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It is seen by a coupled-channel NN scattering calculation that in the intermediate two-baryon N� or ��

system the width of the state is greatly diminished due to the relative kinetic energy of the two baryons, since
the internal energy of the particles, available for pionic decay, is smaller. Specifically, a state-dependent effect
arises from the centrifugal barrier in L �= 0 N� or �� systems. The double � width can become even smaller
than the free width of a single �. This has some bearing to the interpretation of the d ′(2380) resonance recently
discovered at COSY.
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I. INTRODUCTION

Recently a clear and prominent resonance structure was
observed at the WASA@COSY detector of Forschungszen-
trum Jülich in double pionic fusion pn → dπ0π0 [1] and later
in isospin associated pn → dπ+π− but not in the isovector
channel pp → dπ+π0 [2]. Its mass is reported as 2380 MeV,
somewhat below two �(1232) masses, and its width as
70 MeV, and in the particle zoo it has been nominated as
d ′(2380). The structure is also seen in nonfusion reactions with
isotopically freer four-body final states NNππ [3,4]. Thus,
along with spin-polarized measurements [5,6], the internal
quantum numbers I (JP ) = 0(3+) have been also fixed.

The interpretation of this resonance has been suggested as
a genuine dibaryon both without [7,8] and with explicit quark
level calculations [9–11]. Considering that the resonance,
whatever it is, decays mainly through ��, it is understandable
that the latter calculations indicate a dominance of �� in
the state wave function (about 2/3) and the rest perhaps of
a more exotic six-quark structure. The quota of the six-quark
contents would decrease the width of the resonance below two
times the free � width suggested in Refs. [7,8]. In contrast, a
dynamic three-body calculation [12,13] can reproduce both
the mass and width without extra explicit quark contents
beyond conventional hadrons, nucleons, �’s, and pions. These
calculations, however, contained a somewhat fictitious stable
�′ to simulate the effect of � in πN interaction, which might
raise questions about the small width of the ensuing resonance.

It is the aim of this paper to study in a simple phenomeno-
logical way the effect of the relative kinetic energy between the
two baryons to see how or if it decreases the effective decay
width of the N� and �� two-baryon systems. The isobar
intermediate components are generated to the NN states by
the coupled channels method; general reviews on this method
can be found, e.g., in Refs. [14,15]. The Fourier transforms of
these wave functions, first obtained from coupled Schrödinger
equations in the coordinate representation, will then be used
to give the momentum (and kinetic energy) distributions.

Obviously this kinetic portion is not available for the
(internal) pionic decay of the �’s. Because, the wave function
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is necessarily also spatially constrained (must die asymptot-
ically) the kinetic energy is not arbitrary and its average is
finite. This kinematic suppression of the width was taken into
account long ago in calculations for pp → dπ+ [16], but the
width results were never explicitly published. Further, also a
strong sensitivity can be expected on the relative orbital angular
momentum of the baryons, which must give rise to quantized
energy levels in closed channels. This is due to the centrifugal
potential barrier—another reflection of the nonzero kinetic en-
ergy. Actually a rotational spectrum ∼40 LN�(LN� + 1) MeV
was seen on top of the � and nucleon mass difference in a
coupled channels NN − N� scattering calculation [17], in
good agreement with the isospin one “dibaryon” masses given
in Ref. [18]. This would correspond to a centrifugal barrier
height for baryons approximately at one femtometer distance
from each other, roughly the distance at which the N� wave
function maximizes.

It is trivially clear that in bound N� or �� states the
binding energy decreases the widths due to the smaller
decay phase space. It should be stressed that the above
attenuation mechanism, due to the intermediate state momenta
and kinetic energy, is different from this binding energy
suppression and has largely been omitted. Obviously the extra
narrowing of these states is highly relevant in the context of
possible interpretation of the d ′(2380) as a �� state. This
difference is also manifest in the discussions of the present
work concerning the resonant coupling in NN scattering
with arbitrary external energies. In this case, in contrast
to quasibound state calculations, the nonpionic two-nucleon
decay is actually elastic scattering. Therefore, only pionic
inelasticity involving the width is treated explicitly.

First, the system with a single � is treated in Sec. II to
introduce the basic ideas and kinematics before proceeding
to �� of particular interest in the context of the d ′(2380)
resonance in Sec. III.

II. N� STATES

In many works (e.g., on pion production reactions such as
p + p → d + π+) the effect of the � is taken into account
by simply including the � − N mass difference and width
in second-order perturbation calculations into the energy
denominator as E − �M + i�/2. As a trivial consequence,
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FIG. 1. The 5S2(N�) wave function at energies 400, 578, and
765 MeV without the width (dashed, solid, and dotted curves,
respectively). The dash-dotted curve has the width included at
578 MeV—the real part of the N� wave function shown. In this
case, the normalization is associated with the NN wave function
asymptotic form uNN (r) ∼ sin(kr − π + δ2) and the wave function
is dimensionless.

in gross features this gives the energy dependence of the
total cross section right, which in this example around
the resonant peak is dominated by a single partial wave
chain 1D2(NN ) → 5S2(N�) → dπ+

p−wave, (with also a signif-
icant contribution from 3F3(NN ) → 5P3(N�) → dπ+

d−wave,
affecting importantly in differential and spin observables
[19]). In the momentum (or energy) representation, this
prescription is obvious and simple. However, the changes
suggested in the introduction to the N� kinematics are
not necessarily accounted for. Further, in different partial
waves, the centrifugal barrier affects the magnitude of the
� contribution and can displace the peaking, so that differ-
ential observables displaying interferences do not come out
right [20].

As the present calculations are performed in the config-
uration space, it is also illustrative to see explicitly how
the peaking itself arises in this representation with wave
functions obtained from the appropriate coupled NN − N�
Schrödinger equation [19]. For the NN angular momentum
state (LS)J , the N� wave functions are then generated
from the asymptotically free radial NN wave function with
momentum k and normalization uNN (r) ∼ kr jL(kr + δL).
Figure 1 shows now the most important component 5S2(N�)
of the initial baryonic wave function in the pion production
reaction p + p → d + π+. Below the nominal N� mass, this
channel is obviously closed and exponentially decreasing as a
function of the distance (dashed curve for Elab = 400 MeV).
At the N� threshold, lacking either positive or negative
kinetic energy, the wave function becomes essentially a straight
line outside the potential range r � 2.5 fm (solid curve at
578 MeV). Depending on the details of the energy and the
interaction this could, in principle, be a horizontal constant,

maximizing any overlap transition integrals (in the case of
this reaction with the long-ranged deuteron and relatively low
energy pion). It may be noted that already at 600 MeV this line
crosses the r axis at 4.6 fm, introducing the first oscillation at
distances small enough to cause significant overlap reduction.
At still higher energies, oscillations attain shorter wave lengths
and begin to cancel the transition matrix integral (dotted curve
at 765 MeV). As a consequence there is a strong peaking of
the production cross section at the N� threshold far higher
than the data [21].

However, once the � width is included in the equation
of motion as a constant negative imaginary potential (as
presented in the following discussion), the channel becomes
again asymptotically closed. As can be seen (dash-dotted
curve at 578 MeV), the wave function becomes strongly
moderated at short distances and the oscillating wave will be
exponentially attenuated at large distances with a consequent
suppression of the transition at and above the N� threshold.
So the natural inputs for the configuration space equation of
motion, the Schrödinger equation, lead to similar resonance
like behavior as can be obtained by explicitly forcing it
by hand in the momentum and energy representation (see,
e.g., Refs. [22,23]). With the closure of the channels also,
similar quantization phenomena appear as for bound states
but, however, smeared with the uncertainties associated with
the width. As stated previously, the centrifugal barriers (or
the Coulomb force if necessary) can be included with im-
portant effects on the differential observables with interfering
amplitudes (for p + p → d + π+, see, e.g., Refs. [16,19] vs
Refs. [24–26]).

The width is normally taken to be the free width of the �
associated with the available center-of-mass NN energy. How-
ever, as will be seen, also in this dynamic input quantity the
effect of the relative N� kinetic energy is significant and de-
pendent on the angular momentum. This should be subtracted
from the internal energy available for the � decay, so that
effectively the two-baryon width becomes smaller than the free
width (which would correspond to zero relative energy of the
baryons).

Further, in these reactions in different partial waves also the
N� centrifugal barrier directly diminishes the wave functions.
Although this suppression is particularly sensitive to LN�,
even the orbital angular momentum of the initial nucleons
may favor transitions into N� in some sense. Namely, within
the interaction range a reduction of the centrifugal barrier
can compensate the N� mass difference in the excitation
if LN� < LNN , as seen in Ref. [17] as an explanation for
T = 1 enhancements (T = 0 dibaryons). From the above
considerations, it is clear that just a single number cannot
account for the effective two-baryon pole position in different
partial waves.

Some earlier works [27,28] attempt to take into account
the N� recoil by plausible approximations. Mostly these end
up with some scaling down of the � width but depending
directly on the external NN energy. Although also the angular
momentum part of the kinetic energy may be heuristically
included, the applicable N� wave functions are not explic-
itly involved. In the most ambitious internally consistent
dynamic approach, Arenhövel [29] calculates the self-energy
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FIG. 2. Basic kinematics of the N� (left) and �� (right)
decays. The thick lines present the �’s. The relative momenta q(i)

between the pion and the nucleon are associated with the � internal

energy (invariant mass) by si =
√
q2

(i) + μ2 +
√
q2

(i) + M2. Further
dependencies on the relative baryon momentum p are given in the
text.

contribution to the N� binding energy from both one pion
exchange and pion emission and absorption on the same
nucleon. In addition to the width (involving an integration
over momenta), due to the possibility of on-shell pions, the
ensuing potential is complex. Combined with ρ exchange, he
finds a (T = 2, J P = 2+) bound state with a very strongly
suppressed width. In this case, the suppression is largely
due to the effect of the Pauli principle on the final nucleons
[29] (treated in the impulse approximation as noninteracting),
but the basic result as an integral over N� momentum is,
in principle, similar to the simpler treatment of the present
work.

The aim of the present paper is less ambitious with the
emphasis on the suppression of only the known and observable
� width without paying much attention to the N� interaction,
other than the centrifugal potential. In particular, I treat
NN scattering (rather than possible bound state decay as
in Ref. [29]) through the N� and �� threshold energy
regions. With the coupled channels, the treatment is exact
at the two-body level (although the impulse approximation in
Ref. [29] is certainly satisfactory with the quantum numbers
relevant to the predicted bound state).

Reference [16] on the reaction pp → dπ+ considered
among other things the above discussed kinematic effects
explicitly by calculating the width into the three-body final
state of Fig. 2 as an average over kinematically allowed
momenta

�3 = 2

π

∫ pmax

0 |�N�(p)|2 �(q) p2 dp∫ ∞
0 |�N�(r)|2 r2 dr

. (1)

Here �N�(p) is the Fourier transform of the appropriate partial
wave component of the N� wave function and �(q) is the
free � → Nπ width with q as the relative Nπ momentum.
The maximum relative N� momentum which still allows the
pionic decay is obtained by

p2
max = λ(s,(M + μ)2,M2)

4s

= [s − (M + μ)2 − M2]2 − 4M2(M + μ)2

4s
(2)

from the nucleon and pion masses M and μ, respectively, and
the total c.m.s. energy

√
s. The triangle function λ is introduced

in its various forms, e.g., in Ref. [30]. The physically allowed
pion momentum is then constrained by the relative baryon
momentum through the internal energy of the �

s1 = (
√

s −
√

M2 + p2 )2 − p2 (3)

to smaller values

q2 = (s1 − M2 − μ2)2 − 4μ2M2

4s1
. (4)

Starting with a reasonable guess for the width(s), the system
is solved iteratively until stable value(s) have been obtained.

Besides �3 Ref. [16] and later work with πd final states also
included the explicit contribution from this cross section so that
the equality �3 + (σdπ/σtot)�tot = �tot was self-consistently
satisfied, when �tot was used in the coupled-channels calcu-
lation, giving σtot as the total inelasticity and the consequent
baryon wave functions to calculate the NN → dπ amplitudes.
Here the latter term is assumed to be the two-body (dπ )
contribution �2 to the total width. Although the present work
is not aimed at pion production per se, this prescription is
nevertheless mainly used in this section. The effect of �2 is
negligible for NN partial waves other than 1D2 and 3F3, where
it can contribute about 10–20%. It may be noted that, of course,
this increases the width somewhat and thus acts against the
suppression effect claimed here.

Finally, as the free � width input I use a fit to data [31]

�(q) = 142 (0.81 q/μ)3

1 + (0.81 q/μ)2
MeV (5)

with the characteristic p-wave resonance behavior and a soft
form factor.

In addition to the limiting constraints on allowed momenta
in Eq. (1), a decisive input necessary is the wave function of the
N� intermediate state, assuming it to originate from, e.g., NN
scattering. In this case, perturbation theory with �’s is prob-
lematic, since there are no unperturbed N� wave functions at
hand to start with. However, the more exact coupled-channels
approach offers probably the best candidates for such wave
functions, and this method is used here. The coupled system
of Schrödinger equations is solved for each incident nucleon
state with the phenomenological Reid potential [32] as the
starting point. The old age of the interaction does not matter
much, since once the coupling to the excited intermediate N�
state is invoked, additional strong attraction is gained, which
must, anyway, be counteracted to avoid double counting. This
is performed by changing the diagonal NN part so that the
total interaction reproduces the phase shifts [33] reasonably
well below the resonance (or N� threshold). Reference [34]
presents such a change to the most important and sensitive
NN states 1D2 and 3P1 (in the original Reid potential) to
be used in this section. An extension of the potential to the
necessary higher partial waves 3F3 and 3D3 is provided by
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Day in Ref. [35]:

V (3F3) = 10.463[(1 + 2/x + 2/x2)e−x/x − (8/x + 2/x2)e−4x/x] − 729.25e−4x/x + 219.8e−6x/x, (6)

VC(3D3 − 3G3) = −10.463e−x/x − 103.4e−2x/x − 419.6e−4x/x + 9924.3e−6/x, (7)

VT(3D3 − 3G3) = −10.463[(1 + 3/x + 3/x2)e−x/x − (12/x + 3/x2)e−4x/x] + 351.77e−4x/x − 1673.5e−6x/x, (8)

VLS(3D3 − 3G3) = 650e−4x/x − 5506e−6x/x, (9)

with x = 0.7r (r in femtometers). With the N� coupling,
as stated above, these need an additional central repulsion
(fitted below the resonance at 300 and 450 MeV to the energy
dependent pp and np phases of Ref. [33], including the most
important N� or �� component):

VC(coupled) = VC(3F3) + 2700e−5x/x ,

VC(coupled) = VC(3D3 − 3G3) + 2800e−7x/x. (10)

The NN → N� transition potential described in Ref. [16]
has been fine-tuned to give the height of the pp → dπ+ peak
at the right place ≈580 MeV and may be trusted here, too.
This peak is possibly the most sensitive probe of the transition
potential. The potential involves pion and ρ-meson exchanges.
The latter may be described by contact terms in recent effective
field theories, but the main thing in this context is to have a
transition potential which agrees with data. The role of the
width, in turn, is to act as a constant imaginary “potential”
in the N� channels of the coupled Schrödinger equations
and produce inelasticity. It goes without saying that unitarity
is not prevailed as in general not with optical potentials. At
the two-baryon level, this is probably closest one can get to
reality in the case of pion production. It is useful to note that
besides introducing inelasticity the inclusion of the width also
acts as effective repulsion; for moderate inelasticities, more
imaginary interaction means less attraction.

Figure 3 shows the effective widths of the N� states as
functions of the total c.m.s. energy, i.e., the “dibaryon” mass
for some representative configurations. For the NN initial
states 1D2 and 3F3, the criterium for their choice in mainly
the importance: The orbital angular momentum decrease in
transitions to 5S2(N�) and 5P3(N�) favors the formation of
N� (solid and dash-dotted curves, respectively). A secondary
criterium was to keep the transition potential radially the same
by limiting the discussion to the spin changing tensor part and
thus minimizing inessential diversions (the spin-spin part is
excluded in these states). It can be seen that the N� angular
momentum tends to decrease the width as anticipated earlier.
Comparison of the 5S2(N�) (the highest, thin solid curve) and
the 5D2(N�) (the lowest, short dashes) is a striking example. It
may be noted that they both originate from the same initial state
1D2(NN ). The more moderate but clear effect of the initial NN
angular momentum can be seen between the 5P3(N�) and
5P1(N�) from the 3F3(NN ) and 3P1(NN ) initial states (the
dash-dotted and dashed curves, respectively). The straddling
of the 5P1 [the dashed curve arising from 3P1(NN )] and
5D4(NN ) [the dotted line from 1G4(NN )] is purely accidental
and due to the fact that in the latter transition the N� orbital
angular momentum decreases from the NN , whereas in the
former it does not. Therefore, the 1G4(NN ) is favored as

another T = 1 dibaryon [17,18]. For further comparisons, also
the width of the 5D2-wave N� is shown by short dashes. First,
due to its large centrifugal barrier, this is much smaller than its
S-wave sibling. For the reasons already discussed, its width is
also smaller than that of 5D4(N�), because the orbital angular
momentum does not decrease in this transition. It may be still
worth stating that in 1S0(NN ) → 5D0(N�) the width is nu-
merically negligible, because the angular momentum actually
increases in the transition. In the neighborhood of the N� wave
function maximum, the centrifugal barrier is ≈200 MeV, close
to the � − N mass difference, i.e., the N� threshold itself.

The thick line presents the free � width (5) for static
baryons without any centrifugal barriers. Clearly the kine-
matics of the intermediate baryons have a strong effect at the
nominal mass 2.17 GeV of the N� system and above even
for the S-wave N� (thin solid line). Far above this threshold,
one might ask about the validity of the fit (5) to the width, but
the softness of the form factor should rather underestimate the
free width than overestimate it.

Sometimes it may be easier or also physically more
meaningful and beneficial to have the pion momentum
(relative to the recoil nucleon) as the primary variable. In this
case, the momentum p is obtained from

p2 = [s − s1(q) − M2]2 − 4M2s1(q)

4s
(11)
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FIG. 3. The widths of a representative selection of N� states in
NN scattering: Curves as described in the text. The free width is the
thick line above the others.
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FIG. 4. Probability distributions of momenta at Elab = 578 MeV

as described in the text; the solid curves as functions of the N�

momentum p (left y axis) and the dashed ones of the pion-nucleon
momentum q (right y axis). The upper curves are for all main N�

contributions added together and the lower ones for the dominant
5S2(N�) alone (pmax = 1.87 fm−1 and qmax = 1.04 fm−1).

and qmax [with s1 max = (
√

s − M)2] from

q2
max = (s − 2M

√
s − μ2)2 − 4μ2M2

4(
√

s − M)2
. (12)

In either presentation, the probability distribution (without the
volume element ∝ p2) is given by the absolute square(s) of
the relevant amplitude Fourier component(s) |�N�(p)|2 or
|�N�(p(q))|2 shown in Fig. 4 for Elab = 578 MeV right at the
top of the pp → dπ+ cross section [36]. The partial wave con-
tributions are weighted by the corresponding statistical factors
(2J + 1). The solid curves present the dependence on p (lower
abscissa and left ordinate), whereas the dashed ones are for q
(upper abscissa, right ordinate). Of these curves, the lower ones
include only the 5S2(N�) component coupled to 1D2(NN ),
dominant in pp → dπ+, whereas the upper ones have all
significant smaller components up to the 3H5 partial wave. It
can be seen that the S-wave N� is peaked at small values of p,
whereas higher angular momentum components approach zero
there, but are appreciable at higher momenta, where the kinetic
energy of the baryons would be large. Of course, the q depen-
dence is opposite to p. Although the present calculation is not
directly aimed at pion production observables, by, e.g., neglect-
ing the direct NN contribution, it is conceivable that these con-
tributions could be seen in pion production into three particles.

For a further study of the resonance-like effects of the N�
components, Fig. 5 presents the Argand diagrams 2t = i [1 −
exp(2iδ)] between Elab 300 and 1000 MeV for the 1D2 and 3F3

partial waves, the most prominent T = 1 dibaryons, for which
the most important N� configurations were quoted above and
in Fig. 3. Except for the lowest and highest energies, the mesh
is not evenly spaced but rather follows some experimental
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FIG. 5. Argand diagrams of two NN partial waves. Squares 1D2

and full circles 3F3 states. Also the unitarity circle is shown.

energies of SIN, LAMPF, and TRIUMF. It can be seen that
neither is a full resonance with the phase passing π/2 nor do
they go around the center of the unitarity circle.

So far also the cross section of NN → dπ has been
accounted for in the widths. To show the effect of a single
N� channel more clearly, I constrain in the discussion
to NN (3F3) → N�(5P3) → NN (3F3) neglecting also the
F -wave N�’s. This results in about 5% decrease in the
width from that shown in Fig. 3. Altogether, the neglect of
the dπ and the F -wave N�’s is a loss of less than one
degree of attraction at intermediate energies of interest here.
The latter neglect has practically no effect on the P -wave
width.

In Fig. 6, the accumulation in the phase shift δ(3F3) arising
from the Reid potential (6) and the coupling to only 3P3(N�)
is presented. First, the potential itself gives a flat and relatively
featureless result, which, however, agrees excellently with the
analysis [33] up to the pion production threshold (dashed
curve). The modification (10) is too unrealistically repulsive
(dotted) but due its very short range does not change the
low-energy agreement much. However, the coupling to the
N� state returns the attraction but without the width leads to
a very narrow and too high peak at ≈660 MeV (dash-dotted)
slightly above the N� threshold and well in accordance with
the prescription [17] quoted in the introduction. Finally, the
inclusion of the width smooths the peak and gives the solid
curve in good agreement with data up to 1 GeV. Actually,
the deviation from the data is less than or of the same
magnitude as the difference between the pp and np analyses.
Also the imaginary part of the phase shift is in reasonable
agreement with the data extracted from the K-matrix of
Ref. [33] (triangles). It is also interesting and illuminating
to note that about 100 MeV above the nominal N� threshold
(center of mass) the coupling effect turns repulsive (the solid
curve gets below the dotted) showing typical threshold cusp
(or resonance) behavior. However, the smooth background
potential repulsion keeps the total phase negative and thus
the corresponding Argand diagram remains on the left side
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FIG. 6. The accumulation of the phase shift of the 3F3 state. The
Reid potential (6) result (dashed) and the modification (10) (dotted).
Coupling to the 5P3(N�) channel without (dash-dotted) and with the
width (solid) as explained in the text. The second solid curve is the
imaginary part of the phase. The data are the energy-dependent fit to
pp data from Ref. [33].

of the imaginary axis in Fig. 5. In the partial wave cross
section, the phase shift maximum here should then show
rather as a minimum than as the “standard” maximum. Of
course, this minimum in pp scattering has not much to do
for the NN → dπ reaction, where 3F3 is the second state in
importance besides 1D2 above the threshold region, but this
importance is based on the overlap of the N� configurations
with the final dπ states—mainly 5P3(N�) and d-wave pions.

III. �� STATES

Conceptually, the width of a single � even in presence of
another nucleon is quite clear. For a pair of �’s the situation
is slightly more complex. Some works in the context of the
d ′(2380) have considered twice the single � width as relevant
[7,8]. However, it is difficult to see why the lifetime of two
�’s should be only half of the lifetime of a single �. Rather,
if one considers as the lifetime the time that is required for
both to decay, by conditional probabilities the lifetime in this
sense should be longer and the width smaller. After all, the
experimental results are for the two decays with two pions.

The decay rate for particles 1 and 2 with widths �1 and
�2 starting from time zero is �1 exp(−�1t1) × �2 exp(−�2t2).
The total transition probability at time t is (integrating over
different time orderings)

P (t) = �1�2

( ∫ t

0
e−�1t1dt1

∫ t1

0
e−�2t2dt2

+
∫ t

0
e−�2t2dt2

∫ t2

0
e−�1t1dt1

)

= 1 − e−�1t − e−�2t + e−(�1+�2)t . (13)

Thus from the time dependence of the survival probabil-
ity 1 − P (t) = exp(−�t)[exp(−δt) + exp(+δt) − exp(−�t)]
[with the notation � = (�1 + �2)/2 and δ = (�1 − �2)/2]
one may conclude that the dominant part is consistent with
the decay width being the average �, or the single width in
the case �1 = �2 = �. In view of the kinematic results of
Sec. II it might be possible that even this is further decreased.
However, on the other side, with the much higher energy scale
of the double � it is also possible that the “free” width input
�(q) could get very large values for large momenta and the
ensuing integrals would yield larger widths instead. In the
absence of firm intuitive arguments an explicit estimation is
required.

Now the two-� width is calculated as the double integral

�4 = 2

π

∫ |���(p)|2[�(q1) + �(q2)]/2 p2dp dq1

qmax
∫ ∞

0 |���(r)|2 r2dr
. (14)

Here the maximum limit of the free variable p is obviously
from the kinematics of Fig. 2pmax =

√
s/4 − (M + μ)2 and

the upper limit of the pion momentum as a function of p is
obtained from the maximum internal energy of particle one

s1max = [
√

s −
√

(M + μ)2 + p2 ]2 − p2 (15)

as

q2
1max = (s1max − M2 − μ2)2 − 4μ2M2

4 s1max
. (16)

In the pion integration, the second dependent momentum q2

in turn is obtained from

q2
2 = (s2 − M2 − μ2)2 − 4μ2M2

4 s2
(17)

with s2 = (
√

s −
√

s1 + p2 )2 − p2 and s1 = (M2 + q2
1 ) +

(μ2 + q2
1 ).

Figure 7 shows the widths for the most important 7S3(��)
state coupled to the tensor-coupled NN I = 0 system 3S3 −
3G3. It can be seen that at and below the two-� threshold
the kinematic constraints with realistic wave functions cause
a drastic reduction in the width. Actually at 2.38 GeV the
more important 3D3 wave would get just about 50 MeV as the
width, significantly less than the reported 70 MeV. Therefore,
it seems that the narrowness of the resonance cannot be used
as an argument against the possibility of its being of pure
�� origin. The 3G3 initiated state would have 13 MeV larger
width, but its influence is suppressed by an order of magnitude
due to the fact that to couple the S and G waves one needs to
operate twice by the tensor-like transition potential. It may be
possible to find dynamic origins for further inelasticity, but as
in the present phenomenological calculation even the origin of
the width itself is not dynamically based, such a search would
be inconsistent and beyond the scope of the present work.

Finally, Fig. 8 shows the phase shifts corresponding to the
initial NN partial waves 3D3 and 3G3 as Argand diagrams.
The open boxes are the results of a calculation involving
only the coupling to the S-wave ��. For the D wave, the
present diagram has curvature indicative of a resonance but
is significantly more open than the result from the analysis
of Ref. [6] and remains mainly on the right-hand side up to
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FIG. 7. The widths of the 7S3(��) state in I = 0 NN scattering:
The solid curve initiates from 3D3(NN ) and the dashed one from
3G3(NN ). The bullet shows the energy and width of the resonance
reported, e.g., in Ref. [6].

the c.m. energy of ≈2.5 GeV. Understandably, the threshold
cusp should appear rather at the double � mass 2.46 GeV,
in agreement with the graph. (Actually the real part of the
� pole position at 1.21 GeV, 20 MeV lower, was used in
the Schrödinger equation to have the pole in the equivalent
Lippmann-Schwinger equation in its place.) Like in Ref. [6],
there is a small nook on the unitarity circle peaking at about
2 GeV followed by an “armpit” at 2.2 GeV. This feature appears
also as more pronounced in Ref. [6]. In this calculation, the
3D3 phase shift remains remarkably constant, varying only
smoothly between 3 to 5 deg in the energy range from 150 to
1000 MeV (lab.). In Ref. [33], the phase should change sign
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FIG. 8. Argand diagrams of two NN partial waves with a
coupling to two �’s. Squares 3D3 and full circles 3G3 states. The
triangles have three coupled �� states and additional attraction in
each of these channels.

above 800 MeV, but this change does not appear in the later
analyses [37,38], and in agreement with the latter result the
phase shift remains well as constant up to 1 GeV. The resonance
and threshold regions are still fairly far above. Only well above
1 GeV in the laboratory energy an enhancement (together with
inelasticity) takes place. The phase shift maximizes at about
2.43 GeV (c.m.), consistent with the doubled pole position.
The G-wave result is monotonous and quite featureless and,
contrary to Ref. [6], does not show any knot at 2.35 GeV. Its
phase grows nearly linearly with energy and the inelasticity is
small.

The weak tendency for a resonance behavior below 2.5 GeV
is somewhat puzzling considering that the width input in the
coupled channels is only 50 MeV in the 7S(��) channel
(at 2.38 GeV) and restricting presently to only this single
channel should rather favor a resonant behavior. As additional
channels should bring more attraction, the next step might be to
include also the 3D3(��) and 7D3(��) components (G waves
should by far be negligible). A consistent calculation (adjusting
also the necessary extra repulsion in the NN sector1) gives
actually slight smooth repulsion compared with the earlier
one, negligible below Elab ≈ 1000 MeV and 1–2 deg in the
resonance and threshold region. The overall effect is to smooth
the threshold peaking, since the effective threshold of these
�� D waves is significantly higher as discussed earlier. These
changes may be due to the fact that the width of the 7S3(��)
state increases by about 10 MeV in this calculation. In practice,
the inclusion of the higher lying states does not change the
position of the phase maximum at 2.43 GeV appreciably.

One obvious and interesting possibility is an attractive ��
interaction, which might bring the effective threshold down
to the d ′(2380) region. For this possibility, a strong artificial
test potential of about four pion strengths (in the S-wave NN
potentials) is added in the �� channels. The effect is a faster
and higher rise of the phase and a subsequent faster fall after the
phase maximum and a change of the sign already at 2.44 GeV.
Also the position of the phase shift maximum is lowered close
to 2.41 GeV. This result is shown in Fig. 8 by triangles. Also
the inelasticity is increased by this attraction though the widths
themselves are not changed appreciably by this addition.

Adding such an extremely strong attraction is rather a
drastic act and one should question how such attraction
could arise. One might speculate about a crossed two-pion
exchange (with the �’s transforming to nucleons and back)
being attractive in high pion momentum parts. Each N�π
vertex has about two times the NNπ coupling strength,
so the strength from the coupling coefficients alone could
give a factor of 16 over the normal NN two-pion exchange
(without �’s). However, comparisons with a real potential used
here and expectations based on that are not straightforward,
since unavoidably one meets on-shell pions with subsequent
imaginary parts [29]. An actually dynamic calculation of the
two-� width and an associated complex potential on the same
basis would be interesting.

1The repulsion in Eq. (10) is changed to 2700 e−6x/x, practically
only a range change.
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IV. CONCLUSION

The main conclusion of the present work is that the width
of the �(1232) resonance in a two-baryon system N� or ��
is severely decreased due to the relative kinetic energy of the
baryons and their relative angular momentum. Since the wave
function is necessarily spatially confined, the expectation value
of the kinetic energy is finite and out of use for (internal)
decay of the particles. Further, due to this wave function
confinement, the energy associated to the angular momentum
barrier is quantized to roughly discrete and finite average
values, also to be subtracted from the energy available to
internal excitations and decays. Some obvious rules for the
dependencies could be seen in Fig. 3. First, even the largest of
the possible state-dependent widths are significantly smaller
than the free � width at the energy in question (corresponding
to immobile baryons). The lowest N� (or ��) angular
momentum state has the largest width. This is associated with
effective quantization of the above angular momentum energy,
already phenomenologically discussed for I = 1 dibaryons
in Ref. [17]. The higher orbital angular momentum N� or
�� states have increasingly smaller widths. In NN scattering
with these intermediate states, also an important factor is
whether the orbital angular momentum LN� or L�� is smaller
or larger than the initial LNN (or equal). In the first case,
the centrifugal barrier difference may partly cancel the mass
barrier M� − MN or 2(M� − MN ), thus favoring the forma-
tion of the intermediate state, and also in this case the width
is larger than in cases where the same intermediate state can
be obtained from a lower LNN .

As seen in Fig. 7, the effective �� width is significantly
smaller than the single � width at the relevant energies, at
2.38 GeV about 50 MeV, lower than the reported d ′(2380)
width 70 MeV. This result was obtained with the most im-
portant 7S3(��) alone. Including the D-wave ��’s increases
the width to 60 MeV. Although this is just an input to an NN

scattering calculation, apparently an argument using just a
comparison of the d ′(2380) width vs the free � width (not to
say twice this) is not necessarily assuring for its exotic origin.

The use of the nonrelativistic Schrödinger equation might
be questioned in this calculation. Relativistic kinematics has
been used to get the center-of-mass NN momentum and
energy to meet correctly the N� or �� threshold. The
subsequent nonrelativistic continuation should not, however,
falsify the above rather general and obvious results, which are
not sensitive to this treatment at least and in particular for the
widths.

By this input alone, one cannot obtain a resonant 3D3

structure as low as 2.38 GeV, only at the �� threshold (the
calculated phase shift maximum at 2.43 GeV using the � pole
position as the mass). Adding arbitrarily as a test a strong
attraction of pion range, it was possible to move the structure
at least down to 2.41 GeV. However, the question would
remain about the origin of such strong attraction, whether
it could be hadronic (e.g., meson exchanges) or possibly due
to coupling to a genuine six-quark configuration. In explicit
discussions of the N� and �� interactions, one should also
include long-ranged on-shell mesons [29] leading to complex
one- and two-pion potentials, which might be strong enough
for (quasi)binding. Theoretically, at least the �� threshold
cusp should be there. Can one see two separate structures
from different origins or have they merged together, as Bugg
suggested [39,40] that resonances tend to synchronize together
with thresholds?
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