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Triaxiality softness and shape coexistence in Mo and Ru isotopes
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A systematic search of triaxial ground state and shape coexistence in Ru and Mo isotopes is done using the
relativistic-Hartree-Bogoliubov formalism using density-dependent zero and finite range NN interactions, and
with separable pairing. Shape coexistence and triaxiality softness manifest themselves in a clear manner in Mo
isotopes and only triaxiality softness is very clear in all of the Ru isotopes. Both point-coupling and meson-
exchange models give similar results with few exceptions. A very good agreement is found with the available
experimental data and with the macro-microscopic finite range droplet model. The findings are also in good
agreement with the self-consistent Hartree-Fock-Bogoliubov calculations based on the interaction Gogny-D1S
force.
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I. INTRODUCTION

Several attempts have been made in the past decades to
explain the shape coexistence in the atomic nuclei [1,2].
Many nuclear phenomena that are linked to the existence
of triaxiality, such as wobbling motion in the rare-earth
region [3] and chiral structures in the lanthanide region [4], are
considered as evidences of shape coexistence. A nucleus may
take different shapes varying from spherical to quadrupole,
octupole, and higher order multipole deformations. These
shapes are a consequence of the sensitive interplay between
collective degrees of freedom and single particle energies.
This interplay will lead to phase transition along an isotopic
and isotonic chain [5]. A systematic review of the existing
experimental data and the theoretical models of nuclei in
different regions of the nuclear chart such as in the Z ≈ 40 and
N ≈ 60 has been done in Ref. [1]. The mass region A ≈ 100,
represents a fertile ground for the search and study of shape
coexistence [6–9], since it has been characterized by a shape
instability, and thus shape coexistence is highly predicted in
this region. Shape evolution for several isotopic chains in this
region has been studied through the self-consistent mean-field
(SCMF) approximation based on the Gogny-D1M energy
density functional (EDF) [8,9], the potential energy surfaces
(PES) using Skyrme HF+BCS [10], and relativistic mean field
(RMF) with BCS pairing [11].

The isotopic chain of Mo, was recently under extensive
study both experimentally and theoretically [8,12–18]. The
different models used are the Coulomb excitation [12–14],
microscopic Bohr collective model [15], and self-consistent
Hartree-Fock-Bogoliubov (HFB) calculations based on the
interaction Gogny D1S [16]. However, very recently Nomura
et al. [8,9] has done a detail theoretical study based on
Gogny-like interactions. In particular, the structural evolution
of even-even Ru, Mo, Zr, Sr nuclei [8], and Ge, Se nuclei [9]
have been studied within the SCMF approximation based on
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the Gogny-D1M energy density functional. This calculation
has fully explored the triaxial degrees of freedom and the shape
coexistence in these nuclei. The spectroscopic properties have
also been done for these nuclei with the help of a fermion-
to-boson mapping procedure. This is very important as to
clarify to which extent both triaxiality and shape coexistence
are reflected in the spectroscopic properties of these nuclei.
A γ γ angular correlation experiment has been performed for
selected Mo isotopes [17,18]. In this experiment, spin assign-
ments, multipole matrix ratios, and lifetimes showed evidences
for the shape coexistence in 96,98Mo. The experimental findings
are theoretically supported by the potential energy surface
(PES) studies using the Skyrme density functional with SLy6
functional.

In the present analysis, we have done a systematic calcula-
tion in the search of triaxial ground state properties and shape
coexistence for 92–108Mo and 96–112Ru isotopes. The systematic
constrained triaxial calculation is done in the self-consistent
mean field model—the relativistic-Hartree-Bogoliubov (RHB)
with density-dependent zero and finite range NN interac-
tions. The model parameters used are the density-dependent
DD-ME2 [19] and DD-PC1 [20]. Pairing correlations are
considered in the separable pairing model [21]. A systematic
comparison is made with calculated values and experimental
data [22–25], macro-microscopic finite range droplet model
(FRDM) [26] as well as with the self-consistent HFB calcula-
tions based on the interaction Gogny-D1S force [27].

This paper is organized as follows. In Sec. II a general
overview of the RHB formalism is presented. The numerical
results of the calculations are discussed and compared with
the results from others in Sec. III. Summary and conclusions
are in Sec. IV.

II. THEORETICAL FRAMEWORK

In covariant density functional theory (CDFT) different
models are used to describe the nucleus [19,20,28–30]. In
this article we will use two types of these models, mainly:
the density-dependent meson-exchange model and a density-
dependent point-coupling model. In the first model the range
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of the interaction is finite and related to the mass of the meson,
while in the second model the mesons are absent and thus uses
a zero range interaction. Each of these models is represented
here by their corresponding parameter sets as DD-ME2 [19]
and DD-PC1 [20]. They provide a very successful and an
excellent description of different ground states and excited
states over the entire periodic table [19,31–34]. The details of
each model are discussed below.

A. Lagrangian density for the meson-exchange model

In the meson-exchange models [19], the nucleus is de-
scribed as a system of point-like nucleon, Dirac spinors,
interacting via the exchange of mesons with finite masses
leading to the interactions of finite range. The starting point of
CDFT is a standard Lagrangian density [35]

L = ψ̄(γ (i∂ − gωω − gρ �ρ �τ − eA) − m − gσσ )ψ

+ 1
2 (∂σ )2 − 1

2m2
σ σ 2 − 1

4	μν	
μν + 1

2m2
ωω2

− 1
4

�Rμν
�Rμν + 1

2m2
ρ �ρ 2 − 1

4FμνF
μν (1)

which contains nucleons described by the Dirac spinors ψ
with the mass m and several effective mesons characterized by
the quantum numbers of spin, parity, and isospin. They create
effective fields in a Dirac equation, which corresponds to the
Kohn-Sham equation [36] in the nonrelativistic case.

The Lagrangian (1) contains as parameters the meson
masses mσ , mω, and mρ and the coupling constants gσ , gω, and
gρ . e is the charge of the protons and it vanishes for neutrons.
The density-dependent meson-nucleon coupling model has an
explicit density dependence for the meson-nucleon vertices.
The coupling constant dependence is defined as

gi(ρ) = gi(ρsat)fi(x), (2)

i can be any of the three mesons σ,ω, and ρ where the density
dependence is given by

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
(3)

for σ and ω and by

fρ(x) = exp(−aρ(x − 1)) (4)

for the ρ meson. x is defined as the ratio between the baryonic
density ρ at a specific location and the baryonic density
at saturation ρsat in symmetric nuclear matter. The eight
parameters in Eq. (3) are not independent, but constrained
as follows: fi(1) = 1, f

′′
σ (1) = f

′′
ω(1), and f

′′
i (0) = 0. These

constraints reduce the number of independent parameters for
density dependence to three. This model is represented in the
present investigations by the parameter set DD-ME2 [19].

B. Lagrangian density for the point-coupling model

In complete analogy to the meson-exchange phenomenol-
ogy, the point-coupling model represents an alternative for-
mulation of the self-consistent relativistic mean-field frame-
work [20,37–40]. The effective Lagrangian for the density-
dependent point-coupling model [20,41] that includes the
isoscalar-scalar, isoscalar-vector, and isovector-vector four-

fermion interactions is given by

L = ψ̄(iγ · ∂ − m)ψ

− 1

2
αS(ρ̂)(ψ̄ψ)(ψ̄ψ) − 1

2
αV (ρ̂)(ψ̄γ μψ)(ψ̄γμψ)

− 1

2
αT V (ρ̂)(ψ̄ �τγ μψ)(ψ̄ �τγμψ)

− 1

2
δS(∂vψ̄)(∂vψ̄) − eψ̄γ · A

(1 − τ3)

2
ψ. (5)

It contains the free-nucleon Lagrangian, the point-coupling
interaction terms, and, in addition to these two, the model
includes the coupling of the proton to the electromagnetic field.
The derivative terms in Eq. (5) accounts for the leading effects
of finite-range interactions that are crucial for a quantitative
description of the nuclear properties. The functional form of
the point-couplings chosen is

αi(ρ) = ai + (bi + cix)e−dix, (i = S,V,T V ), (6)

where x = ρ/ρsat, and ρsat denotes the nucleon density at
saturation in symmetric nuclear matter. In the present work,
we have used the recently developed density-dependent point-
coupling interaction DD-PC1 [20]. In the current investigation,
the triaxial RHB with separable pairing model is used (for more
details see Refs. [21,42]).

The constrained calculations are performed by imposing
constraints on both axial and triaxial mass quadrupole mo-
ments. The potential energy surface (PES) study as a function
of the quadrupole deformation parameter is performed by the
method of quadratic constrained [43]. The method of quadratic
constraints uses an unrestricted variation of the function

〈Ĥ 〉 +
∑

μ=0,2

C2μ(〈Q̂2μ〉 − q2μ)
2
, (7)

where 〈Ĥ 〉 is the total energy, (〈Q̂2μ〉 denotes the expectation
values of mass quadrupole operators,

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2, (8)

q2μ is the constrained value of the multipole moment, and C2μ

is the corresponding stiffness constant [43]. Moreover, the
quadratic constraint adds an extra force term

∑
μ=0,2 λμQ̂2μ

to the system, where λμ = 2C2μ(〈Q̂2μ〉 − q2μ)
2

for a self-
consistent solution. This term is necessary to force the system
to a point in deformation space different from a stationary
point. The augmented Lagrangian method [44] has also been
implemented in order to resolve the problem of convergence of
the self-consistent procedure which diverges while increasing
the value of stiffness constant C2μ used in the procedure.

III. RESULTS AND DISCUSSION

Both Mo and Ru lie in the region were deformation is
mainly due to the filling of the N = 50 shell gap. Thus sudden
changes in nuclear shape [1], shape coexistence, and triaxial
ground state [45–50] are expected. Systematic constrained
triaxial calculations mapping the quadrupole deformation
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TABLE I. Location of the ground state indicated by (β0,γ 0) for
Ru isotopes using DD-ME2 and DD-PC1 parametrizations.

Nucleus DD-ME2 DD-PC1

96Ru (0.15,10◦) (0.15,5◦)
98Ru (0.22,20◦) (0.18,5◦)
100Ru (0.25,05◦) (0.23,5◦)
102Ru (0.25,15◦) (0.25,17◦)
104Ru (0.25,22◦),(0.4,0◦) (0.27,22◦)
106Ru (0.25,25◦) (0.27,22◦)
108Ru (0.25,40◦) (0.25,40◦)
110Ru (0.23,55◦) (0.23,55◦)
112Ru (0.24,55◦) (0.24,55◦)

space defined by β2 and γ have been performed for 92–108Mo
and 96–112Ru isotopes, using both DD-ME2 and DD-PC1
parametrizations. For each nuclei two contour plots have been
made one each parametrization to investigate the location of a
triaxial ground state, and the possibility of shape coexistence.
The location of the ground state in the β-γ deformation space
is indicated by the point (β0,γ 0).

The location of the ground state is shown in Table I for Ru
isotopes and in Table II for Mo isotopes and is extracted from
Figs. 1, 2, 3, and 4. In Figs. 1 and 2, we show the contour plots
for Ru isotopes using DD-ME2 and DD-PC1 parameter sets,
respectively. As can be seen from Fig. 1 the ground state for the
lightest considered Ru (N = 52) isotopes is weakly deformed
and soft in the γ direction. As the number of neutrons increases
the value of β2 deformation in the ground state increases and
the shape starts to deviate from the spherical shape and starts
to be axially deformed (oblate). But the softness in the γ
direction becomes stronger. As we reach N = 60, we notice
that the ground state becomes triaxial and still soft in the γ
direction. The potential energy surfaces indicate the existence
of an axial minimum in addition to the triaxial minimum.
The axial minimum is located near β2 = 0.4 and γ = 0. The
difference in energy between these two minimums is around
0.3 MeV. This a clear suggestion of shape coexistence in 104Ru.
However, this minimum disappears for N = 62 and does not
show up in the DD-PC1 results shown in Fig. 2. Thus we
tend to think that shape coexistence does not exist in this
nuclei.

TABLE II. Location of the ground state indicated by (β0,γ 0) for
Mo isotopes using DD-ME2 and DD-PC1 parametrizations.

Nucleus DD-ME2 DD-PC1

92Mo (0.0,0◦) (0.0,0◦)
94Mo (0.15,10◦) (0.05,35◦)
96Mo (0.23,25◦), (0.20,0◦) (0.22,22◦)
98Mo (0.25,10◦) (0.22,32◦), (0.23,10◦)
100Mo (0.25,20◦),(0.22,60◦) (0.25,20◦)
102Mo (0.33,20◦), (0.40,0◦) (0.33,20◦)
104Mo (0.37,17◦),(0.22,55◦) (0.38,17◦),(0.23,55◦)
106Mo (0.39,17◦),(0.22,55◦) (0.36,17◦),(0.23,55◦)
108Mo (0.37,20◦),(0.24,55◦) (0.37,20◦),(0.24,55◦)

FIG. 1. Potential energy surfaces of the Ru isotopes from neutron
number N = 52 to 68 in the (β,γ ) plane, obtained from a triaxial RHB
calculations with the DD-ME2 parameter set. The color scale shown
at the right has the unit of MeV, and scaled such that the ground state
has a zero MeV energy.

Further, as the number of neutrons increases to N = 64 and
beyond, the ground state minimum moves from the triaxial
shape into an axial oblate shape. These results are in full
agreement with the results shown in Fig. 1 of Ref. [8] using
the IBM based on Gogny-D1M energy density functional
theory. However, Fig. 32 in [1] shows static and dynamic
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FIG. 2. The same as in Fig. 1, but with different parameter set
DD-PC1.

quadrupole moment data, which suggests the presence of shape
coexistence in 104Ru.

The existence of two shapes is better seen in the case of
Mo isotopes than in the case of Ru isotopes. In 92,94Mo, the
ground state is nearly spherical with some degree of γ softness.
However, 94Mo is more deformed, near prolate, than 92Mo.
Triaxial shape ground state starts to manifest itself in 96Mo,
and as the number of neutrons increases, γ softness and shape
coexistence become clearer. In Table II we list the ground state

FIG. 3. Potential energy surfaces of the Mo isotopes from neutron
number N = 50 to 66 in the (β,γ ) plane, obtained from a triaxial RHB
calculations with the DD-ME2 parameter set. The color scale shown
at the right has units of MeV, and scaled such that the ground state
has a 0 MeV energy.

deformation of all the Mo isotopes. In DD-ME2 calculations
the potential energy surfaces of the following nuclei are found
to possess two ground state minimum, 96,100,102,104,106,108Mo,
while 92,94,98Mo have only one.

96,102Mo have a triaxial and prolate axial minimum, and the
difference in energy between the two minima is around 0.3 and
0.17 MeV, respectively. On the other hand, 100,104,106,108Mo
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FIG. 4. The same as in Fig. 3, but with different a parameter set
DD-PC1.

have a triaxial and oblate ground state with an energy
difference between the two minima is 0.2 MeV for 100Mo,
0.17 MeV for 104Mo, zero for 106Mo, and up to 0.9 MeV for
108Mo.

The DD-PC1 calculations slightly vary from the DD-ME2,
it suggests that only 98,104,106,108Mo displays multiple minima.
98Mo has two triaxial ground state minima, while 104,106Mo
has triaxial and axial (oblate) ground states. The difference

in binding energy between the two minima is 0.18 MeV for
98Mo, 0.3 MeV for 104Mo, 0.2 MeV in 106Mo, and 0.9 MeV
for 108Mo.

We can notice that with an increase of the number of
neutrons the ground state minimum becomes near oblate and
the difference in energy between the two minimum increases,
thus one would expect the there is no shape coexistence beyond
108Mo. This indeed is in agreement with the results of Ref. [8],
with the results in Fig. 6 of Ref. [16] and the results from
Ref. [11].

The main difference between the results of DD-ME2 and
DD-PC1 is that γ softness covers a wider range of values of γ
deformation in the case of the DD-PC1 than what obtained with
DD-ME2, thus eliminating the possibility of the formation of
a new minimum.

The transition of the ground state along the isotopic chains
of Mo and Ru is smooth. This is well seen in Figs. 1, 2, 3,
and 4, where at the beginning of the isotopic chain the location
of the ground state minimum moves from near prolate shape at
the beginning of the chain to near the oblate shape at its other
end. This is due to the development of a maximum or what
looks like a hill pushing the ground state minimum away from
the spherical shape into an a near prolate minimum as can be
seen for Ru isotopes. For example, in Fig. 1 the ground state
for 96Ru is near spherical, and the uprising hill is pushing it to
the right to become axial (prolate). The hill size is increasing
and starts to push the ground state to be triaxial and away from
the prolate or oblate shapes as seen in 104Ru. Finally pushing
it to be near oblate in starting from 108Ru. Thus, one can see
that the shape transition is smooth through the wide range
of triaxiality, and there are no sudden changes in the nuclear
shape. This is in full agreement with the results obtained with
HFB based on Gogny-D1S interaction [27], Gogny-D1M [8],
and relativistic mean field [11].

One can relate this smooth transition of the ground state
along the isotopic chains with the evolution of several ground
state nuclear properties along an isotopic chain. For that we
study the evolution of binding energy (BE), proton radii (Rp)
and neutron radii (Rn), two neutron separation energies (S2n),
and root mean square charge radii (Rc) with δ〈r2

c 〉50,N =
〈r2

c 〉N − 〈r2
c 〉50, for both Ru and Mo isotopic chains and the

results are shown in Figs. 5, 6, 7, 8, 9, and 10. The plotted
values are taken at the ground state defined in Tables I and II.

Figures 5 and 6 show the results of the total BE and binding
energy per nucleon (BE/A) for Mo and Ru isotopic chains,
calculated using the RHB model with density dependent force
parameters DD-ME2 and DD-PC1. The results vary smoothly
with an increase of the number of neutrons. The comparison
is shown with the available experimental data [22] and with
the predictions made by the macro-microscopic finite range
droplet model (FRDM) [26]. It is seen that our results are in
good agreement with each other and with the experimental
data. However, the results with DD-ME2, differ slightly with
a constant factor throughout the region of study.

In Fig. 7, we show two neutron separation energies (S2n),
and compared with the available experimental data [22–25]
and FRDM [26]. It can be seen that our calculations reproduce
well the experimental separation energies. The results for the
neutron (Rn) and proton radii (Rp) and the root mean square
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FIG. 5. Binding energy per nucleon (a) and the total binding
energy (b) of the Mo isotopes using both DD-ME2 and DD-PC1 as
a function of neutron number. Comparison with FRDM [26] results
and experimental data [22] are shown.

charge radii (Rc) are shown in Figs. 8 and 9, respectively.
Results obtained for δ〈r2

c 〉50,N are also shown in Fig. 10. Our
results for Rn, Rp, and Rc and their indication of the smooth
transition of the nuclear shape are consistent with the results
obtained in Fig. 3 in Ref. [16]. There is a good agreement
with the experimental data [16,23–25] available in case of
rms charge radii. Overall results for the ground state bulk
properties calculated are also found to be in agreement with
the self-consistent HFB calculations based on the interaction
Gogny-D1s force [27].

We notice all of these quantities are, in general, varying
smoothly with the neutron numbers, which confirm our
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FIG. 6. Binding energy per nucleon (a) and the total binding
energy (b) of the Ru isotopes using both DD-ME2 and DD-PC1 as
a function of neutron number. Comparison with FRDM [26] results
and experimental data [22] are shown.
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FIG. 7. Two neutron separations energies of Mo and Ru isotopes
using both DD-ME2 and DD-PC1 as a function of neutron number.
Comparison with FRDM [26] results and experimental data [22–25]
are shown.

observation of a smooth transition in the ground state among
the nuclei under consideration.

A systematic investigation of the ground state properties
of these chains has been done in [51]. However, it is not
clear whether they include triaxial degree of freedom in their
calculations, in Fig. 8 they show the quadrupole deformation
as a function of the neutron number, but there is no indication
of the value of γ . However, since these chains show sign of
triaxiality softness in the ground state, we can notice that our
results shown in Tables I and II are consistent with the results
of Fig. 8 in [51].

Our results are independent of the choice of the model
used in covariant density functional theory and the parameter
set. As we mentioned in the beginning of Sec. II, we have
used two different models represented by two sets, DD-ME2
and DD-PC1. The obtained results from both of these models
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FIG. 8. Neutron and proton radii of Mo and Ru isotopes using
both DD-ME2 and DD-PC1 as a function of neutron number.
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FIG. 9. Charge radius for Mo and Ru isotopes using both DD-
ME2 and DD-PC1 as a function of neutron number, compared to
experimental data from Ref. [25].

is consistent with each other with very limited variations. In
Ref. [11] the authors use point coupling model and resort to the
parameter set PC-K1, we used DD-PC1, and they show poten-
tial energy surfaces for the Mo isotopes in Fig. 5. The result is
in good agreement with ours, mainly in the predication of shape
coexistence, the smooth transition of the ground state and the
smooth evolution of the charge radius with the neutron number.

IV. CONCLUSION

We have used the relativistic-Hartree-Bogoliubov (RHB)
formalism with separable pairing to perform a systematic
calculation along two isotopic chains, Ru and Mo, for the
search of triaxial ground state and shape coexistence. The
results of our investigation can be summarized as follows:

(i) Shape coexistence does not show up in any of the Ru
isotopes except in 104Ru using DD-ME2 parametriza-
tion. But triaxiality softness is clear in all of these
isotopes.

A
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2
)

FIG. 10. δ〈r2
c 〉50,N for Mo and Ru isotopes using both DD-

ME2 and DD-PC1 as a function of neutron number, compared to
experimental data from Refs. [23–25].

(ii) Shape coexistence and triaxiality softness manifest
themselves in a clear manner in Mo isotopes.

(iii) At the beginning of each isotopic chain, the ground
state has a near prolate shape, but as the number
of neutrons increases the shape smoothly move into
triaxiality and then into the near oblate shape toward
the end of the chain.

(iv) The results we obtained is independent of the choice
of model and parameter set as it agrees with the results
obtained in [11].

(v) A comparison of our results with those in
Refs. [8,16,27,51] shows very good agreement with
the majority of the calculations.

(vi) The results of the calculations for the ground state bulk
properties are in good agreement with the available
experimental data and FRDM. It also reflects the
smooth transition of the ground state and the softness
in the γ direction.
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