β-stability line in the presence of the partial
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FIG. 2. The partial pressure PA,sym for the nucleus of 208Pb
calculated for different parametrizations of the Skyrme forces:
KDE0v1 [19]: solid line 1; SLy230b [18]: solid line 2; and SkM∗

[15]: solid line 3. The dotted vertical line is the mark for the spinodal
instability border, and the dashed line is for the equilibrium density.

polarization pressure PA,sym(ρ0,eq,X
∗) (solid line) and with

the Re(A,X = 0) where the polarization pressure is ignored
(dashed line).

Considering the symmetric nuclei with X = 0, one can
estimate the polarization effect due only to the Coulomb
interaction. Using Eq. (20) for the symmetric case N = Z,
we write

Etot(ρ0,A,X = 0)/A = e0(ρ0) + bS(ρ0)A−1/3 + αC(ρ0)A2/3,
(42)

where ρ0 is related to the equimolar radius Re as in
Eq. (21). Assuming that ρ̃0,eq is the equilibrium density for the

0 50 100 150 200 250
A

1.05

1.1

1.15

R
  /

A
  (

fm
)

X=X*
X=0
X=0, P    =0

e
1/

3

FIG. 3. Dependence of equimolar radius Re = R∗
e (A,X∗) on

mass number A on the β-stability line in the presence of the polar-
ization effect (the solid line). The dashed line is the equimolar radius
Re(A,X = 0) where the polarization effect is absent. The dotted line
is obtained by elimination of the Coulomb force polarization effect,
see Eq. (46). The calculations were performed for the SkM∗ [15]
interaction.
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uncharged liquid drop, we will expand the total energy of
Eq. (42) around the equilibrium density ρ̃0,eq as

Etot(ρ0,A,X = 0)

A

= Etot(ρ̃0,eq,X = 0)

A
+ KA(A,X = 0)

18ρ̃2
0,eq

(ρ0 − ρ̃0,eq)2

+ PA,C(ρ̃0,eq)

ρ̃2
0,eq

(ρ0 − ρ̃0,eq), (43)

where

PA,C(ρ0) = ρ2
0

∂

∂ρ0
αC(ρ0)A2/3 (44)

is the Coulomb force pressure. The equilibrium density ρ0,eq

of a symmetric nucleus in the presence of Coulomb forces is
obtained from the condition,

∂

∂ρ0
Etot(ρ0,A,X = 0)/A

∣∣∣∣
A,ρ0=ρ0,eq

= 0. (45)

Using Eqs. (37), (39), and (45), one obtains the polarization
effect on the particle density caused by Coulomb forces for
symmetric nuclei with N = Z,

ρ0,eq = ρ̃0,eq − 9
PA,C(ρ̃0,eq)

KA(A,X = 0)
. (46)

The Coulomb force pressure is positive PA,C(ρ0) > 0, see
Eqs. (22) and (44), and thereby the polarization effect, which is
caused by the Coulomb forces, decreases the bulk density ρ0,eq,
i.e., increases the nuclear equimolar radius Re of Eq. (21). The
corresponding numerical result is shown in Fig. 3 as the dotted
line.

IV. NUCLEAR RADII

Using the experimental values [22] of the chemical poten-
tials λ and λ− for the arbitrary dividing radius R and the fixed
asymmetry parameter X, one can evaluate the volume part of
equilibrium energy EV from Eq. (10), and the particle numbers
in the volume AV = 4πρR3/3 and A−,V = 4πρ−R3/3 and
in the surface AS = 4πρSR2 and A−,S = 4πρ−,SR2 particle
numbers. All these evaluated values depend on the radius R of
the dividing surface and the asymmetry parameter X.

As noted above, the actual physical radius Re of the nucleus
is determined by the condition (14), i.e., by the requirements
that the contribution to ES from the bulk binding energy [term
∼(ρSλ + ρ−,Sλ−) in Eq. (3)] should be excluded from the
surface energy ES . In Fig. 4 we represent the results of the
calculation of the specific surface particle density F (R) =
−(ρSλ + ρ−,Sλ−) as a function of radius R of the dividing
surface. The equimolar dividing radius Re in Fig. 4 defines
the physical size of the sharp surface droplet and the surface at
which the surface tension is applied, i.e., the equimolar surface
where Eq. (14) is fulfilled.

The evaluated equimolar radius Re does not necessarily
obey the saturation condition Re ∼ A1/3. This reflects the fact
that the experimental data for the chemical potentials λ and
λ− used in our calculations include the quantum shell effects,
the pairing correlation effects, etc. In Fig. 5 we have plotted

0 5 10 15 20
R (fm)

-40

-20

0

20

40

F
(R

) 
(M

eV
 f

m
  )

A=120
A=208

R     Re      e

-2

FIG. 4. Specific surface particle density F (R) =
−(ρSμ + ρ−,Sμ−) versus dividing radius R for nuclei with
A = 208 and A = 120. The calculation was performed using the
SkM∗ interaction [15]. Re denotes the equimolar radius where
F (R) = 0.

the evaluated equimolar radii Re for some nuclei. The dotted
line shows the average behavior Re = r0A

1/3.
We point out that the average interparticle distance r0 is

slightly A dependent (see the dashed line in Fig. 5),

r0 ≈
(

1.14 − 0.04

A1/3

)
fm. (47)

The nonmonotonic behavior of the nuclear equimolar radii
Re(A) is caused by the quantum shell fluctuations, the pairing
effects, etc., which are manifested in the experimental values
of the chemical potentials λn and λp.

0 50 100 150 200 250

A

1

1.1

1.2

1.3

R
   

/A
  (

fm
)

e
1/

3

FIG. 5. A dependence of equimolar nuclear radius Re(A). The
solid points were obtained within the Gibbs-Tolman procedure where
the experimental values for the nucleon chemical potential were used,
and the dashed line is for the corresponding averaged values of
equimolar radii Re. The dotted line is for Re = 1.13A1/3 fm. The
SkM∗ interaction [15] was used.
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V. SKIN AND HALO EFFECTS—ISOVECTOR
SHIFT OF THE RADII

The above-described procedure can be used to derive the
partial equimolar radii Re,q(A) separately for neutrons q = n
and for protons q = p and the corresponding nucleon rms

radii
√

〈r2
q 〉. Using the experimental values of the chemical

potentials λn and λp of actual nuclei and Eqs. (10)–(13), one
can derive the partial bulk densities ρn and ρp. Evaluating then
the partial surface nucleon densities,

ρn,S [R] = N

4πR2
− 1

3
ρnR, ρp,S [R] = Z

4πR2
− 1

3
ρpR,

(48)

and applying the condition of Eq. (14), we find the partial
equimolar radii Re,q(A). Considering the rms radii,

√〈
r2
q

〉 =
√∫

d r r2ρq(r)

/∫
d r ρq(r), (49)

in the presence of the finite diffuse layer, we will introduce the
dispersion of the surface layer [1],

bq =
√∫ ∞

o

dr gq(r)(r − r̄q)2, (50)

where

gq(r) = −d
fq(r)

dr
, r̄q =

∫ ∞

0
dr rgq(r),

and fq(r) = ρq(r)/ρ0,q is the profile function of the nucleon
density.

In the case of the Fermi-like profile function f (r) of
Eq. (18), one obtains

bq = aq

√[
2κ1(ηq) − κ2

0 (ηq)
]
, (51)

where the coefficients κi(η) are given by [6]

κi(η) =
∫ ∞

0
dx xi{(1 + ex)−η − (−1)i[1 − (1 + e−x)−η]}.

(52)

Finally, the nucleon rms radii read, see also Ref. [1],√〈
r2
q

〉 ≈
√

3/5Re,q

[
1 + 5

2

(
bq

Re,q

)2]
. (53)

Note that the surface layer correction ∼b2
q to the rms radii

in Eq. (53) can exceed the value of about 10% in light and
middle nuclei. We also point out that the rms radii

√
〈r2

q 〉 of
Eq. (53) as well as the equimolar radii Re,q(A) contain the
shell fluctuations, see Fig. 5.

The partial equimolar radius Re,q and the corresponding
rms radii

√
〈r2

q 〉 can be evaluated numerically from Eqs. (10)–
(13) and (53) using the chemical potentials λn and λp of actual
nuclei. As an example we will show the result for the 208Pb
nucleus. In this case, using the variational procedure of Eq. (19)
and trial function for ρq(r) of Eq. (18), we obtain for the
SkM∗ interaction an = 0.723, ap = 0.618 fm, ηn = 4.048, and

20 25 30
A

0

1

2

3

4

<
r 

>
 (

fm
)

p2

Na

FIG. 6. The rms radius of the proton distribution in the Na
isotopes obtained by use of Eq. (53). The dotted line with open circles
was obtained with surface layer correction ∼b2

q , and the dashed line
with open squares is for b2

q = 0. Here and below, the experimintal
data were taken from Ref. [24]. The SkM∗ interaction [15] was used.

ηp = 5.158. Using the average interparticle distance r0 from
Eqs. (47) and (53), one obtains for the mass rms radius

√
〈r2〉 =

5.447 fm, which agrees with experimental data
√

〈r2〉|exp =
(5.579 ± 0.025) fm [27]. In Fig. 6, we also show the evaluated
values of the proton rms radius

√
〈r2

p〉 for the Na isotopes. As
seen from Fig. 6, the surface layer correction ∼b2

q in Eq. (53)

leads to the significant shift up of
√

〈r2
p〉 with respect to the

sharp radius estimate
√

〈r2
q 〉 = √

3/5Rq (compare the dashed
and dotted lines) and provides the satisfactory agreement with
experimental data. A slightly nonmonotonic behavior of

√
〈r2

p〉
in Fig. 6 is caused by the above-mentioned shell fluctuations
of Re,p.

Evaluating the isovector shift of particle density ρ−, one can
determine the neutron-skin thickness �rnp =

√
〈r2

n〉 −
√

〈r2
p〉.

20 25 30
A

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

  r
   

(f
m

)
np

Δ

Na

FIG. 7. The isovector shift of nuclear rms radius �rnp = √〈r2
n〉 −√

〈r2
p〉 in Na isotopes. The solid points are the experimental data [24],

the open circles (connected by the dotted line) have been obtained
using the Gibbs-Tolman approach described in the text, and the solid
line is obtained using the extended Thomas-Fermi approximation
with the SkM∗ Skyrme interaction [15], see Ref. [6].
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FIG. 8. The same as in Fig. 7 but for Sn isotopes. The data were
taken from Refs. [23,25,26].

The A dependence of the size of the neutron-skin thickness
�rnp is illustrated in Figs. 7–9 for Na, Sn, and Pb isotopes,
respectively. Here, the experimental data were taken from
Refs. [23–29]; the results obtained using the Gibbs-Tolman-
Rowlinson-Widom approach are shown by the open circles,
and the solid line is obtained within the extended Thomas-
Fermi approximation with Skyrme interactions [6].

As seen from Figs. 7–9, the Gibbs-Tolman-Rowlinson-
Widom concept of the sharp equimolar surface allows one
to describe the fine nonmonotonic structure of the nucleon
rms radius and thereby the isovector shift �rnp. In particular,
the sawlike behavior of �rnp (see the open circles which are
connected by the dotted line) reflects the even-odd and shell
effects in the nuclear binding energy and thereby in the nuclear
radii.

In general, the value of the isovector shift �rnp is the sum
of two contributions: One �rnp,R is due to the different radii
(skin effect), and the other �rnp,a is due to the different shapes
(surface layer) of the neutron and proton distributions (halo

205 210
A
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-0.1

0

0.1

0.2

0.3

0.4

 r
   

(f
m

)
np

Δ

Pb

FIG. 9. The same as in Fig. 7 but for Pb isotopes. The experimen-
tal data were taken from Refs. [27–29].

0 0.1 0.2 0.3 0.4
X
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3

4

5

χ

x

x

x

Sn

Pb

Na

Δ

FIG. 10. The ratio χ = �rnp,a/�r∗
np,a versus the deviation �X =

X − X∗ from the β-stability line for isotopes of the nuclei of Na,
Sn, and Pb. The calculations have been performed using the SkM∗

interaction [15] and Weizsecker’s parameter β = 1/9 [see Eq. (15)].
The crosses at the end of the lines denote the neutron drip line, which
is derived by the condition λn = 0.

effect), see also Refs. [25,26,30–32],

�rnp = �rnp,R + �rnp,a, (54)

Both values of �rnp,R and �rnp,a can be obtained from Eq. (53)
and are given by the following expressions:

�rnp,R ≈
√

3

5

[
1 − 5

2

(
b

Re

)2]
�R,e, (55)

and

�rnp,a ≈ 5

√
3

5

b

Re

�b. (56)

Here, �R,e = Re,n − Re,p, b = (bn + bp)/2, and �b = bn −
bp are the parameters of the neutron skin.

Expressions (54)–(56) dissect the structure of the neutron-
skin thickness �rnp. In Fig. 10 we have plotted the values
of χ = �rnp,a/�r∗

np,a (the value of �r∗
np,a is taken on the β-

stability line at X = X∗) versus the deviation �X = X − X∗
from the β-stability line X = X∗ for the neutron-rich (�X > 0)
isotopes of the nuclei of Na, Sn, and Pb.

The numerical results for �rnp,a are sensitive to the
choice of the gradient corrections to the kinetic-energy density
εkin,q[ρq] [see the term with the parameter β in Eq. (15)]. In
Fig. 10, we have used the empirical value for Weizsäcker’s pa-
rameter β = 1/9. Note also that evaluating the skin parameter
�R,e in Eq. (55) we have used the Gibbs-Tolman-Rowlinson-
Widom procedure, which is described in Sec. II. As can be seen
from Fig. 10, the relative contribution of the shape (halo) effect,
i.e., �rnp,a , to the isotopic shift of radii �rnp is more evident
in the light nuclei. As can be expected, the ratio �rnp,a/�r∗

np,a

increases for nuclei away from the β-stability line, i.e., for the
neutron-rich isotopes.
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VI. CONCLUSIONS

We have applied the approach proposed earlier by Gibbs-
Tolman-Rowlinson-Widom for a classical liquid drop in the
presence of the liquid-vapor interface to the derivation of the
actual size of a nucleus in the presence of a finite surface diffuse
layer. The basic idea of the Gibbs-Tolman-Rowlinson-Widom
approach is the introduction of a sharp dividing surface S
[2–4]. The dividing surface is arbitrary but located within the
surface diffuse layer. The actual (physical) equimolar surface
and thereby the actual nuclear surface are fixed by the require-
ment that the contribution to the surface energy ES [R] ∼ A2/3

from the bulk energy Ebulk ∼ A should be eliminated, see
Eq. (14). The bulk density ρ0 of the neutrons and protons inside
the sharp equimolar surface is obtained using the experimental
data for the separation energy sq for each kind of nucleon.

The Gibbs-Tolman-Rowlinson-Widom conception of a
sharp equimolar surface allows one to derive the nuclear vol-
ume and, as a consequence, the pressure P (ρ0) and the equa-
tion of state for finite nuclei. In our consideration, we have per-
formed the calculations of a well-defined equation of state for
spherical nuclei and some nuclear characteristics, such as the
nuclear radius, the surface tension, the pressure, etc. Our nu-
merical calculations are based on the direct variational method,
the extended Thomas-Fermi approximation, and the effective
Skyrme nucleon-nucleon interaction. Applying the Gibbs-
Tolman-Rowlinson-Widom approach, we redefine the sur-
face and symmetry energies. Note that we do not use the
traditional leptodermous approximation and evaluate the
Coulomb energy taking into consideration the finite diffuse
layer of the proton distribution.

Performing the analysis of the equation of state P =
P (ρ0), we have extracted from P (ρ0) the partial contribu-
tions which occur due to the different sources: the A- and
X-independent bulk pressure Pvol(ρ0) caused by the bulk
energy of a symmetric nuclear matter, the surface (capillary)
pressure PA,capil(ρ0,X) ∼ A−1/3, the contribution from the
symmetry energy PA,sym(ρ0,X) ∼ X2, and the Coulomb force
contribution PA,C(ρ0,X). The corresponding numerical results
are shown in Fig. 1 for the 208Pb nucleus. The inclusion of
the surface (capillary) term Pcapil(ρ0,X) shifts the equilibrium
point ρ0,eq to larger values with respect to the ones in a nuclear
matter. Note also that the capillary pressure PA,capil(ρ0,X) is
connected to the surface tension coefficient σ (A,X) by the
classical Laplace relation. The action of the Coulomb pressure
PA,C(ρ0,X) is opposite the capillary pressure PA,capil(ρ0,X)
and shifts the equilibrium point to the smaller values of ρ0,eq.

The use of the Gibbs-Tolman-Rowlinson-Widom equimo-
lar radius Re allowed us to give a more realistic procedure for
an extraction of the nuclear surface tension coefficient from
the experimental data. The equimolar radius Re determines the
equimolar surface area Se in the absence of a diffuse layer. This
fact allows us to evaluate both the surface energy ESe

and the
surface tension coefficient (A,X) = ESe

/Se. Using the experi-
mental data within the wide interval of mass number 40 � A �
220 and the corresponding values of equimolar radii, we have
established the following A expansion for the surface tension
coefficient σ (A,X∗) = σ0 + σ1A

−1/3 with σ0 = (0.98 ± 0.03)
and σ1 = (0.75 ± 0.16) MeV fm−2. The obtained result for

the curvature correction σ1A
−1/3 allows one to estimate the

Tolman length ξ in nuclei, which is ξ = (−0.41 ± 0.07) fm.
We have evaluated the partial pressure PA,sym(ρ0,X) caused

by the symmetry energy. The partial pressure PA,sym(ρ0,X)
induces the polarization effect on the particle density ρ0,X

beyond the β-stability line. We have shown that the partial
pressure PA,sym(ρ0,eq) is positive and reduces the particle
density ρ0,X with respect the corresponding equilibrium
density ρ0,eq on the β-stability line. The partial pressure PA,sym

and the polarization effect are rather sensitive to the Skyrme
interaction parametrization (see the results for the SkM∗,
SLy230b, and KDE0v1 in Fig. 2). We point out that the eval-
uated equimolar radius Re of the nuclei does not necessarily
obey the saturation condition Re = r0A

1/3. That is caused by
the fact that we use the experimental data for the chemical
potentials to derive the bulk density within the equimolar
surface in agreement with the Gibbs-Tolman-Rowlinson-
Widom method. The corresponding experimental chemical
potentials (separation energy of nucleons) include the quantum
shell effects, the pairing correlation effects, etc., and give rise
to the nonmonotonic behavior of the nuclear equimolar radii
Re(A) in Fig. 5. Note also that the average interparticle distance
r0 becomes slightly A dependent (see the dashed line in Fig. 5).

Using the partial equimolar radii Re,q(A) separately for
both kinds of nucleon, we have evaluated the corresponding
nucleon rms radii

√
〈r2

q 〉 and the neutron-skin thickness
�rnp = √〈r2

n〉 −
√

〈r2
p〉. The evaluated values of the proton

rms radius
√

〈r2
p〉 for the Na isotopes (see Fig. 6) show a

slightly nonmonotonic behavior of
√

〈r2
p〉, which is caused

by the above-mentioned fluctuations of Re,p. Note also the
presence of the significant shift up of the proton rms

√
〈r2

p〉
(compare the dashed and dotted lines in Fig. 6) caused by
the surface layer corrections. The influence of the pairing and
shell effects on the neutron-skin thickness �rnp is illustrated in
Figs. 7–9 for Na, Sn, and Pb isotopes. As seen from Figs. 7–9,
the Gibbs-Tolman-Rowlinson-Widom concept of the sharp
equimolar surface allows one to describe a fine nonmonotonic
structure of the isovector shift �rnp. The sawlike behavior of
�rnp (see the open circles which are connected by the dotted
lines in these figures) reflects the even-odd and shell effects
in the nuclear binding energy and thereby in the nuclear radii.
In general, the value of the isovector shift �rnp is the sum
of two contributions: One �rnp,R is due to the different radii
(skin effect), and the other �rnp,a is due to the different shapes
(surface layer) of the neutron and proton distributions (halo
effect). The presence of the halo effect is illustrated in Fig. 10.
One can expect that the neutron halo effect appears more
significantly in light nuclei far away from the stability line.
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