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Charged current neutrino interactions in hot and dense matter
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We derive the charged current absorption rate of electron and antielectron neutrinos in dense matter using a
fully relativistic approach valid at arbitrary matter degeneracy. We include mean field energy shifts due to nuclear
interactions and the corrections due to weak magnetism. The rates are derived both from the familiar Fermi’s
golden rule and from the techniques of finite temperature field theory, and are shown to be equivalent. In various
limits, these results can also be used to calculate neutral current opacities. We find that some pieces of the response
have been left out in previous derivations and their contribution at high density can be significant. Useful formulas
and detailed derivations are presented and we provide a new open-source implementation of these opacities for
use in radiation hydrodynamic simulations of core-collapse supernovae and neutron star mergers.
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I. INTRODUCTION

Neutrino opacities in dense matter are of paramount
importance to the evolution of core-collapse supernovae and
the remnants of compact object mergers. They impact the
properties of the neutrino signal of these events (e.g., [1,2]),
are integral to the rate of energy transport (e.g., [3]), and
can strongly alter the composition of matter ejected in these
events (e.g., [4,5]). Recent work on modeling core-collapse
supernovae has shown that three-dimensional models are close
to explosion, but the results are sensitive to small changes
in the neutrino opacities and other simulation inputs [6–9].
Therefore, it is important to provide accurate expressions for
the neutrino opacities required for these numerical models.

In dense matter, many-body effects can modify the neutrino
mean free paths. The inclusion of the nucleon self-energies
and effective masses in the medium can significantly alter
electron neutrino and antineutrino emission. These effects
were first realized in [10] and have been the focus of recent
work because of their implications for neutrino spectra and
nucleosynthesis [11–15]. In addition, earlier studies have
shown that neutrino interactions in dense matter are influenced
by matter degeneracy and by strong and electromagnetic
correlations between nucleons and leptons in the dense
medium [16–21]. These effects can suppress the neutrino
opacity at and above nuclear saturation density [19,20,22]
and significantly accelerate protoneutron star cooling at late
times [2,23]. Multiparticle excitations [13,24] and coherent
scattering from a mixed phase [25–27] may also strongly
impact neutrino interaction rates and neutrino emission in
supernovae. The strength of all of these effects depend on the
assumed form of the nuclear interaction, which also influences
the nuclear equation of state (EoS). These effects on the EoS
and neutrino opacities are correlated [16–21] and they should
be calculated from the same nuclear interaction.
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Charged current neutrino interaction rates, such as νe +
n → e− + p, are particularly sensitive to changes in the
dispersion relations of nucleons because the potential energy
difference between the proton and neutron can alter the
lepton kinematics, which are often frustrated by final state
blocking due to degeneracy [10,11,13,15]. Although there
has been significant focus on including these effects in
neutrino interaction rates, there is still no complete, relativistic
formalism available. The work of [21] completely neglects
the impact of the potential energy difference of neutrons
and protons on the vector and axial response of the nuclear
medium. While the work [20] includes some impacts of the
potential difference, it also neglects some aspects:

(1) It does not include the impact of the potential difference
on the hadronic part of the weak interaction matrix
element. At high densities and/or large neutrino ener-
gies, these missing terms may impact neutrino charged
current mean free paths.

(2) It assumes that the nucleon weak charged vector
current is conserved, but is not the case because of
differences between neutron and proton masses and
their dispersion relations in dense matter [28]. This will
result in a different structure for the charged current
mean field polarization tensor. The correct inclusion
of these extra terms is likely to impact the response of
the medium when correlations are included through the
random phase approximation (see below).

(3) They neglected weak magnetism corrections, which
can be important for predicting the difference between
electron neutrino and electron antineutrino spectra and
nucleosynthesis in the neutrino driven wind, as well as
the deleptonization rates of protoneutron stars [29].

As a baseline for future studies that would include correlations,
we derive for the first time the charged current absorption
rates for electron neutrinos which include all of the following
effects: (1) different mean field potential energy shifts for
neutrons and protons in neutron-rich matter; (2) relativistic
contributions to the nucleon charged currents; (3) weak
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magnetism; and 4) effects due to the violation of the isospin
symmetry, and consequently the lack of conservation of
the nucleon charged current in asymmetric matter [28]. We
provide derivations of these results both from the perspective
of Fermi’s golden rule and in the language of finite temperature
quantum field theory. In the neutral current limit, these
expressions reduce to those given in [22] (up to a sign in
one part of the tensor-tensor polarization function). A library
for calculating neutrino interaction rates based on this work is
available at https://bitbucket.org/lroberts/nuopac.

The paper is structured as follows: In Sec. II, we derive
the general form of the charged current opacity from Fermi’s
golden rule. In Sec. II A, we calculate the full charged current
polarization tensor and show that its imaginary part agrees
with the Fermi’s golden rule results. We then present practical
representations of the response in Sec. II B. We also discuss
some approximations to the charged current absorption rate in
Sec. II C. In Sec. III, we present limiting forms of the rates
and assess the impact of the new terms. Throughout, we set
h̄ = c = kB = 1 and use a metric with signature (+ − −−).

II. CHARGED CURRENT OPACITY

The charged current interaction at low energies is described
by the Fermi weak interaction Lagrangian

L = CGF√
2

lμjμ
cc, (1)

where lμ = l̄γμ(1 − γ5)ν is the lepton charged current, C =
cos θc is the cosine of the Cabibbo angle, and

jμ
cc = �̄p

(
γ μ(gV − gAγ5) + F2

iσμαqα

2M

)
�n (2)

is the nucleon charged current which includes the vector, axial
vector, and weak magnetism contributions, characterized by
coupling strengths gV = 1, gA = 1.26, and F2 = 3.71, re-
spectively, and M = (Mn + Mp)/2 = 938.9 MeV and Mp,Mn

are the proton and neutron masses, respectively. Here, the
currents are written using Dirac spinors �i , l, and ν and
the γ matrices are in the Dirac basis with γ5 = iγ 0γ 1γ 2γ 3

and σμν = i(γ μγ ν − γ νγ μ)/2. The cross section for the
two-particle process, l1 + N2 → l3 + N4, where l1 and l3 are
the initial and final state leptons, and N2 and N4 are the
initial and final state nucleons, respectively, can be calculated
from Fermi’s golden rule. In the relativistic formalism, the
differential cross section for the process 1 + 2 → 3 + 4 is
given by

dσ = 1

(2E1)(2E∗
2 )vrel

〈|M|2〉d�34(2π )4

× δ4(pμ
1 + p

μ
2 − p

μ
3 − p

μ
4 ), (3)

where vrel is the relative velocity between particles in the initial
state,

d�34 = d3p3

(2π )32E3

d3p4

(2π )32E∗
4

(1 − f3)(1 − f4), (4)

is the Lorentz invariant phase which includes effects due to
Pauli blocking of the final states, and 〈|M|2〉 is the square
of the matrix element, averaged over initial spin states and
summed over the final spin states. Above, E∗

i =
√

p2
i + (M∗

i )2

and M∗
i are the nucleon effective masses in the medium. The

differential absorption rate for a neutrino with energy E1 in
the medium, where the density of particle 2 is n2, is given by

d�(E1) = 〈n2vreldσ 〉 = 2
∫

d3p2

(2π )3
f2vreldσ, (5)

where f2 is the distribution of particle 2 in the medium and
the factor of 2 on the righ-hand side accounts for its spin
degeneracy. The distribution functions fi are assumed to be
Fermi-Dirac distributions characterized by chemical potential
μi and temperature T . Using the standard decomposition of
the square of a weak matrix element for free nucleons in terms
of the lepton tensor and the baryon tensor, we find that

〈|M|2〉 = C2G2
F

4
Lμν�

μν. (6)

The lepton tensor is

Lμν = Tr[(−p1/ + m1)γ μ(1 − γ 5)(−p3/ + m3)γ ν(1 − γ 5)],

(7)

where qμ = p
μ
1 − p

μ
3 = p

μ
4 − p

μ
2 is the energy-momentum

transfer from the leptons to the baryons. In our case, since
particle 1 is a neutron, m1 ≈ 0, and m3 = ml where ml is
the mass of the charged lepton in the final state: ml = me

for electrons and ml = mμ for muons. We use the standard
Feynman slash notation, where a slash denotes contraction of
a four-vector with the gamma matrices.

Inspecting the kinematics of the leptons gives the allowed
range of values for the energy and momentum transfer to the
nucleons for given four-momentum of particle 1,

q =
√

p2
1 + p2

3 − 2p1p3μ13, (8)

q0 = E1 − E3, (9)

where μ13 is the cosine of the angle between the momentum
vectors of particles 1 and 3 and pi is the magnitude of the
momentum of particle i. The maximum and minimum values
of this expression show that the allowed range of momentum
transfers is |p1 − p3| < q < p1 + p3. When both particles 1
and 3 are massless, these relations imply q2

μ < 0 and |q0| <
q < 2E1 − q0, but these constraints do not hold for charged
current reactions in which the final state lepton mass cannot
be neglected.

The hadronic part of the matrix element is well known in
the case of free nucleons, and including mean field corrections
in the nucleon spinors only slightly alters its structure. The
necessary modifications to the spin-sums are described in
Appendix B. Then, the baryon contribution to the matrix
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element in the mean field approximation is given by

�μν = Tr

[
(p̃2/ + M∗

2 )

{
gV γ μ − gAγ μγ 5 + F2

iσμαq̃α

2Mp

}

× (−p̃4/ + M∗
4 )

{
gV γ ν − gAγ νγ 5 − F2

iσ ναq̃α

2Mp

}]
.

(10)

Here p̃
μ
2 = (E∗

2 , �p2), p̃
μ
4 = (E∗

4 , �p4), and q̃μ = p̃
μ
4 − p̃

μ
2 . In

the presence of background mean fields, the nucleon energies
E2 = E∗

k + U2 and E4 = E∗
k+q + U4, where U2 and U4 are

mean field potentials for 2 and 4, respectively. The effective
masses of the nucleons 2 and 4 in the medium are M∗

2 and M∗
4 .

We can now recast the absorption rate in Eq. (5) as

d�(E1)

dE3dμ13
= C2G2

F p3[1 − f3(E3)]LμνIμν

32π2E1{1 − exp [−(q0 + 
μ)/T ]} , (11)

as in [20]. The nuclear part is now factored and contained in
the tensor

Iμν =
∫

d3p2

(2π )32E∗
2

∫
d3p4

(2π )32E∗
4

[f2(E2) − f4(E4)]

×�μν(2π )4δ3( �p2 − �p4 − �q)δ(E2 − E4 − q0)

=
∫

d3p2

(2π )2
�μν f2(E2) − f4(E4)

4E∗
2E∗

4

δ(E2 − E4 − q0), (12)

where E∗
k+q =

√
(�k + �q)2 + (M∗

4 )2, and in the second line
we have employed the momentum space Dirac delta func-
tion. The detailed balance factor for charged current re-
actions, {1 − exp [−(q0 + 
μ)/T ]}−1, comes from using
the relation f2(1 − f4) = (f2 − f4)/{1 − exp[−(E4 − E2 −
μ4 − μ2)/T ]}.

Equaiton (11) together with Eq. (12) can be used to calculate
the charged current opacity. This would include corrections
due to mean field potentials, relativistic kinematics, and weak
magnetism. We calculate Iμν in detail in Sec. II B, but first we
show that the same result can be found from linear response
theory.

A. The charged current polarization tensor

The neutrino absorption rate in nuclear matter can be
calculated using linear response theory because, at leading
order in the weak interaction, the nucleonic and leptonic parts
factorize. For the weak interaction Lagrangian in Eq. (1), linear
response theory predicts [18,30]

d�(E1)

dE3dμ13
= C2G2

F

32π2

p3

E1
[1 − f3(E3)]LμνSμν(q0,q), (13)

where Lμν is the lepton tensor defined earlier in Eq. (7),

Sμν(q0,q) = −2 Im �μν(q0,q)

1 − exp [−(q0 + 
μ)/T ]
, (14)

is called the dynamic response function, and

�μν(q0,q) = −i

∫
dt d3xθ (t)ei(q0t−�q·�x)〈|[jμ(�x,t),jν(�0,0)]|〉,

(15)
is the retarded current-current correlation function or the
polarization tensor where jμ is the weak charged current
defined in Eq. (2) and 〈| · · · |〉 is the thermodynamic average
= Tr{exp[β(H − ∑

i μiNi)] · · · }/Z , where Z is the grand
canonical partition function. The relationship in Eq. (14)
between the correlation function and the dynamic structure
factor is often called the fluctuation-dissipation theorem
[31,32].

This correlation function encodes all of the complexities
associated with interaction between nucleons in the plasma
and is in general difficult to calculate. When nucleons are
treated as noninteracting particles, the polarization tensor can
be calculated using the free single particle Green’s functions.
We use the imaginary time formalism [33], where the free
nucleon propagator at zero chemical potential is given by

GF (iωn,p) = M − p/

E2
p − (iωn)2

. (16)

where ωn is a fermionic Matsubara frequency. The extension to
nonzero chemical potential is straightforward and is obtained
by the replacement iωn → iωn + μ (see [33], Eq. 5.70).
The effects due to a space-time independent background
mean field potential can also be similarly included since
its contribution to the grand canonical Hamiltonian is pro-
portional to

∫
d3x¯�γ 0�, similar to the chemical potential

(see Appendix B). Additionally, the numerator, which comes
from a spin sum, should be replaced by the spin sums
described in Appendix B. These considerations imply that
the propagator for nucleons in the dense medium is obtained
by replacement iωn → iωn + νi , where νi = μi − Ui , and
p/ + M → −p̃/ + M∗, which gives

Gi,MF (iωn + ν,p) = M∗ − p̃/

E∗
p,i

2 − (iωn + νi)2
, (17)

where M∗ is the effective mass, p̃μ = (±E∗
i,p, − �p), and

E∗
i,p = √

p2 + (M∗
i )2. Using these propagators, the imaginary

time polarization functions are given by

(18)
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where the �a represent different interaction vertices (i.e., CV γ μ, etc.), iωm is a Bosonic Matsubara frequency, and

μ = μ2 − μ4.

Using the Matsubara sum results from Appendix C and the baryon tensor portion of the weak interaction matrix element given
above, we find that the imaginary time polarization tensor is

�μν(iωm − 
ν,�q) =
∫

d3k

(2π )3

�μν

4E∗
2,kE

∗
4,k+q

[
f2(E∗

2,k) − f4(E∗
4,k+q)

iωm − 
ν + E∗
2,k − E∗

4,k+q

− f̄2(E∗
2,k) − f̄4(E∗

4,k+q)

iωm − 
ν − E∗
2,k + E∗

4,k+q

+ 1 − f2(E∗
2,k) − f̄4(E∗

4,k+q)

iωm − 
ν + E∗
2,k + E∗

4,k+q

− 1 − f̄2(E∗
2,k) − f4(E∗

4,k+q)

iωm − 
ν − E∗
2,k − E∗

4,k+q

]
, (19)

where 
ν = ν2 − ν4.

When considering scattering and capture processes, we
only require portions of the polarization that are nonzero for
q̃2

α < (M∗
2 − M∗

4 )2 due to kinematic restrictions, so the last
two pieces of the polarization can be ignored. The piece of the
polarization containing only antibaryon distribution functions
is only nonzero at very high temperatures not encountered in
supernovae and neutron star mergers. Therefore, the last three
terms in Eq. (19) will be neglected in the rest of the discussion,
although we keep in mind that the second term will be present
when calculating scattering rates from electrons and positrons.

For the linear response, we require the real-time polariza-
tion function. This can be found by analytically continuing the
imaginary-time polarization [30] via the replacement iωm −

μ → q0 + iη. The need for this particular replacement can
be seen in the incoming and outgoing Bosonic lines in the
bubble diagram above, which include a chemical potential
difference because the Bosonic frequencies carry isospin
charge. Analytically continuing to real time and using the
relation

1

ω ± iη
= P 1

ω
∓ iπδ(ω), (20)

we then find that the real and imaginary parts of the polarization
tensor are given by

Im �R
μν(q0,q)

= −π

∫
d3k �μν

(2π )34E∗
2,kE

∗
4,k+q

× δ(E∗
2,k − E∗

4,k+q + q̃0){f2(E∗
2,k) − f4(E∗

4,k+q)}, (21)

Re �R
μν(q0,q)

= P
∫

d3k �μν

(2π )34E∗
2,kE

∗
4,k+q

f2(E∗
2,k) − f4(E∗

4,k+q)

E∗
2,k + q̃0 − E∗

4,k+q

, (22)

where q̃0 = q0 + U2 − U4. Note that we are not taking the
imaginary part of � in this expression.

From this, it is clear that the mean field polarization
function is just the free fermion polarization function with
the replacements

μi → νi, (23)

qμ → q̃μ = (q0 + U2 − U4, − �q), (24)

where q̃μ is the kinetic energy and momentum transfer from the
entrance channel nucleon to the final state nucleon. Comparing

Eqs. (11) and (13), we see that linear response theory and the
Fermi’s golden rule approach would yield the same result when

Iμν(q0,q) = {1 − exp [−(q0 + 
μ)/T ]}Sμν(q0,q). (25)

Neglecting antiparticle and pair contributions in Eq. (21), we
can verify the above equation to prove that these approaches are
equivalent when correlations are neglected. As we will find,
projecting Iμν along and orthogonal to q̃μ results in simple
expressions for the polarizations analogous to the results found
in the literature for the case of neutral current polarization
tensors.

The advantage of the linear response formalism is that it
can be extended to included higher order corrections to the
medium response, which cannot be done systematically using
the Fermi’s golden rule approach. For instance, the approach
above neglects effects due to screening of the weak interaction
by particle-hole pairs in the medium and collective excitations
such as the giant isovector dipole resonance and the Gammow-
Teller resonance, both of which arise due to strong interactions
between nucleons. To include these effects consistently with
the mean field ground state of the nuclear medium, the response
should be calculated in the random phase approximation (RPA)
as discussed earlier in [20]. The response functions in RPA
can be formulated using the real and imaginary parts of the
polarization tensors derived here.

B. Practical expressions for Iμν and Lμν

The results described in preceding sections provide formu-
las to calculate the charged current absorption rates, including
weak magnetism and mean field contributions, but their forms
are not amenable for use in numerical simulations. Here,
we derive simple expressions for the components of the
differential absorption rate that can easily be implemented
for practical calculations.

1. Expressions for Iμν

First we consider the general for of the integrals given in
Eq. (12). We employ the energy space delta function in Eq. (12)
to remove the integrals over the nucleon angle and leave a
single integral over energy. Transforming the energy space

045807-4



CHARGED CURRENT NEUTRINO INTERACTIONS IN HOT . . . PHYSICAL REVIEW C 95, 045807 (2017)

delta function to a delta function in the cosine of the angle
between nucleons and enforcing momentum conservation
(with the momentum transfer assumed to be in the z direction),
we can write structure function as

Iμν = 1

(4π )2q

∫ ∞

M∗
2

dE2

∫
d�2δ(μ − μ0)

× θ (E2 − em)(f2 − f4)�μν, (26)

with μ0 = (q̃2
μ + 2E∗

2 q̃0 + M∗
2

2 − M∗
4

2)/2p2q. Here, β =
1 + (M2

∗,2 − M2
∗,4)/q̃2

μ and

em = −β
q̃0

2
+ q

2

√
β2 − 4M∗

2
2

q̃2
μ

. (27)

The physical meaning of this lower limit becomes clearer when
it is expressed in terms of [28]

σ± = 1 − (M∗
2 ± M∗

4 )2/q̃2
α. (28)

The result is

em = −β
q̃0

2
+ q

2
√

σ+σ−. (29)

The allowed range of q̃2
α is then given by the range of values

for which σ+σ− � 0, which correspond to q̃2
α < (M∗

2 − M∗
4 )2

or q̃2
α > (M∗

2 + M∗
4 )2. Clearly, the first condition enforces the

impact of the mass difference in capture processes while the
second condition is the appropriate kinematic condition for
pair production.

The only terms in the integrated baryon tensor Iμν that
cannot be pulled outside of the integral are power of p

μ
2 , since

p
μ
4 = p

μ
2 + q̃μ. Therefore, Iμν can be expressed in terms of

the tensors

I {ak} = 8

(4π )2q

∫ ∞

em

dE2

∫
d�2�(μ − μ0)(f2 − f4)p̃a1

2 · · · p̃ak

2 .

(30)

We include the extra factor of 8 for convenience, since Tr[�μν]
contains a factor of 8.

Since the nucleons are on-shell, it is easy to show that

q̃μIμ{ak} = −βq̃2
μ

2
I {ak}. (31)

This relation comes in handy when trying to simplify the
different parts of the polarization; when �μν contains (p2 · q),
it can be replaced with −βq2

μ/2.
The expression for Iμν simplifies if decompose it relative

to q̃μ. The set of projection tensors that describe this
decomposition are shown in Appendix A. This results in the
expansion

Iμν = β2IQP Q
μν + ILP L

μν + IT P T +
μν + βIMP M+

μν , (32)

where we have pulled out factors of β for convenience. The
explicit forms of these expansion terms are

IQ = q̃2
μ

4πq

∫ ∞

em

dE∗
2 (f2 − f4), (33)

IL = − q̃2
μ

4πq3

∫ ∞

em

dE∗
2 (f2 − f4)(2E∗

2 + βq̃0)2, (34)

IM = − q̃2
μ

4πq2

∫ ∞

em

dE∗
2 (f2 − f4)(2E∗

2 + βq̃0), (35)

IT = −1

2
IL +

(
2m2

2

q̃2
α

− β2

2

)
IQ. (36)

Using Eq. (31), we then find for the lower rank tensors

I ν = −2q̃νβ

q̃2
α

IQ − 2nν

q̃2
α

IM, (37)

I = 4

q̃2
α

IQ. (38)

We are now left with one-dimensional integrals over E2 that
can be expressed in terms of ultrarelativistic Fermi integrals.
We then find that the basic pieces of Iμν are given by

IQ = q̃2
μT

4πq
�0, (39)

IL = − q̃2
μT 3

4πq3
[a2�0 + 4a�1 + 4�2], (40)

IM = − q̃2
μT 2

4πq2
[a�0 + 2�1], (41)

IT = −1

2
IL +

(
2M2

∗,2

q̃2
α

− β2

2

)
IQ, (42)

where

a = (βq̃0/T + 2em/T ), (43)

δ1 = (μ2 − U2 − em)/T , (44)

δ2 = (μ4 − U4 − q̃0 − em)/T , (45)

with

�n(δ2,δ4) =
∫ ∞

0
dx xn[fFD(x − δ2) − fFD(x − δ4)], (46)

where fFD(x) = 1/[exp(x) + 1]. The function
�0 = ln[(exp δ2 + 1)/(exp δ4 + 1)] has a simple analytic
form, while the other �n are related to polylogarithmic
functions and can either be tabulated or calculated using the
highly accurate approximations given in [34].

All that is left to do is evaluate the trace in �μν and
then decompose the resulting imaginary part of the real-time
polarization tensor using the tensors described in Appendix A.
We choose to split the baryon tensor into coefficients of
the various combinations of weak coupling constants, which
defines the quantities

Iμν = g2
V IV

μν + g2
AIA

μν + F 2
2 I T

μν

+ gV gAIV A
μν + gV F2I

V T
μν + gAF2I

AT
μν . (47)

Each of these coefficient tensors are then decomposed in the
form

I i,μν = I i
QP

μν
Q + I i

LP
μν
L + I i

T +P
μν
T + + I i

T −P
μν
T −

+ I i
M+P

μν
M+ + I i

M−P
μν
M−, (48)

where i denotes either the vector, axial, tensor, or mixed
portions of the weak interaction.
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Calculating the trace of �μν is straightforward (we employ
the Mathematica package [35]). Using �μν in Eq. (21), we
find that the nonzero components of the vector polarization
are

IV
Q = (λ2 + σ− − 1)IQ, (49)

IV
L = IL + σ−IQ, (50)

IV
T + = IT + σ−IQ, (51)

IV
M+ = IMλ. (52)

Here, we have defined λ = β − 1 and 
 = (M∗
4 − M∗

2 )/M∗
2 .

The nonzero pieces of the axial polarization are

IA
Q = (λ2 + σ+ − 1)IQ, (53)

IA
L = IL + σ+IQ, (54)

IA
T + = IT + σ+IQ, (55)

IA
M+ = IMλ. (56)

The non-zero pieces of the tensor polarization are

I T
L = q2

α

4m2
2

[(
σ− − β2 + 4m2

2

q2
α

)
IQ − IL

]
, (57)

I T
T + = q2

α

4m2
2

[(
σ− − β2 + 4m2

2

q2
α

)
IQ − IT

]
. (58)

The mixed vector-tensor polarization is

IV T
L = (2 + 
β)IQ, (59)

IV T
T + = (2 + 
β)IQ, (60)

IV T
M+ = −


2
IM. (61)

The vector axial piece is

IV A
T − = −i2IM. (62)

And finally the axial tensor piece is

IAT
T − = −i(2 + 
)IM. (63)

These expressions are similar to those found in [10,22], but
they include extra terms depending on the mass and potential
differences of the nucleons. A detailed comparison between
these results and previous results is made in Sec. III B.

2. The lepton tensor

The contraction of the lepton tensor with the imaginary part
of the polarization is the last piece required to calculate the
differential neutrino cross section. The easiest way to perform
this contraction is to project the lepton tensor using the same
projectors we used for the polarization tensor. Performing

these projections gives

LL = 8

q̃2
α

[−2(ñ · p1)2 + 2(ñ · p1)(ñ · q) + q̃2
α(p1 · q)],

LQ = 8

q̃2
α

[2(q̃ · p1)2 − 2(q̃ · p1)(q · q̃) + q̃2
α(p1 · q)],

LM+ = 8

q̃2
α

[(q̃ · p1)(ñ · q) + (ñ · p1)(q · q̃ − 2q̃ · p1)],

LM− = ± 8i

q̃2
α

εαβγ δñαp1,β q̃γ qδ, (64)

LT + = 8

q̃2
α

[(ñ · p1)2 − (ñ · p1)(n · q)

+(q̃ · p1)(q̃ · q − p1 · q̃)]

LT − = ± 8i

q̃2
α

[(ñ · p1)(q̃ · q) − (ñ · q)(p1 · q̃)].

The upper sign is for neutrinos while the lower sign is for
anti-neutrinos, due to their left- and right-handed character.
The contractions appearing above are

p1 · q = q2
α − m2

3

2
,

p1 · q̃ = p1 · q + 
UE1,

p1 · ñ = − q2
α

2q

[
E1 + E3 − 
U + 2
UE1q0/q

2
α

+ (q0 − 
U )m2
3/q

2
α

]
,

ñ · q = −q
U,

q · q̃ = q2
α + q0
U.

(65)

In general, the projections of the lepton tensor have relatively
complicated forms since we are projecting the lepton tensor
relative to q̃μ rather than the more natural qμ. In the free gas
limit and neglecting m3, these expressions reduce to

LT = 8q2
α(A + 1), (66)

LL = −8q2
αA, (67)

LQ = 0, (68)

LM+ = 0, (69)

LT − = ±i16(n · p1), (70)

where

A = 4E1E3 + q2
α

2q2
= E1E3

q2
(1 + μ13), (71)

which agrees with expressions previously found in the litera-
ture [10,22].

With these results, the contraction of the lepton tensor and
the polarization tensor is quite simple (using the result of
Appendix A):

LμνIμν =
∑

i={V,A,T ,V A,V T ,AT }
Ci

[
LLI i

L + LQI i
Q − 2LM+I i

M+

− 2LM−I i
M− + 2LT +I i

T + + 2LT −I i
T −

]
, (72)
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where Ci = {g2
V ,g2

A,F 2
2 ,gAgV , . . .} and the differential neu-

trino cross section can be found using Eqs. (11) and (47).

C. Opacities from a limiting form of the matrix element

Often, it is assumed that the nucleon masses dominate all
other energy scales entering the averaged matrix element [13].
In this approximation,

〈|M|2〉 = 16C2G2
F

[
(gV + gA)2(p1 · p̃2)(p3 · p̃4)

+ (gV − gA)2(p̃2 · p3)(p1 · p̃4)

− (
g2

V − g2
A

)
(p1 · p3)(p̃2 · p̃4)

]
≈ 16C2G2

F E1E3M
∗
2 M∗

4

× [
(gV + gA)2 + (gV − gA)2

− (
g2

V − g2
A

)
(1 − μ13)

]
, (73)

where the second line is to leading order in the nucleon mass
[36]. Following a similar set of steps to those for the full matrix
element, we find the approximate cross section is given by

d�(E1)

dE3dμ13
≈ C2G2

F

4π2

p3E3

1 − exp[−(q0 + 
μ)/T ]

× [
g2

V (1 + μ13) + g2
A(3 − μ13)

]4M∗
2 M∗

4

q̃2
α

IQ.

(74)

This is similar in form to the nonrelativistic cross section given
in [10,20], except that nonrelativistic kinematics has not been
assumed for the integrals over the nucleon momentum or in em.
When nonrelativistic kinematics are enforced at all momenta,
an upper limit in the nucleon energy integral is required to
enforce momentum conservation, which is clearly spurious.
This upper limit gives the second logarithmic factor shown in
Eq. (48) of [20]. Additionally, the form of em is different when
it is calculated using nonrelativistic kinematics.

A further approximation that is often assumed due to the
large mass of the nucleons is �q = 0 in the nucleon integrals
and E∗

2,4 = M∗
2,4 [11,37]. In this case, the response function of

the medium becomes

Iq=0 = 2πδ(E2 − E4 + q0)
∫

d3p2

(2π )3
(f2 − f4)

≈ πδ(M∗
2 + U2 − M∗

4 − U4 + q0)(n2 − n4). (75)

The second line follows from assuming p2/(2M∗
2 ) =

p2/(2M∗
4 ). Then, the differential cross section is given by

d�(E1)

dE3dμ13
≈ C2G2

F

2π2

p3E3

1 − exp[(
M∗ + 
U − 
μ)/T ]

× Iq=0
[
g2

V (1 + μ13) + g2
A(3 − μ13)

]
, (76)

which gives the standard integrated cross section per volume

σ

V
= C2G2

F

π

(
g2

V + 3g2
A

)
p3E3

× n2 − n4

1 − exp[(
M∗ + 
U − 
μ)/T ]
. (77)

These approximate forms of the cross section will be
compared to the full results below.

III. RESULTS

Here, we present differential cross sections and compar-
isons to previous results in the literature. In the charged current
rates, the potential energy difference between neutrons and
protons can play a dominant role in the capture mean free
paths of neutrinos in the medium. This potential difference
depends on the effective nuclear interaction that is assumed
and is therefore model dependent. For illustrative purposes
in this section, we choose a very simple density dependent
potential energy given by


U = 
U0
(n2 − n4)

nsat
, (78)

where nsat = 0.16 fm−3 and we choose a coupling value of

U0 = 40 MeV and keep the nucleon masses fixed at their
vacuum values for all densities. At very low and high densities,
a linear model for the potential energy is unrealistic. Therefore,
we emphasize that the results using this model for the potential
are only for illustrative purposes. We choose this model only
for its simplicity and because it prevents us from having to
choose from the plethora of relativistic mean field theories
available. Additionally, we keep the nucleon masses fixed to
their vacuum values for most of the discussion for simplicity,
although we consider the impact of varying the effective
nucleon mass at saturation density in Sec. III C. It is important
to note that the formalism presented above fully accounts
for the impact of effective nucleon masses on the neutrino
absorption rate, and the publicly available code associated with
this paper can be used to assess the impact of any variation in
the nucleon effective masses.

A. Differential cross sections

The main results of this work are differential charged
current neutrino cross sections. In general, the electron
scattering angle and energy transfer are integrated over to give
the mean free paths which are relevant to transport calculations.
Nevertheless, to give the reader a feeling for the structure of
these results, we show here some representative differential
cross sections.

First, we consider the structure of the full double differential
absorption. In Fig 1, we show this quantity at low density and
at high density. It is strongly peaked at the q0 expected for
small momentum transfer. The variation with scattering angle
is given by the leading order 1/q = 1/

√
E1 + E3 − 2E1E3μ13

dependence of the baryon response combined with the lepton
kinematics. Based on the elastic limit of the cross section we
expect a weak angular dependence in the lepton kinematics of
the form 1 + (C2

V − C2
A)/(4C2

V + 12C2
A)μ13 ≈ 1 − 0.11μ13.

The combination of these two factors gives the strongly
forward peaked differential cross section with a more slowly
varying backward scattering tail. This leading order behavior
only holds for neutrinos with energies small compared to the
baryon mass. At high density these limiting expressions for the
scattering angle dependence also break down and the structure
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FIG. 1. Contours of the νe + n → e− + p double-differential absorption rate as a function of electron scattering angle μ13 and energy
transfer q0, normalized to the integrated absorption rate.

of the differential cross section is altered. For the conditions
shown in the right panel of Fig. 1, it is slightly backward
peaked and has strength at a much larger range of energy
transfers.

Second, we consider the angle integrated differential cross
section dσ/dq0, which encodes the energy transfer between
the leptons and baryons. For charged current reactions, we
expect this quantity to be peaked at U4 − U2 + M∗

4 − M∗
2

when electron final state blocking is ignored, since this
is the most favorable energy for small momentum transfer
[11,13]. In Fig. 2, this cross section is shown. The left
panel shows the charged current differential cross-section at
low density. Here, the electrons are not strongly degenerate
and the peak of the differential cross section is at the zero
momentum transfer value for all but the smallest neutrino
energies shown. In contrast, at the high density shown in the
right panel, the differential cross section peaks away from the

zero momentum transfer value because the term 1 − f3(E3)
depends exponentially on q0. Therefore, there is significantly
stronger dependence on the value of the differential cross
section away from the zero momentum transfer peak, which is
often more poorly captured in approximations to the charged
current rates.

We can also start to see how the various corrections included
in the rates derived above alter the differential cross section.
There, the tensor corrections impact the normalization of the
cross section significantly, increasing to a correction of ∼25%
for the highest energy neutrinos, but they do not impact the
energy transfer. At high density, where 
U is larger and
electron final state blocking can be significant, the variation
between different approximations to the charged current rates
can be large. It is also clear that the expressions of [10]
differ significantly from those derived here. We consider these
differences in detail in the next section.
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FIG. 2. The angle integrated cross section as a function of energy transfer q0 for νe + n → e− + p. The left panel shows the differential
cross section at a density of 0.001 fm−3 and the right panel shows it at a density of 0.1 fm−3. The dotted black lines shows the position of the
energy transfer peak when final state blocking is not included, U4 − U2 + M∗

4 − M∗
2 . The solid lines show our full expressions for the cross

section, the dot dashed lines show the full expressions neglecting tensor corrections, and the dashed lines show the [10] prescription for the
cross section.
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FIG. 3. Comparison of various approximations to the charged current cross section per nucleon as a function of density in beta-equilibrated
matter. The reference cross section, σRef is taken to be the full cross section without weak magnetism corrections (i.e., F2 = 0.0). The neutrino
energy is assumed to be πT . The left panel shows the reaction νe + n → e− + p while the right panel shows ν̄e + p → e+ + n. The electron
antineutrino cross sections are only shown up to threshold. Full denotes the fully relativistic cross section including weak magnetism corrections,
�q = 0 is the cross section given by Eq. (76), RPL98 denotes the cross section given by the expressions in [10], and Constant �μν refers to the
cross section given by Eq. (74).

B. Comparison with earlier work

We now compare our results for the charged current
cross sections in neutron-rich nuclear matter including weak
magnetism to a number of other approximations for different
ambient conditions. The comparisons are shown in Fig. 3.
We take the full expression with F2 = 0.0 (i.e., the full
cross section without weak magnetism corrections) as a
baseline for comparison. The simplest approximation to the
charged current rates including mean field effects is given
by Eq. (76). At low density, this approximation agrees
with the full cross section without weak magnetism at the
percent level for νe + n → e− + p. The deviation is somewhat
larger for electron antineutrino capture. Once the density
becomes high enough for final state blocking to be important,
this approximation starts to strongly deviate from the full
expression and drastically underpredicts the cross section at
saturation density and above for both electron neutrinos and
antineutrinos. These conclusions are likely to be impacted
when the effective masses have a more complex density
dependence.

The second approximation we consider comes from
assuming a constant hadronic portion of the matrix element
[see Eq. (74)]. This results in expressions that are very similar
to the nonrelativistic results given by [10,19]. At low density,
this approximation agrees with our baseline result to a few
percent. This is not surprising given that this approximation
should be accurate to order q/M . At higher densities, this
approximation breaks down for the antineutrino capture rate.

The inclusion of the full weak magnetism correction
induces corrections of order 10% for the 22 MeV neutrinos
considered in the plot, with the correction going in opposite
directions for neutrino and antineutrino capture. Near satura-
tion density, the weak magnetism corrections begin to become
significantly larger than would be predicted by the expansion
given in [29].

A similar description of the relativistic charged current
differential neutrino cross sections was given in [10]. We find
the following significant differences from that work:

(1) The difference between neutron and proton masses and
self-energies was not properly accounted for in the
calculation of the polarization tensor. Specifically, the
integrals needed to calculate the polarization function
defined in Eqs. (33), (34), (35), and (36) depend on
β and q̃0. These dependencies were neglected in [10]
where β = 1 and q̃0 = q0 was used.1

(2) Current conservation, which requires qμ�V
μ,ν = 0, was

used to related different components of the polarization
tensor in [10]. Differences between the neutron and
proton masses and self-energies violates this relation
[28], and contracting the vector piece of the polariza-
tion with the mean field corrected energy momentum
transfer gives

q̃μIV
μν = IV

Q q̃ν + IV
M+ñν �= 0, (79)

and since IV
μν ∝ �V

μν , qμ�V
μν �= 0 in general. These

corrections become significant when U2 − U4 is large
compared to the neutrino energy.

(3) There is typographical error in Eqs. (69) and (70) of
Ref. [10], where the lower limit of the energy integral
was defined. The correct expression defined here in
Eq. (27) differs by a sign.

(4) As discussed in Sec. II B 2, the lepton tensor in [10]
was calculated by setting the charged lepton mass
to zero because it was assumed that their energies

1This appears to be a typographical error because the code used to
generate these results in [10] did account for corrections arising from
β �= 1 and q̃0 �= q0.
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FIG. 4. The νe + n → e− + p mean free path as a function of total density for neutrino energies {3,10,33,100} MeV. The full cross section
(solid lines), the full cross section neglecting weak magnetism (dashed lines), the expression from [10] for the cross section (dot-dashed lines),
the nonrelativistic elastic limit (dotted lines), and the constant �μν matrix element limit (dot-dot-dashed lines) of the cross section are all
shown. The left panel shows the results for a free gas of protons and neutrons, while the right panel shows the results for a gas with a mean
field potential as described in the text. At low density, all of the approximations agree reasonably well (although there are significant deviations
for higher energy neutrinos), but at higher density and for finite 
U they diverge significantly.

would be relatively large. The associated correction
for reactions involving electron neutrinos is typically
negligible, since Ee � me, but can be important for
charged current reactions involving muon neutrinos.

These differences significantly alter the charged current cross
sections in regions where the 
U is significant, as can be seen
in Fig. 3.

In Fig. 4, the absorption mean free path in beta-equilibrated
matter is shown for a range of neutrino energies in all of
the approximations described above. In the left panel, we
show the mean free path in a noninteracting medium. At
low density, all of the different expressions for the capture
rate agree reasonably well, with deviations increasing with
increasing neutrino energy. At high density, the cross section
per nucleon is suppressed due to final state electron blocking.
This causes the �q = 0 cross section for higher energy neutrinos
to be in error by factors of a few because of its delta function
distribution of allowed energy transfer, since the full nucleon
response is broadly peaked in q0 for these neutrinos (see
above in Sec. III A). All of the other approximations for the
cross section agree at the few tens of percent level across
all densities for a noninteracting gas. The inclusion of weak
magnetism corrections only has a small impact, with the size
of the correction increasing with neutrino energy [22].

When interactions are included, the differences between
the various approximations become more substantial, as was
described above. Additionally, the inclusion of mean field
potentials has a strong impact of the mean free paths relative
to the free gas case [11,13]. This is shown in the right panel
of figure 4. At high density and low neutrino energy, the
largest deviations between the results in [10] and our results
are seen. The density at which significant deviations begin
increases with increasing neutrino energy. For smaller neutrino
energies, 
U becomes the dominant energy scale at lower

density than for higher energy neutrinos. Similarly to the
noninteracting case, the �q = 0 results strongly underpredict
the inverse mean free path at high density when final state
blocking becomes larger. As we saw above, constant �μν

approximation agrees with the full expression without weak
magnetism quite well, although the deviations between the
two get larger with increasing neutrino energy. We expect the
differences would also get larger in models where the nucleon
effective mass is significantly less than the nucleon rest mass
and other energy scales entering the response function become
closer to the in-medium nucleon mass. Finally, it can be seen
the corrections from the inclusion of weak magnetism are
similar to those in the noninteracting case.

C. Nucleon effective masses

In the illustrative calculations above, we kept the nucleon
masses fixed at their vacuum values for simplicity. In the
nuclear medium, nucleon effective masses can be significantly
different from their bare values. In nondegenerate matter, we
expect the dependence of the mean free path on the isospin
independent effective mass to be weak [20]. On the other hand,
in degenerate matter the leading order M∗

2 M∗
4 dependence of

the differential cross section remains after integration over q0

and μ13 [20]. Therefore, we expect that reducing the nucleon
effective mass will reduce the neutrino mean free path but at
the a rate slower than M2. In Fig. 5, we show the impact of
varying the nucleon effective masses at saturation density in
beta equilibrium, assuming the effective masses are isospin
independent. The expected reduction in the mean free path
is seen in all approximations of the neutrino mean free path
down to M∗/M ≈ 0.6. Because the chemical potentials in beta
equilibrium depend on the effective mass, μ̂ decreases with
increasing effective mass in Fig. 5. Therefore, the detailed
balance factor gets larger for smaller effective masses and
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FIG. 5. Variation of the charged current neutrino mean free path
with the nucleon effective masses at saturation density. The nucleon
effective mass is assumed to be isospin independent and matter is
assumed to be in beta equilibrium. The neutrino energy is taken to be
Eν = πT . Full denotes the fully relativistic cross section including
weak magnetism corrections, RPL98 denotes the cross section given
by the expressions in [10], and Constant �μν refers to the cross section
given by Eq. (74).

eventually becomes more important than the leading order
mass dependence in the response, causing the turnover in the
behavior of the mean free path with effective mass seen at the
lowest effective masses considered here.

It is also likely that there is significant isospin dependence
of the effective mass [38]. The formalism developed here can
fully account for this. To leading order, isospin splitting of the
effective mass provides a similar effect to isospin dependent
potential energies, since the charged current response will
be peaked around q0 = U4 − U2 + M∗

2 − M∗
4 = 0. Including

this isospin dependence in the effective masses in a manner
consistent with constraints on the nuclear symmetry energy
requires also choosing different values for the nucleon poten-
tial energies. A detailed investigation of the impact of isospin
dependent effective masses on neutrino opacities is beyond the
scope of this work.

D. The neutral current limit

Since the neutral current interactions have the same mass
and potential for the incoming and outgoing baryons, we set
β = 1, λ = 
 = 0, σ− = 1, σ+ = 1 − 4m2

2/q
2
α , and q̃0 = q0.

With these replacements, only two pieces of the vector
polarization are nonzero:

I
V,nc
L = IQ + IL = − q2

μ

4πq3

∫ ∞

em

dE2(f2 − f4)[(2E2 + q0)2 − q2] (80)

I
V,nc
T = IQ + IT = − q2

μ

4πq3

∫ ∞

em

dE2(f2 − f4)

[
q2/2 + 2M2

2
q2

q2
α

+ (2E2 + q0)2/2

]
, (81)

which has the same form as the results of [10] (although there
is a factor of 2 difference, which is purely definitional). For the
neutral current reactions, vector current conservation holds for
the polarization tensor, such that qμI

μν
V = 0, which can be seen

from substituting the neutral current expressions in Eq. (79).
Therefore, the standard decomposition of the vector part of the
neutral current polarization tensor is

IV,nc
μν = I

V,nc
L P L

μν + I
V,nc
T P T

μν, (82)

which gives I
V,nc
L = − q2

μ

q2 I
V,nc
00 and I

V,nc
T = −I nc

22 , which has
been used in previous works [10,14].

We can also see that

IA,nc
μν = I

V,nc
L P L

μν + I
V,nc
T P T

μν + ημνIA (83)

with

IA = −4M2
2

q2
α

IQ = −M2
2

πq

∫ ∞

em

dE2(f2 − f4), (84)

which also agrees with [10]. Our expression for the mixed
vector-axial polarization is also in agreement.

The neutral current tensor polarizations were investigated
in [22]. Our result is

I T
L = IQ − q2

α

4m2
2

IL = − q2
α

4m2
2

[
IV
L + IA

(
1 + q2

α

4m2
2

)]
, (85)

I T
T = IQ − q2

α

4m2
2

IT = − q2
α

4m2
2

[
IV
T + IA

(
1 + q2

α

4m2
2

)]
. (86)

This agrees with [22] up to a sign in front of IA in I T
T .

IV. CONCLUSIONS

We have derived complete expressions for charged current
neutrino interactions in the mean field approximation, includ-
ing weak magnetism, arbitrary degeneracy, and relativistic
kinematics. We approach the problem using both Fermi’s
golden rule and the linear response given by many-body
perturbation theory to clarify the derivation and provide a
path to including correlations. Both approaches of course yield
the same answer. We then investigated the neutrino mean free
paths predicted by these results and compared them to other re-
sults found in the literature. These expressions can also be used
to calculate neutral current cross sections and inelastic electron
scattering. We provide an open-source library for calculating
these opacities at https://bitbucket.org/lroberts/nuopac.
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Our results extend and correct results previously presented
in the literature. We find that vector current nonconservation
in charged current reactions [28] and the correct inclusion
of neutron and proton potential energies, along with weak
magnetism corrections to all orders, introduces a number of
new terms in the charged current opacities. At low densities,
the corrections to the old rates are modest and provide changes
of a few to ten percent relative to previous results in the
literature for neutrino energies of order 10 MeV. This is
unlikely to make qualitative changes in the results of core
collapse supernova and compact object merger simulations,
but in situations where computational models are sensitive to
small changes in microphysics these corrections can at least
remove one source of uncertainty. At high density, especially
when the neutron proton self-energy difference is large, they
can alter the neutrino mean free paths in the medium by factors
of a few or greater. This is likely to impact the rate of lepton
transport inside protoneutron stars.

Additionally, our derivation of the charged current polar-
ization tensor provides a starting point for future calculations
of RPA corrections to the charged current rates. Previous
work has found that these corrections can change rates by
up to factors of a few at and above nuclear saturation density
[20,21]. At subnuclear density, more work is warranted to
assess the role of particle-hole screening and collective modes.
Since the nucleon-nucleon interaction is nearly resonant at
low momentum, we are exploring the RPA correlations with
large effective interactions that can reproduce nucleon-nucleon
phase shifts. This will be reported in a future publication.
Additionally, because we find a different tensor structure than
was found in previous work [20,21], the detailed form of the
RPA equations will be altered. It remains to be seen if this
significantly impacts the resulting opacities. In the future, we
also plan to include RPA corrections in our publicly released
opacity library.
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APPENDIX A: POLARIZATION TENSOR
DECOMPOSITION

Here, we partially follow [33] on pages 113, 118, and 214.
First, we choose to decompose the momentum transfer as q̃μ =
(q̃0,0,0,q) and build a second vector orthogonal to q̃μ in the
time-z plane, nμ = (q,0,0,q̃0). We then define the transverse

projector

P T +
μν = ημν − q̃μq̃ν

q̃2
μ

− nμnν

n2

= ημν + nμnν − q̃μq̃ν

q̃2
μ

, (A1)

which picks out the portion of a vector orthogonal to q̃μ and
nμ. We can also define the projectors along q̃μ and nμ as

P L
μν = nμnν

n2
μ

= −nμnν

q̃2
μ

, (A2)

P Q
μν = q̃μq̃ν

q̃2
μ

. (A3)

It is also useful to define the quantities

P M±
μν = q̃μnν ± q̃νnμ

q̃2
μ

, (A4)

P T −
μν = εμνλδ

q̃λnδ

q̃2
α

. (A5)

The only nonzero, complete contractions of these tensors with
one another are

P L
μνP

μν
L = 1, (A6)

P Q
μνP

μν
Q = 1, (A7)

P M±
μν P

μν
M± = −2, (A8)

P T ±
μν P

μν
T ± = 2. (A9)

Any rank-2 tensor can be decomposed as

Aμν = AQP Q
μν + ALP L

μν + AM+P M+
μν + AM−P M−

μν + Ãμν.
(A10)

If there are no other preferred directions that enter into Ãμν

(which is the case with the polarization tensors as long as the
distribution function is isotropic), we have

Ãμν = AT +P T +
μν + AT −P T −

μν , (A11)

since P T is the only available transverse, symmetric tensor
and the second piece is the only antisymmetric tensor that can
be made from the Levi-Civita tensor. They can be recovered
using

AQ = P
μν
Q Aμν, (A12)

AL = P
μν
L Aμν, (A13)

AM+ = − 1
2P

μν
M+Aμν, (A14)

AM− = − 1
2P

μν
M−Aμν, (A15)

AT + = 1
2P

μν
T +Aμν = −A22, (A16)

AT − = 1
2P

μν
T −Aμν. (A17)

The last relation in (A16) holds when nμ and qμ are in the 0-3
plane.
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APPENDIX B: SPIN SUMS IN RMF THEORY

Here we derive the spin sums of Dirac spinors essential
in defining the nucleon propagators in mean field theory
given earlier in Eq. (17). For Walecka type field theories, we
generally have a Lagrangian of the the form

L =
∑
B

�̄B(iγ μ∂μ − MB + gσBσ − gωBγ μωμ)�B + Lσω,

(B1)

where we have only included a single vector field ωμ for
simplicity, and the meson field self-interactions are subsumed
into Lσω. The addition of isospin dependent fields to this
Lagrangian is a trivial extension of the results presented
below. In the mean field approximation, the scalar and vector
fields behave classically and for homogeneous matter the only
nonzero component of the vector field is the time component.
For this Lagrangian, the equations of motion

(iγ μ∂μ − MB + gσBσ − gωBγ μωμ)�B = 0, (B2)

�̄B(−iγ μ ←−
∂ μ − MB + gσBσ − gωBγ μωμ) = 0, (B3)

are the analog of the Dirac equation in the presence of classical
background fields.

First, we can find the dispersion relations nucleons by
noting that fields that satisfy the Dirac equation also satisfy the
Klein-Gordon equation. In standard notation, we then have

(i∂/ − gωBω/ − M∗
B)(−i∂/∂ + gωBω/ − M∗

B)�B

= [(i∂μ − gωBωμ)(i∂μ − gωBωμ) − M∗
B

2]�B = 0, (B4)

which admits plane wave solutions �B ∝ exp(∓ip · x), and
the dispersion relation is given by the equation for pμ,

(pμ ∓ gωBωμ)(pμ ∓ gωBωμ) − M∗
B

2 = 0. (B5)

Similar to the free field case, the upper sign will correspond to
particle while the lower sign will correspond to antiparticles,
and from now on we will only consider the particles. The
equation for �̄B gives a similar result, and if we define the
four-vector

p̃μ = pμ − gωBωμ = (E∗, − �p), (B6)

the mean field theory will look almost exactly like the free
field theory, just with the replacement pμ → p̃μ everywhere
except for in the exponent. Here E∗ =

√
p2 + M∗

B
2 is the

kinetic energy of the particle.
With this spatial dependence, we can expand the baryon

fields in terms of Fourier modes and promote the expansion
coefficients to creation and annihilation operators as and bs

and the standard four-component spinners us and vs as

�B(x) =
∑

s=+,−

∫
d3p

(2π )32E∗
p

× (as( �p)us( �p)e−ip·x + b†s ( �p)vs( �p)eip·x), (B7)

�̄B(x) =
∑

s=+,−

∫
d3p

(2π )32E∗
p

× (a†
s ( �p)ūs( �p)eip·x + bs( �p)v̄s( �p)e−ip·x). (B8)

Enforcing the standard anticommutation relations on the fields
gives

{a†
s ( �p),as ′ ( �p′)} = (2π )3δ(3)( �p − �p′)2E∗

pδss ′ , (B9)

where the E∗
p normalization is consistent with the denominator

of the Lorentz invariant phase space factor in the field
expansions.

It is easy to show that the Hamiltonian density is

H = �̄B(iγ j ∂j + m + gω/)�B. (B10)

Integrating over space and using the field expansions gives the
Hamiltonian

H =
∑

s

∫
d3p

(2π )32E∗
p

[E∗
pa†

p,sap′,s ′ ] + gω0Q + antiparticles,

(B11)

where

Q =
∫

d3p

(2π )32E∗
p

[a†
p,sap′,s ′ ] − antiparticles, (B12)

is the baryon number. This result is useful when considering
the grand canonical Hamiltonian, which gets also gets a
contribution −μQ.

We also need to know how the presence of mean fields
impacts the properties of the four-component spinors. Using
the field equation for the baryon fields with the above
expansions results in

(p/ − M∗ − gωBω/)us( �p) = 0, (B13)

ūs( �p)(/p − M∗ − gωBω/) = 0, (B14)

(−p/ − M∗ − gωBω/)vs( �p) = 0, (B15)

v̄s( �p)(−p/ − M∗ − gωBω/) = 0. (B16)

The equations for us( �p) can be expressed in terms of p̃μ, in
which case they take the free field form. This allows us to write
down the spin sums∑

s=±
ūs( �p)us( �p) = p̃/ + M∗, (B17)

∑
s=±

v̄s( �p)vs( �p) = p̃/ − M∗, (B18)

which appear in the mean field propagator. Additionally, this
implies that the Gordon identities and other properties of the
spinors are unaltered from the free field case aside from the
aforementioned replacement.

We emphasize that the above analysis dealt only explicitly
with particle states. The antiparticles get a potential energy
with the opposite sign from the mean field, so that the
antiparticle kinetic four-momentum is given by p̃μ = pμ +
qωμ.

APPENDIX C: MATSUBARA SUMS

Here, we calculate the types of Matsubara sums necessary to
evaluate the imaginary time polarization tensor. It is easiest to
consider the Matsubara sums directly. Using standard methods
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(e.g., [33]), it is easy to show that

T
∑

n

g(iωn + α) =
∑

Res g(p0)f (p0 − α), (C1)

where g is an arbitrary function of a complex variable that converges more rapidly than 1/|p0| in all directions (otherwise it is
necessary to be careful about which convergence factor is chosen). The pair bubble will require evaluating Matsubara sums of
the form

Sl,j (iωm + 
μ) = T
∑

n

(iωn + ν1)l[−i(ωm − ωn) + ν2]j
(iωn + ν1,E1)
(i(ωm + ωn) + ν2,E2), (C2)

where 
(iω,E) = 1/(ω2 + E2
p) and Ei =

√
p2

i + m2
i . We choose the energy of a particle of species 2 (rather than an antiparticle),

since we will primarily be interested in the particle-particle contribution to the polarization. This results in a g of the form

g(p0) = pl
0(p0 − ω0)j[

E2
1 − p2

0

][
E2

2 − (ω0 − p0)2
] = pl

0(p0 − ω0)j

(E1 + p0)(E1 − p0)(E2 + ω0 − p0)(E2 − ω0 + p0)
, (C3)

where ω0 = −iωm + 
ν and ωm is a Bosonic frequency. The relations

1

(a + b)(a − b)
= 1

2a

[
1

a − b
+ 1

a + b

]
= 1

2b

[
1

a − b
− 1

a + b

]
(C4)

help define the properties of the poles found in g. The g function has four simple poles. Using the notation of equation (C4), we
find

(1) p0 = E1, a = E2, and b = E1 − ω0:

Res g(E1)f = −El
1(E1 − ω0)j

4E1E2

[
f (E1 − ν1)

ω0 − E1 + E2
− f (E1 − ν1)

ω0 − E1 − E2

]
;

(2) p0 = −E1, a = E2, and b = E1 + ω0:

Res g(−E1)f = − (−E1)l(−ω0 − E1)j

4E1E2

[
1 − f (E1 + ν1)

ω0 + E1 − E2
− 1 − f (E1 + ν1)

ω0 + E1 + E2

]
;

(3) p0 = ω0 + E2, a = E1, and b = E2 + ω0:

Res g(ω0 + E2)f = − (ω0 + E2)lEj
2

4E1E2

[
− f (E2 − ν2)

ω0 − E1 + E2
+ f (E2 − ν2)

ω0 + E1 + E2

]
;

(4) p0 = ω0 − E2, a = E1, and b = E2 − ω0:

Res g(ω0 − E2)f = (−E2 + ω0)l(−E2)j

4E1E2

[
1 − f (E2 + ν2)

ω0 + E1 − E2
− 1 − f (E2 + ν2)

ω0 − E1 − E2

]
.

Combining terms that have the same denominators and carefully accounting for signs, we then have (for l,j = {0,1})

Sl,j (iωm + 
μ) = − El
1E

j
2

4E1E2

[
f1(E1) − f2(E2)

−iωm + 
ν − E1 + E2
+ (−1)j

1 − f1(E1) − f̄2(E2)

−iωm + 
ν − E1 − E2

− (−1)l+j f̄1(E1) − f̄2(E2)

−iωm + 
ν + E1 − E2
− (−1)l

1 − f̄1(E1) − f2(E2)

−iωm + 
ν + E1 + E2

]
, (C5)

where fi(E) = [exp(βE − βνi) + 1]−1.

[1] J. A. Pons, S. Reddy, M. Prakash, J. M. Lattimer, and J. A.
Miralles, Astrophys. J. 513, 780 (1999).

[2] L. Hüdepohl, B. Müller, H.-T. Janka, A. Marek, and G. G.
Raffelt, Phys. Rev. Lett. 104, 251101 (2010).

[3] H.-T. Janka, T. Melson, and A. Summa, Annu. Rev. Nucl. Part.
Sci. 66, 341 (2016).

[4] S. Wanajo, Y. Sekiguchi, N. Nishimura, K. Kiuchi, K. Kyutoku,
and M. Shibata, Astrophys. J. Lett. 789, L39 (2014).

[5] D. Radice, F. Galeazzi, J. Lippuner, L. F. Roberts, C. D. Ott, and
L. Rezzolla, Mon. Not. R. Astron. Soc. 460, 3255 (2016).

[6] T. Melson, H.-T. Janka, R. Bollig, F. Hanke, A. Marek, and B.
Müller, Astrophys. J. Lett. 808, L42 (2015).

[7] A. Burrows, D. Vartanyan, J. C. Dolence, M. A. Skinner, and D.
Radice, arXiv:1611.05859.

[8] C. J. Horowitz, O. L. Caballero, Z. Lin, E. O’Connor, and A.
Schwenk, Phys. Rev. C 95, 025801 (2017).

045807-14

https://doi.org/10.1086/306889
https://doi.org/10.1086/306889
https://doi.org/10.1086/306889
https://doi.org/10.1086/306889
https://doi.org/10.1103/PhysRevLett.104.251101
https://doi.org/10.1103/PhysRevLett.104.251101
https://doi.org/10.1103/PhysRevLett.104.251101
https://doi.org/10.1103/PhysRevLett.104.251101
https://doi.org/10.1146/annurev-nucl-102115-044747
https://doi.org/10.1146/annurev-nucl-102115-044747
https://doi.org/10.1146/annurev-nucl-102115-044747
https://doi.org/10.1146/annurev-nucl-102115-044747
https://doi.org/10.1088/2041-8205/789/2/L39
https://doi.org/10.1088/2041-8205/789/2/L39
https://doi.org/10.1088/2041-8205/789/2/L39
https://doi.org/10.1088/2041-8205/789/2/L39
https://doi.org/10.1093/mnras/stw1227
https://doi.org/10.1093/mnras/stw1227
https://doi.org/10.1093/mnras/stw1227
https://doi.org/10.1093/mnras/stw1227
https://doi.org/10.1088/2041-8205/808/2/L42
https://doi.org/10.1088/2041-8205/808/2/L42
https://doi.org/10.1088/2041-8205/808/2/L42
https://doi.org/10.1088/2041-8205/808/2/L42
http://arxiv.org/abs/arXiv:1611.05859
https://doi.org/10.1103/PhysRevC.95.025801
https://doi.org/10.1103/PhysRevC.95.025801
https://doi.org/10.1103/PhysRevC.95.025801
https://doi.org/10.1103/PhysRevC.95.025801


CHARGED CURRENT NEUTRINO INTERACTIONS IN HOT . . . PHYSICAL REVIEW C 95, 045807 (2017)

[9] L. F. Roberts, C. D. Ott, R. Haas, E. P. O’Connor, P. Diener, and
E. Schnetter, Astrophys. J. 831, 98 (2016).

[10] S. Reddy, M. Prakash, and J. M. Lattimer, Phys. Rev. D 58,
013009 (1998).

[11] G. Martínez-Pinedo, T. Fischer, A. Lohs, and L. Huther, Phys.
Rev. Lett. 109, 251104 (2012).

[12] L. F. Roberts, Astrophys. J. 755, 126 (2012).
[13] L. F. Roberts, S. Reddy, and G. Shen, Phys. Rev. C 86, 065803

(2012).
[14] C. J. Horowitz, G. Shen, E. O’Connor, and C. D. Ott, Phys. Rev.

C 86, 065806 (2012).
[15] E. Rrapaj, J. W. Holt, A. Bartl, S. Reddy, and A. Schwenk, Phys.

Rev. C 91, 035806 (2015).
[16] R. F. Sawyer, Phys. Rev. D 11, 2740 (1975).
[17] N. Iwamoto and C. J. Pethick, Phys. Rev. D 25, 313 (1982).
[18] C. J. Horowitz and K. Wehrberger, Phys. Lett. B 266, 236 (1991).
[19] A. Burrows and R. F. Sawyer, Phys. Rev. C 58, 554 (1998).
[20] S. Reddy, M. Prakash, J. M. Lattimer, and J. A. Pons, Phys. Rev.

C 59, 2888 (1999).
[21] A. Burrows and R. F. Sawyer, Phys. Rev. C 59, 510 (1999).
[22] C. J. Horowitz and M. A. Pérez-García, Phys. Rev. C 68, 025803

(2003).
[23] L. F. Roberts, G. Shen, V. Cirigliano, J. A. Pons, S. Reddy, and

S. E. Woosley, Phys. Rev. Lett. 108, 061103 (2012).
[24] G. I. Lykasov, C. J. Pethick, and A. Schwenk, Phys. Rev. C 78,

045803 (2008).

[25] S. Reddy, G. Bertsch, and M. Prakash, Phys. Lett. B 475, 1
(2000).

[26] H. Sonoda, G. Watanabe, K. Sato, T. Takiwaki, K. Yasuoka, and
T. Ebisuzaki, Phys. Rev. C 75, 042801 (2007).

[27] C. J. Horowitz, D. K. Berry, M. E. Caplan, T. Fischer, Z. Lin, W.
G. Newton, E. O’Connor, and L. F. Roberts, arXiv:1611.10226.

[28] L. B. Leinson and A. Perez, Phys. Lett. B 518, 15 (2001); 522,
358(E) (2001).

[29] C. J. Horowitz, Phys. Rev. D 65, 043001 (2002).
[30] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-

Particle Systems (Dover, Mineola, NY, 1971).
[31] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[32] L. D. Landau and E. M. Lifshitz, Statistical Physics (Elsevier,

Amsterdam, 1980), Parts 1 and 2.
[33] M. Le Bellac, Thermal Field Theory (Cambridge University

Press, Cambridge, 2000).
[34] K. Takahashi, M. F. El Eid, and W. Hillebrandt, Astron.

Astrophys. 67, 185 (1978).
[35] R. Mertig, M. Böhm, and A. Denner, Comput. Phys. Commun.

64, 345 (1991).
[36] C. Giunti and W. K. Chung, Fundamentals of Neutrino

Physics and Astrophysics (Oxford University Press, Oxford,
2007).

[37] S. W. Bruenn, Astrophys. J. Suppl. Ser. 58, 771 (1985).
[38] B.-A. Li and L.-W. Chen, Mod. Phys. Lett. A 30, 1530010

(2015).

045807-15

https://doi.org/10.3847/0004-637X/831/1/98
https://doi.org/10.3847/0004-637X/831/1/98
https://doi.org/10.3847/0004-637X/831/1/98
https://doi.org/10.3847/0004-637X/831/1/98
https://doi.org/10.1103/PhysRevD.58.013009
https://doi.org/10.1103/PhysRevD.58.013009
https://doi.org/10.1103/PhysRevD.58.013009
https://doi.org/10.1103/PhysRevD.58.013009
https://doi.org/10.1103/PhysRevLett.109.251104
https://doi.org/10.1103/PhysRevLett.109.251104
https://doi.org/10.1103/PhysRevLett.109.251104
https://doi.org/10.1103/PhysRevLett.109.251104
https://doi.org/10.1088/0004-637X/755/2/126
https://doi.org/10.1088/0004-637X/755/2/126
https://doi.org/10.1088/0004-637X/755/2/126
https://doi.org/10.1088/0004-637X/755/2/126
https://doi.org/10.1103/PhysRevC.86.065803
https://doi.org/10.1103/PhysRevC.86.065803
https://doi.org/10.1103/PhysRevC.86.065803
https://doi.org/10.1103/PhysRevC.86.065803
https://doi.org/10.1103/PhysRevC.86.065806
https://doi.org/10.1103/PhysRevC.86.065806
https://doi.org/10.1103/PhysRevC.86.065806
https://doi.org/10.1103/PhysRevC.86.065806
https://doi.org/10.1103/PhysRevC.91.035806
https://doi.org/10.1103/PhysRevC.91.035806
https://doi.org/10.1103/PhysRevC.91.035806
https://doi.org/10.1103/PhysRevC.91.035806
https://doi.org/10.1103/PhysRevD.11.2740
https://doi.org/10.1103/PhysRevD.11.2740
https://doi.org/10.1103/PhysRevD.11.2740
https://doi.org/10.1103/PhysRevD.11.2740
https://doi.org/10.1103/PhysRevD.25.313
https://doi.org/10.1103/PhysRevD.25.313
https://doi.org/10.1103/PhysRevD.25.313
https://doi.org/10.1103/PhysRevD.25.313
https://doi.org/10.1016/0370-2693(91)91032-Q
https://doi.org/10.1016/0370-2693(91)91032-Q
https://doi.org/10.1016/0370-2693(91)91032-Q
https://doi.org/10.1016/0370-2693(91)91032-Q
https://doi.org/10.1103/PhysRevC.58.554
https://doi.org/10.1103/PhysRevC.58.554
https://doi.org/10.1103/PhysRevC.58.554
https://doi.org/10.1103/PhysRevC.58.554
https://doi.org/10.1103/PhysRevC.59.2888
https://doi.org/10.1103/PhysRevC.59.2888
https://doi.org/10.1103/PhysRevC.59.2888
https://doi.org/10.1103/PhysRevC.59.2888
https://doi.org/10.1103/PhysRevC.59.510
https://doi.org/10.1103/PhysRevC.59.510
https://doi.org/10.1103/PhysRevC.59.510
https://doi.org/10.1103/PhysRevC.59.510
https://doi.org/10.1103/PhysRevC.68.025803
https://doi.org/10.1103/PhysRevC.68.025803
https://doi.org/10.1103/PhysRevC.68.025803
https://doi.org/10.1103/PhysRevC.68.025803
https://doi.org/10.1103/PhysRevLett.108.061103
https://doi.org/10.1103/PhysRevLett.108.061103
https://doi.org/10.1103/PhysRevLett.108.061103
https://doi.org/10.1103/PhysRevLett.108.061103
https://doi.org/10.1103/PhysRevC.78.045803
https://doi.org/10.1103/PhysRevC.78.045803
https://doi.org/10.1103/PhysRevC.78.045803
https://doi.org/10.1103/PhysRevC.78.045803
https://doi.org/10.1016/S0370-2693(00)00049-6
https://doi.org/10.1016/S0370-2693(00)00049-6
https://doi.org/10.1016/S0370-2693(00)00049-6
https://doi.org/10.1016/S0370-2693(00)00049-6
https://doi.org/10.1103/PhysRevC.75.042801
https://doi.org/10.1103/PhysRevC.75.042801
https://doi.org/10.1103/PhysRevC.75.042801
https://doi.org/10.1103/PhysRevC.75.042801
http://arxiv.org/abs/arXiv:1611.10226
https://doi.org/10.1016/S0370-2693(01)01042-5
https://doi.org/10.1016/S0370-2693(01)01042-5
https://doi.org/10.1016/S0370-2693(01)01042-5
https://doi.org/10.1016/S0370-2693(01)01042-5
https://doi.org/10.1016/S0370-2693(01)01301-6
https://doi.org/10.1016/S0370-2693(01)01301-6
https://doi.org/10.1016/S0370-2693(01)01301-6
https://doi.org/10.1103/PhysRevD.65.043001
https://doi.org/10.1103/PhysRevD.65.043001
https://doi.org/10.1103/PhysRevD.65.043001
https://doi.org/10.1103/PhysRevD.65.043001
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1086/191056
https://doi.org/10.1086/191056
https://doi.org/10.1086/191056
https://doi.org/10.1086/191056
https://doi.org/10.1142/S0217732315300104
https://doi.org/10.1142/S0217732315300104
https://doi.org/10.1142/S0217732315300104
https://doi.org/10.1142/S0217732315300104



