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Electron capture can determine the electron neutrino mass, while the β decay of tritium measures the electron
antineutrino mass and the neutrinoless double β decay observes the Majorana neutrino mass. In electron capture,
e.g., 163

67 Ho + e− → 163
66 Dy∗ + νe, one can determine the electron neutrino mass from the upper end of the decay

spectrum of the excited Dy, which is given by the Q value minus the neutrino mass. The excitation of Dy is
described by one, two, and even three hole excitations limited by the Q value. These states decay by x-ray
and Auger electron emissions. The total decay energy is measured in a bolometer. These excitations have been
studied by Robertson and by Faessler et al. In addition the daughter atom Dy can also be excited by moving
in the capture process one (or more) electrons into the continuum. The escape of these continuum electrons is
automatically included in the experimental bolometer spectrum. Recently a method developed by Intemann and
Pollock was used by DeRujula and Lusignoli for a rough estimate of this shake-off process for “s” wave electrons
in capture on 163Ho. The purpose of the present work is to give a more reliable description of “s” wave shake-off
in electron capture on holmium. One uses the sudden approximation to calculate the spectrum of the decay of
163
66 Dy∗ after electron capture on 163

67 Ho. For that one needs very accurate atomic wave functions of Ho in its ground
state and excited atomic wave functions of Dy including a description of the continuum electrons. DeRujula and
Lusignoli use screened nonrelativistic Coulomb wave functions for the Ho electrons 3s and 4s and calculate
the Dy* states by first-order perturbation theory based on Ho. In the present approach the wave functions of
Ho and Dy* are determined self-consistently with the antisymmetrized relativistic Dirac-Hartree-Fock approach.
The relativistic continuum electron wave functions for the ionized Dy* are obtained in the corresponding
self-consistent Dirac-Hartree-Fock potential. The result of this improved approach is that shake-off can hardly be
seen in the bolometer spectrum after electron capture in 163Ho and thus can probably not affect the determination
of the electron neutrino mass.

DOI: 10.1103/PhysRevC.95.045502

I. INTRODUCTION

The absolute values of the neutrino masses are still an
open problem. Neutrino oscillations give the differences of the
squared neutrino masses but not the absolute value. One hopes
within the next years to obtain for the electron antineutrino
mass a value or at least a better upper limit in the tritium decay
by KATRIN in Karlsruhe [1].

The main aim of the neutrinoless double β decay is to
distinguish if neutrinos are of Dirac or Majorana nature and to
measure also the effective Majorana neutrino mass [2].

Electron capture for example in holmium can measure the
electron neutrino mass [3–6]. In electron capture the upper
end of the de-excitation spectrum of Dy at Q = 2.8 keV is
lowered below Q by the neutrino mass. The sensitivity is
increased in the tritium decay and in electron capture by a small
Q value:

163
67 Ho + e− → 163

66 Dy
∗ + νe. (1)

Energy conservation does not allow for Q = 2.8 keV to
capture electrons from 163Ho1s1/2 with 55.618 keV, from
2s1/2 with 9.394 keV or from 2p1/2 with 8.918 keV binding
energy (see Table I). The first orbital, from which an elec-

tron can be captured, is 3s1/2,M1 with 2.128 keV binding
energy.

In the sudden approximation the excitation in Dy∗ is
given by the overlap of holmium, with the hole due to the
captured electron, and the complete set of configurations of
the daughter D′|D′,Dy〉 in Dy∗. The prime indicates, that DHF
self-consistent electron orbits of Dy are used to built the Dy∗

(star indicates an excited state) configurations |D′〉. In case of
capture from n�1/2 one has

1 = 〈P,(n,�1/2)−1,Ho|P,(n,�1/2)−1,Ho〉
=

∑
D′

〈P,(n,�1/2)−1,Ho|D′,Dy〉〈D′,Dy|(n,�1/2)−1,Ho〉

= |〈P,(n,�1/2)−1,Ho|P′,Dy〉|2

+
∑

D′ �=P ′
|〈P,(n,�1/2)−1,Ho|D′,Dy〉|2. (2)

If one uses the Vatai approximation [7,8], setting all single
electron overlaps 〈nlj,Ho|nlj,Dy〉 = 1.0 apart of the overlap
between the captured electron orbital in Ho and the corre-
sponding hole with the same quantum numbers in Dy, Eq. (2)
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TABLE I. Important electron binding energies in 163
67 Ho [15].

Electrons can only be captured from orbitals overlapping with the
nucleus. This restricts capture to ns1/2 and in a relativistic treatment
to the lower amplitude of np1/2. Energy conservation requires, that
the Q value Q = 2.8 keV must be larger than the binding energy of
the electron captured in Ho. This is the case for 3s1/2 and higher
levels.

n�j Notation Eb[keV]

1s1/2 K1 55.618
2s1/2 L1 9.394
2p1/2 L2 8.918
3s1/2 M1 2.128
3p1/2 M2 1.923
4s1/2 N1 0.4324
4p1/2 N2 0.3435

reduces to

Probshake-off

� [1.0 − 〈(n,�,j )−1,Ho|(n,�,j )−1,Dy〉(2(2j+1))]

≈ [1.0 − 0.9994] = 0.004 ≡ 0.4% (3)

with 10% error of the overlap

〈(n,�,j )−1,Ho|(n,�,j )−1,Dy〉 ≈ 0.9 :

Probshake-off � [1.0 − 0.904] ≈ 0.34 ≡ 34%, (4)

i.e., 34% of the one-hole states. Since one has only capture
from ns1/2 and np1/2 states with j = 1/2 the exponent
2(̇2j + 1) is always 4. With electron capture in n,�1/2,Ho the
excited configuration P∗ (for parent) in Ho has 66 electrons
as Dy, but it is not an eigenstate of Dy. The “sum” in Eq. (2)
over the daughter configurations D′ in Dy represents a sum
over the complete set of Dy configurations with excitation
energies less than the Q value of 2.8 keV and includes also
an integral over the energy of the shake-off continuum states
|E > 0,D′ Dy〉 with E positive. The second term of the last
line in Eq. (2) is proportional to the probability to excite in
Dy any configuration apart of the configuration P′ with a hole
in state |n,�1/2〉. This probability includes also the shake-off
configurations and allows to estimate a maximal probability
for the shake-off process. Thus 0.4% [see Eqs. (2) and (3)]
is an upper limit for the shake-off probability relative to the
configuration D′ with the one-hole in n,�1/2. With an error of
10% for the overlaps and using the Vatai approximation [7,8],
the shake-off can be as strong as 34% of the one-hole states.
Without Vatai and 10% error for the single electron overlaps
between Ho and Dy, the norm yields no restriction on the
shake-off process. In this case shake-off can be as large as the
one-hole states. We use the Vatai approximation [7] and [8]
for the estimates in Eqs. (2)–(4). For the results in Secs. II to
V in this work we do not use this approximation. We calculate
all overlaps between Ho and Dy orbits exactly.

The important message from Eqs. (2)–(4) is that a small
uncertainty due to approximations for the electron wave

TABLE II. Overlaps of the 3s and 4s wave functions in Ho with
Dy. The self-consistent relativistic Dirac-Hartree-Fock results are
shown in the second column. The fourth column gives the same
overlaps calculated with nonrelativistic screened Coulomb waves
functions. The effective charges for the nonrelativistic screened
Coulomb wave functions are chosen as in the work of DeRujula
and Lusignoli Zeff = 54.9 for Ho 3s and all electron excited states re-
quired by the perturbation based on this hole state and Zeff = 43.2 for
Ho 4s and all excited electron orbits needed by perturbation. DeRujula
and Lusignoli [9] use the perturbation approach of Intemann and
Pollock [10] to obtain with H ′ = −1/r + ∫ |ϕ(
r1)|2/|
r − 
r1| the
wave functions in Dy. [In Dy one has one proton less in the nucleus
than in Ho and an additional electron hole in the state ϕ(
r).] In
our work we calculate the electron wave functions by self-consistent
DHF. For the numbers given in columns four and five of this table the
Dy wave functions are directly calculated as nonrelativistic Coulomb
waves.

DHF 1 − 〈DHF〉4 Coul. 1 − 〈Coul.〉4

〈3s,Ho|3s,Dy〉 0.99940 0.00239 0.99932 0.00271
〈4s,Ho|4s,Dy〉 0.99909 0.00363 0.99848 0.00607
〈3s,Ho|4s,Dy〉 −0.01982 – 0.56828 –
〈4s,Ho|3s,Dy〉 0.02067 – 0.56817 –
〈3s,Ho|4s,Ho〉 0.0 – 0.56857 –
〈3s,Dy|4s,Dy〉 0.0 – 0.56952 –

functions can with this lever produce a large increase of two
orders for the shake-off process. Thus very accurate wave
functions are essential:

H ′(r) = +1/r −
∫

d3r1 |ϕ3s/4s(
r1)|2/|
r − 
r1|, (5)

V (r) = −(Zeff − 1)/r −
∫

d3r1 |ϕ3s/4s(
r1)|2/|
r − 
r1|.
(6)

The relativistic self-consistent electron orbitals for Dy [12–14]
yield for shake-off a much smaller probability than Ref. [9],
which determines the Dy orbitals by perturbation H ′(r) (5)
based on Ho (see Fig. 1) as in Ref. [10]. Since the overlap
between the corresponding Ho and Dy functions is practically
100% (see Table II) the error due to first order perturbation
can only reduce the overlap. If the error of the overlaps is, e.g.,
10% the probability for two-hole states including shake-off
is 1.0–0.94 = 0.34. This probability of 34% is according to
Table II by a about two orders larger than the correct value of
about 0.4%. This can explain the large results for shake-off of
Ref. [9]. These upper limits for shake-off (2)–(4) are calculated
with the Vatai approximation [7,8].

The improvements compared to [9,10] are:

(i) The sudden approximation [6,16–18] with self-
consistent Dirac-Hartree-Fock (DHF) wave functions
for the Dy atom is used to determine the electron
capture probability and not the less reliable first order
perturbation theory [9,10].
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FIG. 1. Nonrelativistic Coulomb wave functions 3s (solid), 4s

(dashed-dot-dot) in Ho with the effective charges chosen by DeRujula
and Lusignoli [9] Zeff (3s) = 54.9 and Zeff (4s) = 43.2. In Ref. [9]
the s-wave functions for Dy including the continuum are calculated
according to [10] in first order with the perturbation (5). But for this
figure the screened nonrelativistic “Coulomb” wave functions for
163Dy are calculated exactly [11] and not with first order perturbation
relative to Ho as in Ref. [9], for the potential (6) with a 3s or 4s

hole in Dy. The charge of the nucleus is reduced by one from Ho
to Dy, but the electron hole in Dy in the orbit 3s (dashed-dot) or 4s

(dashed) increases for the outer electrons the charge again effectively
by one. The change from Ho to Dy is almost not visible in the
wave function of this figure. The hole state has in Dy the effect
to smear out the positive charge of the nucleus compared to Ho
and increases by that effectively the nuclear radius. Thus the effect
is to shift the functions in Dy slightly to the right to larger radial
distances. This small change of the wave function from Ho to Dy
restricts in the sudden approximation using the Vatai approximation
[7,8] the probability for two-hole states including also shake-off to
the very small values 0.00271 for 3s and 0.00607 (see Table II) for
4s in column five of Table II. These small probabilities for two-hole
states including shake-off agrees qualitatively with the more reliable
self-consistent relativistic Dirac-Hartree-Fock [12] result of column
three in Table II. This shows, that shake-off can have only a very
minor effect on the bolometer spectrum of the Dy decay after capture
in Ho.

(ii) The electron wave functions in 163
67 Ho are not given

as nonrelativistic screened Coulomb functions, but
are calculated with the relativistic, self-consistent
Dirac-Hartree-Fock approach [12–14] with full an-
tisymmetrization. Among many other advantages the
electron orbitals are in this way all orthogonal (see
Table II).

(iii) The wave function of the bound electrons in Dyspro-
sium are again determined self-consistent and rela-
tivistic by Dirac-Hartree-Fock [12–14] even allowing
for 3s and 4s hole states for the determination of
the self-consistent wave functions. In Refs. [9,10] the
electron orbitals for the daughter Dy are calculated in
first-order perturbation theory (5).

(iv) The s-wave function for the 66th continuum electron
for shake-off in Dy is calculated relativistically in the
self-consistent DHF potential of the 65 electrons in
ionized Dy under the condition that the continuum
s orbitals are orthogonal in the bound s orbits
in Dy.

(v) The problem of the numerical stability is tested
carefully. For the continuum electron wave functions
in Dy for the radial coordinate 250 up to more than
700 mesh points were used depending on the energy.
The integration over the continuum electron energies
for the shake-off electron are performed from 0 to
Q = 2.8 [keV] with 417 mesh points. Integrations
for the norms, the overlaps and the integration over
the shake-off in the continuum were done in parallel
with the Trapez rule (error ∝ second derivative),
the Kepler-Simpson rule (error ∝ fourth derivative),
the Bode-Boole rule (error ∝ sixth derivative), and
the Weddle rule. From the points of stability and
accuracy the Bode-Boole’s rule turned out to be the
most reliable. All the calculations were done in double
precision.

(vi) The DHF overlaps of 〈3s,Ho|3s,Dy〉 = 0.99940 and
〈4s,Ho|4s,Dy〉 = 0.99909 limit in the Vatai approx-
imation [7,8] the two-hole probability including the
shake-off process, which requires a second hole, to
0.24% and 0.36% of the one-hole excitations. An
error of 10% in calculating the single orbital overlaps
between Ho and Dy due to first order perturbation
theory [9,10] estimated again with Vatai can increase
the shake-off probability by two orders of magnitude.
Equation (2) serves as lever to produce from a
small uncertainty of the single electron overlaps a
large increase of the shake-off probability. If one
does not use the Vatai approximation and puts all
electron orbital overlaps of Ho with Dy to 0.999, the
definite upper limit (including one- and two-hole and
shake-off excitations) for shake-off is 12% relative to
the one-hole states. The norm gives without Vatai
no restriction for the shake-off with an error of
10% for the 〈n,�,j,Ho|n,�,j,Dy〉 single electron
overlaps.

(vii) In this work the different one-hole, two-hole, and
shake-off contributions are taken from the theory
without adjusting them in different ways to fit the
experiment. In Ref. [9] the authors write on the second
page in the right column: “Our estimate of the height
of the N1(4s)O1(5s) shakeup peak is a factor ≈2.5
too low. It is possible to correct in similarly moderate
ways the other contributions such as to agree with the
data.”

II. ELECTRON CAPTURE WITH SHAKE-OFF

The de-excitation spectrum of the daughter 163Dy∗ after
electron capture in 163Ho is described in Refs. [3,6] assuming
Lorentzian line profiles by the expression:
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d�

dEc

∝
∑

i=1,...Nν

|Ue,i |2(Q − Ec)
√

(Q − Ec)2 − m2
ν,i

⎛
⎝∑

f =f ′
λ0Bf

�f ′

2π

1

(Ec − Ef ′)2 + �2
f ′/4

+
∑

f =f ′;p′〈F ;q ′
b〉F

λ0Bf,p′〈F ;q ′
b〉F

�f ′,p′

2π

1

(Ec − Ef ′,p′ )2 + �2
f ′,p′/4

+
∫

dkq ′λ0Bf,p′〈F ;q ′
c〉0

�f ′,p′,q ′

2π

1

(Ec − Ef ′,p′,q ′ )2 + �2
f ′,p′,q ′/4

⎞
⎠. (7)

The factor in front of the brackets originates from the phase
space of the neutrino. It is the same as for the single β decay.
The three terms in the three lines in Eq. (7) in the brackets
describe the decay of of the excited daughter Dy from one-hole
f ′ excitations, from two-hole excitations f ′, p′ with a shake-up
of p′ to q ′ into a bound orbit and the excitation of two-holes
f ′, p′ with one electron p′ moved to q ′ into the continuum
with an energy E > 0 (shake-off). The integration over the
wave number kq ′ yields for shake-off a dimensionless strength
factor dkq ′ · Bf ′,p′〈F,q ′〉o and thus has the same dimension as the
other strength factors Bf ′ and Bf ′,p′〈F,q ′〉F . The transformation
from an integral over the wave number to an integral over the
energy yields nonrelativistically a factor 1/(2 · π · kq ′). [For
the relativistic expression used here see Eq. (22)]. U 2

e,i is the
probability for the admixture of different neutrino mass “i”
eigenstates into the electron neutrino “e” flavor eigenstate.
For the Q value we take Q = (2.8 ± 0.08) [keV] from the
ECHo collaboration [4,19–22], while the recommended value
[23] Q = (2.55 ± 0.016) keV seems to be to small. Ec is
the excitation energy of final dysprosium. The energy differ-
ence Q − Ec is carried away by the neutrino. Bf ,Bf,p′〈F ;q ′

b〉F ,
and Bf,p′〈F ;q ′

c〉0 are the overlap and exchange corrections for
the one-hole, the bound two-hole, and the shake-off two-hole
states. λ0 contains the nuclear matrix element squared [16].
Since λ0 is here not calculated the theoretical results are
given in arbitrary units fitted to the N1, 4s1/2 experimental
peak. Ef ′ ,Ef ′,p′ , and Ef ′,p′;q ′>0 are the one-hole, the two-hole
shake-up, and the two-hole shake-off excitation energies in
dysprosium (see Tables I and III). �f ′ ,�f ′,p′ , and �f ′,p′;q ′>0

are the widths of the one- and two-hole states and the two-hole
states with shake-off in dysprosium [6,18]. If the escape width
of the electron in the continuum is included, it has to be
added to �f ′,p′;q ′>0 in line 3 of Eq. (7). The escape width
of the electron from the shake-off state is neglected here and
in Ref. [9]. This additional escape contribution to the width
should be studied in the future. It could smear out the shake-off
contributions as function of the energy. The difference between
the emitted neutrino and the escape electron is that event by
event the energy of the electron (plus the two-hole binding
energy) is measured in the bolometer. The neutrino escapes un-
detected. Here as in all other calculations for the de-excitation
of Dy after electron capture a Lorentzian shape is assumed.
This is probably a good description. Holmium is in the ECHo
experiment built in a gold film positioned as an interstitial or
it occupies a position of the gold lattice. A Gaussian shape
would be expected in a gas from Doppler broadening. Even

collision and pressure broadening yield usually a Lorentzian
profile. But since the shape of the resonance lines are important
for the determination of the neutrino mass, this assumption
must be studied in the future more carefully. For the neutrino
mass determination the highest two-hole state with an energy
2.474 keV [6,24] is the most important excitation. (2.0418 keV
3s in Dy plus 0.4324 keV 4s from Ho. Due to the hole in
Dy the second hole should “see” an effective nuclear charge
similar as in Ho.) We describe the atomic wave function by
a single Dirac-Hartree-Fock Slater determinant. The one-hole
B ′

f and the bound two-hole probabilities (shake-up) Bf ′,p′;q ′

are derived in Refs. [2,6,18]. We concentrate here only on
the shake-off probability Bf ′,p′:q ′>0 with the electron q ′ in the
continuum. The antisymmetrized Slater determinants for the
wave functions of the initial holmium in the ground state |G〉
and the excited one electron hole states |A′

f ′ 〉 in dysprosium
read in second quantization:

|G〉 = a
†
1a

†
2a

†
3 · · · a

†
Z|0〉, (8)

|A′
f ′ 〉 = a

′†
1 a

′†
2 · · · a

′†
f ′−1a

′†
f ′+1 · · · a′†

Z |0〉. (9)

The antisymmetrized two-hole state in Dy with shake-off is

|A′
p′,f ′:q ′>0〉
= a

′†
1 a

′†
2 · · · a

′†
f ′−1a

′†
f ′+1 · · · a′†

p′−1a
′†
p′+1 · · · a′†

Za
′†
q ′>0|0〉.

(10)

TABLE III. Electron binding energies and width of two-hole
states in 163

66 Dy, which contribute to s-wave shake-off. Energy
conservation requires, that the Q value Q = 2.8 keV must be larger
than the two-hole binding energy plus the energy of the electron in the
continuum. The shake-off contributions for the two-hole states start at
the two-hole binding energy in the bolometer spectrum as a function
of Ec. The width includes only the contribution from the decay of the
two-hole states, but not the escape width of the continuum electron.

n1�j,1,n2�j,2 two-hole Eb [keV] Width [keV]

3s1/2,4s1/2 2.4742 0.0264
4s1/2,4s1/2 0.8414 0.0108
4s1/2,5s1/2 0.4583 0.0107
4s1/2,3p1/2 2.2692 0.0114
5s1/2,3p1/2 1.8861 0.0114
3s1/2,4p1/2 2.3853 0.0186
4s1/2,4p1/2 0.7525 0.0107
5s1/2,4p1/2 0.3776 0.0106
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TABLE IV. Overlaps of 163Ho electron orbits with bound and continuum wave functions (19) Pk(r) and Qk(r) in 163Dy. The continuum
wave functions are normalized asymptotically as in Eq. (18) to the δ function for the wave numbers (19). For the integral over the continuum
energy one has to square the overlaps of Ho functions with the continuum in Dy and to change to the energy normalization [see after Eq. (22)].
This transformation squared gives roughly a factor: 1/(2πk) ≈ 0.014 [a.u.] for an electron energy of 1.768 keV in the Dy continuum. On
the other side the transformation from the δ function of energies in Hartree to energies in keV increases shake-off result by a factor 36.7498
[Hartree/keV].

|3s,Dy〉 |4s,Dy〉 |5s,Dy〉
〈3s,Ho| 0.9940 −1.98226 × 10−2 6.20190 × 10−3

〈4s,Ho| 2.06722 × 10−2 0.99909 −1.87503 × 10−2

〈5s,Ho| −6.31396 × 10−3 1.97766 × 10−2 0.99928
|E = 0.884 keV,s,Dy〉 |E = 1.768 keV,s,Dy〉 |E = 2.653 keV,s,Dy〉

〈3s,Ho| 1.383 × 10−2 1.044 × 10−2 8.314 × 10−3

〈4s,Ho| −1.407 × 10−2 −7.366 × 10−3 −4.881 × 10−3

〈5s,Ho| 4.926 × 10−3 2.095 × 10−3 1.329 × 10−3

The probability to form a two-hole shake-off state is propor-
tional to

Pf ′,p′;q ′>0 = |〈A′
f ′,p′;q ′ |ai |G〉|2. (11)

The relative shake-off probability normalized to the 3s one-
hole excitation is

Bf ′,p′;q ′>0 = |ψf (R)〈A′
f ′,p′:q ′<0|af |G〉|2

|ψ3s1/2(R)|2

= Pf ′,p′;q ′>0 · |ψf (R)|2
|ψ3s1/2(R)|2 . (12)

Normally the wave function of the captured Ho electron is
taken for the nuclear matrix element at the origin. Here we
take this electron wave function at the nuclear radius. Due to
the weight r2 of the integration this is a better choice with

Pf ′,p′;q ′>0

= |〈0|a′
q ′a

′
Z...a′

p′+1a
′
p′−1...a

′
f ′+1a

′
f ′−1...a

′
1′af a+

1 ...a+
Z |0〉|2

= |〈A′
p′,f ′〈F ;q ′〉F (2 holes)|af |G〉|2

≈
∣∣∣∣∣∣〈q ′

>0|p<F 〉
∏

k=1..Z �=f,p

〈k′|k〉
∣∣∣∣∣∣
2

. (13)

q ′ is for the shake-off a continuum electron orbit in Dy, into
which the electron p is scattered, and p is the occupied state
in Ho, from which this electron is removed. Here again k
and k′ and also f and f ′ and p and p′ stand for the same
electron quantum numbers n, �, j in the parent k, f , p and
the daughter atom k′, f ′, p′. The product over k runs over
occupied states k′ = k = (nk, �k, jk, mk) in Ho and Dy with
the exemption of f and p. q ′ is for the shake-off contribution
a continuum state in Dy. In the Vatai approximation [7,8]
(not used here) one replaces the product over k in Eq. (14)
by unity. Because now a squared “nondiagonal” overlap is
involved in Eq. (13) with |〈q ′

Dy |pHo〉|2, the two-hole shake-up
and shake-off contributions are reduced by a “nondiagonal”
overlap squared. If one exchanges the states f ′ and p′, one
obtains an additional “−” sign. But since one has to square the
expression, a phase is irrelevant.

To evaluate the probability for the shake-off process one
integrates over the wave numbers kq ′ or the the excitation
energy of the continuum states q ′ with the same orbital � and
total j angular momentum as the state p Eq. (7). Here the
excitations are restricted to s waves:

Pf ′,p′ =
∑
q ′>F

|〈p<F,Ho|q ′
>F,Dy〉〈q ′

>F,Dy|p<F,Ho〉|

×
∏

k=k′<FDy �=f,p

|〈k′
Dy|kHo〉|2. (14)

In the Vatai approximation [7,8] not used in this work the
overlaps 〈k′

Dy|kHo〉 ≈ 0.999 are put to unity. We calculate
all overlaps 〈k′

Dy|kHo〉 exactly with self-consistent, relativistic
Dirac-Hartree-Fock electron wave functions.

III. THE DY CONTINUUM WAVE FUNCTIONS

To obtain the correct continuum wave functions for the
shake-off electron in Dy one has three problems:

(1) One needs a potential for this electron. This can be
derived from the self-consistent Dirac-Hartree-Fock
electron wave functions in Dy taking into account the
Coulomb field of the 66 protons in the nucleus and the
65 bound electrons allowing for the different empty
states (see Fig. 3). Fig. 3 shows an analytic approxima-
tion to the local part of the Z-1 selfconsistent potential
of Dy. Fig. 4 shows local potential approximants to
different hole configurations in Dy.

(2) With this potential the relativistic continuum electron
wave functions have to be calculated with the condition,
that these states are orthogonal to all bound orbits
in Dy. For calculating the relativistic wave functions
in this potential we take the code of Salvat et al.
[11] together with Schmidt orthogonalization. If the
continuum waves are calculated with the nonlocal
DHF potential, they are automatically orthogonal to the
bound states like the bound orbitals among each other.
Since we approximate the potential for the continuum
by the local approximation (15), (17) in Figs. 3 and 4,
we have to Schmidt orthogonalize the continuum wave
functions (see Fig. 5).
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FIG. 2. Large amplitudes P (
r) for 1s, 2s, 2p1/2, 2p3/2, and 3s

Dy electrons normalized DHF wave functions in atomic units for the
the radial distance (Bohr radii) and (atomic units)−1/2 for the wave
functions.

(3) The wave functions of Salvat et al. [11] are normalized
to δ functions in wave numbers 2πδ(k − k′). For the
integration over the excitation energy in the continuum
(7) the wave functions have to be normalized to energy
δ functions δ(E − E′) (see Fig. 6).

The self-consistent Coulomb field for the shake-off electron
is in atomic units:

Vshake-off(r) = −66

r
+

∑
k occupied e

g′
k

∫
d3
r |ϕk(
r ′)|2

|
r − 
r ′| . (15)

g′
ks are the number of bound electrons in the self-consistent

occupied orbits |k〉 = |n,�,j 〉 of Dy. To determine the
potential for the shake-off electrons in Dy one needs the
occupied self-consistent Dirac-Hartree-Fock orbitals Pk(r)
and Qk(r) [as examples for P (r) see Fig. 2]:

ϕk(
r)r = (Pk(
r); Qk(
r)), (16)

Vshake-off ≈ −66

r
+ 65

r
(1 − e−ar ). (17)

We adjust an analytic expression (17) to the DHF potential (see
Fig. 3). At small r one obtains the Coulomb potential of the
Dy nucleus −66/r and for large r the dependence −1/r of the
ionized Dy. With the help of Eqs. (15) and (17), and Fig. 3 one
can determine the only free parameter “a[1/(length = a.u.)]”
as a = 3.4. The self-consistent Dy potential with 66 electron
is shown in Fig. 4 for the Dy ground state and for a hole in 3s
and 4s in Dy.

The Relativistic continuum wave functions in the potential
(17) are determined with the code of Salvat, Fernandes-Varea,
and Williamson [11] (see Fig. 5). This code can handle
potentials with the properties limr→∞ rV (r) = constant. All
our potentials are of this nature. The wave functions are
normalized with the WKB approximation to

lim
r→∞ Pk(r) = 2 sin

(
kr − �

π

2
− η ln (2kr) + � + δ

)
. (18)
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FIG. 3. Self-consistent DHF potential [dotted; dimension:
1/(length = a.u.)] and analytic approximation (solid) with a = 3.4.
[see Eqs. (15) and (17).]

For Q(r) one has a similar asymptotic expression. The problem
of the normalization of the continuum Dirac wave function
is for example discussed by Rose in his book Relativistic
Electron Theory [25] or by Walter Greiner in the book on
“Relativistic Quantum Mechanics” [26]. The normalization
is also discussed by Goldberg et al. [27], and by Perger
and Karighattam [28] on their p. 394. We follow here this
recommendation [28]. In the asymptotic expression (18) η is
the Sommerfeld parameter, � the Coulomb phase shift, and δ
takes into account deviations from a pure Coulomb potential.
The usual way [28] to determine the norm is to normalize only
P (r) to the δ function in wave numbers or energies and treat the
small relativistic amplitude in the same way. Since the electron
energies required for shake-off in the continuum are small
compared to the electron rest mass mec

2 = 510.9989 keV
this often used normalization should be good for our purpose.
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FIG. 4. Radial distance r times the self-consistent potential
[dimensionless] for the ground state of the Dy atom with 66 electrons
(dashed), r times the self-consistent potential with a hole in 3s and
65 electrons (solid), r times the self-consistent potential with a hole
in 4s and 65 electrons (dotted), and r times the analytical fit to the
ground state potential (17) (dashed-dot lines).
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FIG. 5. Large amplitude P (r) of the s wave at E = 4 [Hartree]
≡ 108.8 [eV] before (solid) and after Schmidt orthogonalization
(dashed).

The electron energy in the continuum can be due to energy
conservation not larger than the Q value of 2.8 keV minus the
excitation energy of the two-hole state. So for shake-off with
capture from 3s the energy of the electron in the continuum
must be less than 0.758 keV (extreme nonrelativistic). The
most important second hole is 4s1/2 and thus for the two
holes in 3s and 4s the integration over the shake-off electrons is
restricted to 2.800–2.474 keV = 0.236 keV. For capture from
the two 4s1/2 states the binding energy limits the integration
in Eq. (7) to an upper limit of 2.800–0.841 = 1.959 keV.

The asymptotic (18) requirement normalizes the asymptotic
form of P (r) with limr→∞ Pk(r) to the δ function in wave
numbers. Continuum wave functions for different electron
energies are orthogonal. The δ function strength is determined
by the asymptotic, which yields infinity for the norm inte-
gration. Thus for continuum wave functions (18) calculated
with the DHF self-consistent local potentials (15) and (17)
is also normalized in the wave numbers to 2πδ(k − k′) and
in the energy to δ(E − E′). The Schmidt orthogonalization
does not change this, since it modifies the wave functions
only at short distances and the δ function is determined by the
asymptotic. Comparing the two asymptotic forms gives us the
transformation factor from the wave number 2πδ(k − k′) to
the energy δ function δ(E − E′) normalization:∫ ∞

r=0
dr2 sin

(
kr − �

π

2
− η ln(2kr) + � + δ

)

×2 sin

(
k′r − �

π

2
− η ln(2kr) + � + δ

)
≈ 2πδ(k − k′). (19)

The wave number is connected with the relativistic and
nonrelativistic energies by the equations

E2
rel = c2h̄2k2 + m2c4 → c2k2 + c4 (in atomic units),

En−rel = 1

2
k2, k = α

√
En−rel(En−rel + 2 · c2) (20)

with c = 1/α = 137.035999 in [atomic units]. We use to
change from the asymptotic wave number normalization
2πδ(k − k′) to the normalization δ(E − E′) well known
relations for Dirac δ functions given for example in Landau-
Lifschitz [29] (Vol. 3, Chaps. 5 and 33):

δ(g(x)) = δ(x − x0)

|g′(x0)| , δ(ax) = 1

|a|δ(x) (21)

with g(x0) = 0. The transformation from the asymptotic
wave number normalization Pk(r) to the asymptotic energy
δ function normalization is

PE(r) = Pk(r)

√
1

2π

1

c

√
k2 + c2

k

≈ Pk(r)
1√
2πk

δ(E[Hartree]) = δ(36.74932386E[keV])

= 0.027121138506δ(E[keV]). (22)

We transform the Qk(r) in the same way using the asymptotic
expression to obtain the transformation factor. For shake-off
one has to calculate the overlap of the bound Ho electron
orbitals |p〉 with the continuum wave functions in Dy |q ′〉,
i.e., 〈q ′

>0|p<F 〉 Eq. (13) (see Fig. 6). For this one expands
the configuration of Ho after capture of the bound electron
|P,(b)−1,Ho〉 with now the same number of protons as Dy
(but not a Dy eigenstate) into the complete set of configurations
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FIG. 6. Wave function P (r) (dashed-dot line) and Q(r) (solid
line) Eq. (16) in the Dy continuum at 50 [Hartree] = 1.36 keV. The
continuum wave functions P and Q are normalized to

∫
dr[P (r)2 +

Q(r)2 ] = 2πδ(k − k′). The 4s bound state in Ho is normalized to
unity [dashed for P (r) and dotted for Q(r)]:

∫
dr[P (r)2 + Q(r)2] =

1. The overlap 〈ns,Ho|E,s,Dy〉 squared is proportional to the shake-
off process as a function of energy. The continuum wave functions PE

and QE are dimensionless, while the bound states P4s(r) and Q4s(r)
are in atomic units [(a.u.)−1/2].
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FIG. 7. Theoretical results in arbitrary units of the sum of the one-
and two-hole de-excitations compared to the sum of the one-, two-
hole, and the shake-off de-excitation as measured by the bolometer
spectrum (7). The arbitrary units are adjusted to the experimental N1,
4s1/2 one-hole peak. The nature of the one hole states are indicated.
The two-hole peaks are by about two orders of magnitudes smaller
than the one hole peaks. Shake-off can almost not been seen.

|D,Dy〉 in Dy including the continuum:

|P, (b)−1,Ho〉 =
∑

D �=P,bound

aD|D,Dy〉

+
∫ ∞

0
dE′a(D,E′)|D,E′,Dy〉,

aD = 〈D,Dy|P,(b)−1,Ho〉,
a(D, E′′) = 〈D,E′′,Dy|P,(b)−1,Ho〉

=
∫ ∞

0
dE′a(D,E′)〈D,E′′,Dy|D,E′,Dy〉.

(23)

Here, the δ-function normalization of the continuum wave
functions in Dy is used: 〈E′′,Dy|E′,Dy〉 = δ(E′′ − E′). The
probability forming a specific hole state |k′,Dy〉 in Dy in
a bound orbit after capture of the electron |P,(b)−1,Ho〉 is
proportional to |〈k′,Dy|b,Ho〉|2 and and for the continuum
|E′′,Dy〉 to |〈E′′,Dy|b,Ho〉|2 integrated over the continuum
energy of the shake-off electron E′′.

IV. RESULTS FOR SHAKE-OFF

To calculate the shake-off contributions, one has to deter-
mine first the overlap between the bound Ho states ns1/2 and
in principle also np1/2 with n � 3 and the continuum wave
functions in Dy. Since we restrict this work to s-wave shake-off
we need only the overlaps 〈n � 3,s1/2,Ho|E,s,Dy〉. In the
summed spectrum with one-hole, two-hole, and shake-off in
Figs. 7 and 8 the shake-off contribution is hardly visible. Here
and also in Ref. [9] only the decay width of the two-hole
states are included. Three hole states can be neglected [9]. The
electron in the continuum has an escape width, which is not
included.
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FIG. 8. Experimental and theoretical results of the sum of
the one- and two-hole de-excitations (dashed line) and the sum of
the one-, two-hole, and the shake-off de-excitation (solid line) for
the bolometer spectrum (7). The experimental data are from the
ECHo collaboration [4,21]. The two theoretical spectra are adjusted to
experiment at the N1, 4s1/2 peak. The nature of the one-hole states are
indicated. The two-hole peaks are by about two orders of magnitudes
smaller than the one-hole peaks. The shake off contributions can
hardly been seen in this scale. Some bins contain no experimental
counts, thus the log10 for these experimental values are minus infinity.
To fit the 1931 experimental points for the bolometer energy of 0.0
to 2.8 keV, the theoretical spectrum of 200 mesh points had to be
interpolated to the data points for this figure. Figure 7 contains the
200 original theoretical results without interpolation for the bolometer
spectrum over Ec between 0.0 and 2.8 keV. The interpolation is
normally very good (compare Figs. 7 and 8) but difficult at some
sharp minima and maxima.

Figure 7 shows the logarithmic spectrum of the one-hole,
the two-hole, and the s-wave shake-off contributions. The
shake-off contributions (see Figs. 9 and 10) are calculated
for the different two-hole states listed in Table III. The
two-hole spectrum is about two orders of magnitude smaller
than the one-hole states. The shake-off spectrum (see Figs. 9
and 10) can hardly be seen on this scale in the total
spectrum. Compared to the one-hole peaks it is at least two
orders smaller. The integration over the continuum electron
energy (7) is done by the Bode method using 417 mesh
points. Shake-off is proportional to the square of the overlap
〈Ho-bound|Dy-continuum〉. The two-hole states contributing
to s-wave shake-off are listed in Table III. The shake-off
contributions (see Fig. 9) of the two-hole states as function of
the bolometer energy Ec is starting from the two-hole binding
energy up (see Table III). The two main contributions originate
from 4s1/2,5s1/2 starting at 0.4583 keV and from 4s1/2,4s1/2

starting at 0.8414 keV (see Tables III and IV). The log10
contributions from 3s1/2,4p1/2 starting at 2.33853 keV (see
Table III) are extremely small. The energy difference Q − Ec

is carried away by the neutrino and and does not show in the
bolometer.
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FIG. 9. Shake-off contributions for different two-hole excitations
in Dy normalized for the experimental bolometer spectrum (see
Fig. 8) to the N1, 4s1/2 peak. Increasing the energy Ec of the bolometer
spectrum the Q value = 2.8 keV is first used to excite the two-hole
state. So the shake-off contribution for the bolometer spectrum
starts as function of Ec with the two-hole binding energy. Energy
conservation yields an upper limit of Q = 2.8 keV for the bolometer
spectrum. To integrate over the continuum energy of the shake-off
electron (7) we divided the interval 〈0.0,2.8〉 keV into 417 mesh
points. From the left to the right with increasing bolometer energy Ec

the start of the different shake-off contributions are indicated in the
figure. The energy difference between Q and Ec is carried away by
the neutrino, which cannot contribute to the bolometer spectrum.
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FIG. 10. Theoretical results of the sum of all s-waves shake-off
contributions. The steep rise on the left of the maxima is connected
with the binding energy of the two-hole states (see Table III), which
contribute to the excitation of Dy. The rise is softened by the width of
these states (Table III). The shake-off continuum contribution has
to be added on top of these two-hole contributions. The energy
difference between Q = 2.8 keV and Ec is carried away by the
neutrino and does not show in the bolometer spectrum. The theoretical
results are adjusted to the experiment [4,21] at the N1,4s1/2 peak in
Fig. 8.

V. CONCLUSIONS

In this work the effect of shake off on the de-excitation
spectrum of the 163

66 Dy∗ atom after electron capture in 163
67 Ho for

the determination of the electron neutrino mass is investigated.
The electron neutrino mass is the difference between the Q
value and the upper end of the de-excitation spectrum of Dy*
measured by a bolometer. After capture the Dy∗ can be excited
into one-hole and into two-hole electron configurations. The
three-hole excitations and higher can be neglected [30]. The
total two-hole excitation probability is given in the sudden plus
the Vatai [7,8] approximation, not used here, by unity minus
the overlap squared between Ho and Dy with the number of
electrons in the exponent with the same quantum numbers in
Dy as in Ho for the orbits, from which the particle is captured
Eqs. (2) and (3):

(1.0 − 〈Ho,n,�,j |Dy,n,�,j 〉(2(2j+1))). (24)

These Ho-Dy overlaps have in self-consistent relativistic
Dirac-Hartree-Fock values of about 0.999 and even closer
to unity (see Tables II and IV). Thus this total two-hole
probability including also shake-off must be according to this
rough estimate less than 0.4% of the one-hole excitation.
This estimate is only very approximate. Important is the
fact, that a small uncertainty of for example 10% for this
overlap of the electron orbits in Ho and Dy produces a large
increase of about two orders of magnitude for shake-off.
Without using Vatai [7,8] the requirement for the norm (2)
yields an upper limit for shake-off of 12% of the one-hole
excitation and for a 10% error in the single electron overlaps
between Ho and Dy no restriction at all (the upper limit
for the shake-off probability is more than 100% relative to
one-hole excitation). This means with 10% error the norm (2)
would allow a shake-off probability larger than the one-hole
excitation. The excited Dy* wave functions are calculated in a
previous investigation [9,10] in first order with the perturbation
(5) starting from Ho states based on pure Coulomb waves in
Ho. A 10% error in the overlap produces an overestimation
of shake-off by about two orders of magnitude. The bound
states in Ho and Dy are described here in our work by the
Dirac-Hartree-Fock approach [12–14] even including different
occupations in Dy due to the hole states. The s-wave continuum
wave functions in Dy are determined with the Dirac equation in
the self-consistent potential [11]. The energy of the continuum
states involved are limited by energy conservation to the Q
value minus the two-hole binding energies, e.g., the 3s1/2, 4s1/2

two-hole state limits the upper bound of the continuum
energy contributions to 2.8–2.4742 = 0.3258 keV. So this
contribution is very small. One of the two main contributions
comes from 4s1/2, 4s1/2 with a binding energy of 0.841
keV and thus an upper limit of the continuum energy of
2.8–0.841 = 1.959 keV. The second largest contribution is
built on the two-hole state 4s1/2, 5s1/2 with the binding energy
0.4398 keV. Thus the upper limit of the shake-off contributions
in the continuum integration (7) is the 2.8–0.4398 = 2.3602
for the integral over the shake-off continuum electron.

We prepared two different computer programs both calcu-
lating the s-wave shake-off to test the two codes against each
other. All the calculations are done in double precision and
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for the critical integrations we use parallel the Trapez, the
Kepler-Simpson, the Bode, and the Weddle rules to test the
accuracy. The numbers given are the ones from the Bode rule.
(Trapez is not reliable enough.) The contributions from the
shake-off process are small (see Figs. 7 and 8). The widths for
the shake-off states include only the values from the two-hole
excitations as in Ref. [9]. In reality one has to include the
escape width of the electron in the continuum, which could
perhaps even be larger than the contribution of the two-hole
states.

In summary this work shows that one has not to worry about
the shake-off process in the determination of the neutrino mass
from electron capture in 163Ho.

The remaining discrepancies between theory and exper-
iment, e.g., the slope above the one-hole state 4s1/2 (N1),

are probably due to configuration mixing not included here.
Finally we want to stress, that the accuracy needed to extract
the neutrino mass cannot be obtained by theoretical calculation
alone. One must fit the neutrino mass, the Q value, the highest
resonance hole energy, its width, and strength at the upper end
of the spectrum to extremely accurate data.
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