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Pseudomagnetic effects for resonance neutrons
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A general theory of pseudomagnetic effects on the propagation of polarized neutrons through a polarized target
using a multiresonance approach is presented. Some applications related to proposed searches for time-reversal
invariance violation in neutron scattering are considered.
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I. INTRODUCTION

Neutron spin optics in polarized nuclear targets has become
a very important topic because of recent proposals for searches
for time-reversal invariance violation (TRIV) in neutron-
nucleus scattering (see, for example, [1] and references
therein). The proposed experiments require an understanding
of neutron spin dynamics during propagation through polar-
ized nuclear targets in the presence of multiple s-wave and
p-wave resonances, since the neutron spin rotation due to
strong spin-spin interactions can reduce the values of TRIV
observables or, in some cases, mimic TRIV effects [2–10].

The phenomenon of neutron spin rotation, known as a
pseudomagnetic effect, in the propagation of polarized slow
neutrons through a polarized target was predicted in Ref. [11].
The phenomenon is related to the fact that due to strong
spin-spin interactions, the value of the neutron wave index
of refraction depends on the relative orientation of the neutron
spin relative to the direction of nuclear polarization,

n2
± = 1 + 4π

k2

∑
i

Nif
i
±. (1)

Here Ni is the number of nuclei of type i per unit volume, k
is the neutron wave number, and f i

± is the neutron elastic
forward-scattering amplitude on a type-i nucleus for the
positive and negative projections of the neutron spin along
the direction of the nuclear polarization. Taking into account
that the second term in the above equation is much smaller
than unity, we can write the difference of the refractive indices
with different neutron spin orientation as

�n = n+ − n− = 2π

k2

∑
i

Ni(f
i
+ − f i

−). (2)

This difference in refraction indices leads to a rotation of the
neutron spin around the direction of the nuclear polarization,
through the angle of ϕ = k�nz after the neutrons have
propagated through a target of thickness z. The corresponding
frequency of the neutron spin rotation is given [11] as

ωP = vn

dϕ

dz
= 2πh̄

Mn

∑
i

NiRe (f i
+ − f i

−), (3)
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where vn is the neutron velocity, and Mn is the neutron mass.
For very low energy neutrons, the scattering amplitudes do not
depend on neutron energy, and as a consequence, the frequency
ωP has a constant value, which depends only on the properties
of the polarized target. Therefore, it was suggested in Ref. [11]
that an effective pseudomagnetic field be considered, which
produces a precession of the neutron spin at the frequency ωP,

BP = h̄ωP

2μn

, (4)

as a natural characteristic of the target. (Here μn is
the neutron magnetic moment). Numerically, BP/(1 T) =
5.47ωP/(1 GHz). This phenomenon has been studied mostly
for the case of very low energy (thermal) neutrons (see [12–15]
and references therein). In Ref. [16], the pseudomagnetic spin
precession was studied in the presence of a low-energy s-wave
neutron resonance. In that case, the parameters BP and ωP

show very strong energy dependencies in the vicinity of the
resonance. In this paper we present a general formalism for the
pseudomagnetic phenomena and apply it to the multiresonance
case, involving neutron resonances with different parities.

II. GENERAL FORMALISM FOR
PSEUDOMAGNETIC FIELD

Let us consider the reaction matrix T̂ , which is related to
the scattering matrix Ŝ and the matrix R̂ as

2πiT̂ = 1̂ − Ŝ = R̂. (5)

Thus a reaction amplitude f̂ can be written as f̂ =
−π (kikf)−1/2T̂ , where ki,f are values of initial and final
momentum, respectively. Then, to describe the scattering of
polarized neutrons on a polarized target with the spin �I , we
need to calculate the corresponding reaction matrix elements

〈�kfμf|T |�kiμi〉, (6)

where μi,f is the projection of the neutron spin along the
axis of quantization. For coherent elastic scattering at zero
angle, the initial and final values of neutron momenta and
spin projections are equal to each other, �ki = �kf = �k and
μi = μf = μ.

It is convenient to relate this matrix to the matrix R̂ in the
integral of motion representation of the S matrix [17]

〈S ′l′α′|SJ |Slα〉δJJ ′δMM ′δ(E′ − E), (7)
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where J and M are the total spin and its projection, S is the
channel spin, l is the orbital momentum, and α represents the
other internal quantum numbers. Taking into account that the
spin channel is a sum of the neutron spin �s and nucleus spin �I

�S = �s + �I , (8)

and the total spin is
�J = �S + �l, (9)

one can write T -matrix elements as

2πi〈�kμ|T |�kμ〉
=

∑
JMlml′m′SmsS ′m′

s

Yl′m′ (θ,φ)〈sμIMI |S ′m′
s〉〈S ′m′

s l
′m′|JM〉

× 〈S ′l′α′|RJ |Slα〉〈JM|Smslm〉
× 〈Sms |sμIMI 〉Y ∗

lm(θ,φ), (10)

where angles (θ,φ) describe the direction of the neutron
momentum �k. For simplicity, let us choose the quantization
axis along the vector �k. It should be noted that for s-wave
neutrons, all the expressions do not depend on the choice of
the quantization axis. The formulas for p-wave neutrons with
an arbitrary choice of the quantization axis are presented in
Appendix A. Then, the amplitude for neutron elastic scattering
can be written as

fμ = i

2k

∑
J lSS ′MI

(2l + 1)〈sμIMI |S ′m′
s〉〈S ′m′

s l0|JM〉

× 〈S ′l|RJ |Sl〉〈JM|Smsl0〉〈Sms |sμIMI 〉. (11)

It should be noted that in the above expression for the
amplitude, the sum over MI must be taken carefully to be
consistent with the polarization state of the nuclear target. For
example, for vector polarization, which we consider in detail
here, only the term with MI = I is presented in the sum.

The matrix elements in Eq. (11) for slow neutrons can be
written in the Breit-Wigner resonance approximation with one
s resonance or p resonance as(

FJ
S ′Sl

)
K

≡ 〈S ′
KlK |RJK |SKlK〉

= i

√

n

lK
(S ′

K )
√


n
lK

(SK )

E − EK + i
K/2
ei(δlK

(S ′
K )+δlK

(SK ))

− 2ieiδlK
(SKS ′

K ) sin δlK (SKS ′
K ), (12)

where EK , 
K , and 
n
lK

are the energy, total width, and partial
neutron width of the Kth nuclear compound resonance, E
is the neutron energy, and δlK is the potential scattering phase
shift. For p-wave resonances we keep only the resonance term,
because for low-energy neutrons δl ∼ (kR0)2l+1 (where R0 is
nucleus radius) and, as a consequence, the contribution from
p-wave potential scattering is negligible.

Now, following the definition in Eq. (3), one can obtain the
frequency of neutron spin rotation due to the pseudomagnetic
field for a nuclear target with a single element as

ωP = 2πNh̄

Mn
Re

(
f 1

2
− f− 1

2

)
. (13)

One can see that for the case of s-wave neutron scattering on
the vector polarized target, the difference of the amplitudes in
Eq. (13) is

f 1
2
− f− 1

2
= i

2k

2I

2I + 1

(
F

I+ 1
2

I+ 1
2 I+ 1

2 0
− F

I− 1
2

I− 1
2 I− 1

2 0

)
. (14)

For the case of very slow neutrons one can neglect the
resonance term contribution [the first term in Eq. (12)] to the
R matrices in the above equation. Then the R matrix can be
written in terms of the neutron scattering lengths a± for spin
orientations parallel and antiparallel to the direction of nuclear
polarization as〈(

I ± 1

2

)
0

∣∣∣∣RI± 1
2

∣∣∣∣
(

I ± 1

2

)
0

〉
= −2ika±, (15)

which gives us the well-known expression [11] for the
pseudomagnetic frequency for thermal neutrons

ωP = 4πNh̄

Mn

I

(2I + 1)
(a+ − a−). (16)

For the low-energy resonance region we need to take into
account not only potential scattering, but also the contributions
from each resonance. Thus, for example, with the presence
of s-wave resonances with total spins J = I ± 1/2, the
pseudomagnetic frequency becomes neutron energy dependent
and is given as

ωs
P = 4πNh̄

Mn

I

(2I + 1)

×
(

a+ − a− −
∑

K, lK=0


n
K

2k

E − EK

(E − EK )2 + (
K/2)2
βK

)
,

(17)

βK =
{

1
(
JK = I + 1

2

)
,

−1
(
JK = I − 1

2

)
,

(18)

where the subscripts ± for resonance parameters correspond to
resonances with total spins J = I ± 1/2, respectively. One can
see that the pseudomagnetic frequency has a a sharp oscillation
with the sign changing at the position of each s-wave resonance
[16].

For p-wave resonances, the corresponding difference of
amplitudes in Eq. (13) is

f 1
2
− f− 1

2
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
(
J = I − 3

2

)
,

− 3i
k

I
(2I+1)2

(
(2I − 1)FJ

I− 1
2 I− 1

2 1
+ 2

√
2I−1√
I+1

FJ
I− 1

2 I+ 1
2 1

+ 1
I+1FJ

I+ 1
2 I+ 1

2 1

) (
J = I − 1

2

)
,

− 3i
k

I
(2I+1)2

(
2FJ

I− 1
2 I− 1

2 1
− 2 2I−1√

I (2I+3)
FJ

I− 1
2 I+ 1

2 1
− (5+4I )(I+1)

2I+3 FJ
I+ 1

2 I+ 1
2 1

) (
J = I + 1

2

)
,

3i
k

I
(2I+3)(I+1)F

J
I+ 1

2 I+ 1
2 1

(
J = I + 3

2

)
,

(19)
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which leads to the pseudomagnetic frequency from p resonances

ω
p
P = 6πNh̄

Mnk

I

(2I + 1)

∑
K, lK=1

γK

E − EK

(E − EK )2 + (
K/2)2
, (20)

γK =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0
(
JK = I − 3

2

)
,

1
2I+1

[
(2I − 1)
n

K

(
I − 1

2

) + 2
√

2I−1
I+1

√

n

K

(
I + 1

2

)√

n

K

(
I − 1

2

) + 2
n
K

(
I + 1

2

)] (
JK = I − 1

2

)
,

1
2I+1

[
2
n

K

(
I − 1

2

) − 2
√

2I−1
I (2I+3)

√

n

K

(
I + 1

2

)√

n

K

(
I − 1

2

) − 5+4I (I+1)
2I+3 
n

K

(
I + 1

2

)] (
JK = I + 1

2

)
,

− 2I+1
(2I+3)(I+1)


n
K

(
I + 1

2

) (
JK = I + 3

2

)
.

(21)

It should be noted that the signs of the amplitudes of the

neutron decay widths
√


n
K (I ± 1

2 ) must be obtained from
experiments. This expression looks complicated; however,
since p-wave resonances are very weak in low-energy regions,
usually only the closest resonance contribution needs to be
taken into account. Therefore, at most three terms in the above
expression will actually contribute to the p-wave dependent
part of the pseudomagnetic frequency. Moreover, for the case
of TRIV searches only resonances with J = I − 1/2 and
J = I + 1/2 are of interest, since only these resonances can
be mixed with s resonances (which have spins J = I − 1/2
and J = I + 1/2) by weak and TRIV interactions. One can see
also that in contrast to s-wave resonances this pseudomagnetic
frequency depends, in general, not on total neutron widths, but
on the partial neutron widths for different spin channels. (For
the relation of the spin channel formalism with the spin-orbital
scheme formalism, see Appendix B.) For the spin-operator
formalism used in Refs. [11,14–16], see Appendix C.

Up to now we considered the case of a pure vector
polarized monoisotopic target. Based on the coherent nature
of the pseudomagnetic effect, it is easy to generalize all the
above expressions for the case of a composite target with an
arbitrary polarization. Thus, for a composite (multi-isotope)
target, the total pseudomagnetic frequency is a linear sum of
frequencies from all isotopes presented in the target. The case
of arbitrary polarization of each isotope is accounted for by a
summation of differences of amplitudes of Eq. (11) taken with
the corresponding weights w(MI ) for each spin projection
quantum number MI , which is the weight in the density

FIG. 1. Pseudomagnetic field in the fully polarized lanthanum
target for α = 0 (solid line), α = π/4 (dashed line), α = −π/4
(dashed-dotted line), and α = π/2 (dotted line).

operator used for the description of the general polarization
in terms of the density polarization matrix. Therefore, the
resulting pseudomagnetic frequency ω∗

P can be written as [11]

ω∗
P = ωP

1

I

∑
MI

w(MI )MI . (22)

It should be noted that in Eqs.(19) and (21), there are
no contributions from the resonance with a total spin J =
I − 3/2, but there is a contribution with J = I + 3/2. This
asymmetry simply reflects the fact that we consider the case
with a pure vector polarization of the target, which corresponds
to MI = I . For the case of mixed target polarization with a
fractional population of the target nuclear level of MI = −I ,
the resonance with a spin J = I − 3/2 can also lead to pseu-
domagnetic precession due to the corresponding difference of
amplitudes

f 1
2
− f− 1

2
= 3i

k

I

(2I + 3)(I + 1)
FJ

I− 1
2 I− 1

2 1
. (23)

However, as mentioned above, these resonances cannot lead
to TRIV effects.

III. PSEUDOMAGNETIC EFFECTS
IN LANTHANUM ALUMINATE

Let us consider the application of the present formalism
to the pseudomagnetic effect in lanthanum aluminate crystals.
Since a very large parity-violating effect was observed on
139La in the vicinity of the 0.734-eV resonance [18–21], this
isotope looks like a promising target for a search of TRIV
effects in nuclei [1]. 139La nuclei can be polarized in lanthanum

FIG. 2. Polarization of 0.734-eV neutrons in the fully polarized
lanthanum target as a function of the propagation distance L.
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FIG. 3. Neutron polarization in the fully polarized lanthanum
target as a function of neutron energy at L = 0 cm (solid line), L = 2
cm (dashed line), L = 4 cm (dashed-dotted line), and L = 6 cm
(dotted line).

aluminate crystals with the currently experimentally achieved
value of 139La polarization [22,23] of 47.5%.

Since we do not know partial neutron widths for
the p-wave resonance, we describe the ratio xs =√


n
p(I − 1

2 )/
√


n
p(I − 1

2 ) + 
n
p(I + 1

2 ) (see Appendix B) us-
ing a parameter α, such that xs = sin α. Figure 1 shows the
pseudomagnetic field in the 100% polarized lanthanum target
as a function of neutron energy in the vicinity of the p-wave
resonance for α = 0, α = π/4, α = −π/4, and α = π/2.

Assuming that initial neutrons are polarized perpendicular
to the quantization axis z and along the axis x, we can calculate
the neutron polarization Px (an expectation value of the spin
projection operator) as a function of the propagation distance
L in the target [11,16]

Px(L) =
cos

(
ωPL
vn

)
cosh

(
ω′L
vn

) , (24)

where vn is neutron velocity and

ω′ = 2πNh̄

Mn

Im
(
f 1

2
− f− 1

2

)
(25)

is the imaginary part of the pseudomagnetic frequency, which
is related to neutron absorption in the target. For the case of
a La target with the parameter α = 0 and for neutron energy
of 0.734 eV, the polarization as a function of L is shown in
Fig. 2. One can see that the value of the neutron polarization
is gradually decreasing due to neutron absorption. Figure 3

FIG. 4. Pseudomagnetic field in fully polarized LaAlO3 target for
α = 0 (solid line), α = π/4 (dashed line), α = −π/4 (dashed-dotted
line), and α = π/2 (dotted line).

TABLE I. Replacement fraction x for the cancellation of the
pseudomagnetism in LaAlxX1−xO3 at the thermal neutron energy.

Element I Abundance (a+ − a−)(fm) x

139La 7/2 0.9991 6.9
27Al 5/2 1 0.52
45Sc 7/2 1 −12.08 0.59
59Co 7/2 1 −12.79 0.56

shows the polarization as a function of the neutron energy at
L = 0,2,4, and 6 cm, which clearly demonstrates the energy
dependance of the pseudomagnetic effect.

For the case of LaAlO3 we need also to include the
pseudomagnetic field from polarized Al. Then, assuming a
pure vector 100% polarization for both 139La and 27Al nuclei,
the calculated pseudomagnetic fields in the LaAlO3 target for
α = 0, α = π/4, α = −π/4, and α = π/2 are shown in Fig. 4.

From the above figures we can see that pseudomagnetic
fields of La and Al in the vicinity of the La p-wave resonance
are oriented in opposite directions. This demonstrates that,
in principle, one can essentially reduce the pseudomagnetic
field in a compound by choosing an appropriate combination
of the elements with opposite directions of pseudomagnetic
fields.

Here we discuss the case of LaAlxX1−xO3 where Al
is partially replaced by the element X. Table I shows the
replacement fraction x for X = 45Sc and X = 59Co to cancel
the pseudomagnetic field of 139La. It should be noted that the
cancellation is calculated only at the thermal neutron energy
neglecting all resonance contributions. In general, it depends
strongly on the neutron energy. As we can see from this table,
for example, the La and Al pseudomagnetic fields are parallel
at the thermal neutron energy but have opposite directions in
the resonance region (see Figs. 4 and 1). Also note that the
additional absorption with the replacement of Al should be
carefully considered in the design of the experiment.

IV. CONCLUSIONS

This study of pseudomagnetic spin rotation for the propa-
gation of polarized neutrons through polarized targets shows
the importance of a multiresonance description of the effects.
The general theoretical framework considered in this paper
can be used for the analysis of pseudomagnetic effects in any
experimental setup (see, for example, [1–10] and references
therein) for a search for TRIV in neutron scattering. We show
that the effective pseudomagnetic field has a noticeable energy
dependence in the vicinity of a p-wave resonance and it is
rather sensitive to target structure, to the polarization pattern of
different nuclei in the target, and to the values of partial neutron
widths. Therefore, by changing the composition materials
of the target and by applying an external magnetic field, it
is possible to reduce the effect of the pseudomagnetic field
in the given interval of the neutron energy for a particular
target. The partial neutron widths have been measured only by
using angular distribution measurements in neutron radiative
capture. The sensitivity of the pseudomagnetic field to the
values of the partial neutron widths gives a new method for
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measuring them in the neutron transmission through polarized
targets.
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APPENDIX A: GENERAL FORM FOR THE DIFFERENCE
OF P-WAVE AMPLITUDES

The general formula for the difference of p-wave ampli-
tudes for a pure vector polarized target can be obtained from
Eq. (10). Then, choosing the direction of the target polarization
along the axis z and the momentum direction along the vector
�n(θ,φ) we obtain

f 1
2
− f− 1

2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A
−3/2
−− FJ

I− 1
2 I− 1

2 1

(
J = I − 3

2

)
,

A
−1/2
−− FJ

I− 1
2 I− 1

2 1
+ A

−1/2
−+ FJ

I− 1
2 I+ 1

2 1
+ A

−1/2
++ FJ

I+ 1
2 I+ 1

2 1

(
J = I − 1

2

)
,

A
1/2
−−FJ

I− 1
2 I− 1

2 1
+ A

1/2
−+FJ

I− 1
2 I+ 1

2 1
+ A

1/2
++FJ

I+ 1
2 I+ 1

2 1

(
J = I + 1

2

)
,

A
3/2
++FJ

I+ 1
2 I+ 1

2 1

(
J = I + 3

2

)
,

(A1)

where the spin-angular coefficients are given by

A
−3/2
−− = − 3i

2k

I − 1

2I + 1
sin2 θ, (A2)

for I > 1,

A
−1/2
−− = −3i

k

I [sin2 θ + √
2I − 1 sin 2θ cos φ + (2I − 1) cos2 θ ]

(2I + 1)2
, (A3)

A
−1/2
−+ = 3i

k

I [(2I − 3) sin θ cos θ cos φ + √
2I − 1(1 − 3 cos2 θ )]√

I + 1(2I + 1)2
, (A4)

A
−1/2
++ = 3i

2k

I

(I + 1)(2I + 1)2
[
√

2I − 1 sin 2θ cos φ + (I + 1)(2I − 1) sin2 θ − 2 cos 2θ ], (A5)

A
1/2
−− = − 3i

2k

1

(2I + 1)2
[4I cos2 θ + 2I

√
2I + 1 sin 2θ cos φ

+ (2I 2 + I + 1 − 2
√

2I + 1
√

I cos 2φ) sin2 θ + 2
√

I sin 2θ cos φ], (A6)

A
1/2
−+ = − 3i

2k

1

(2I + 1)2
√

2I + 3
{−4

√
I (2I − 1) cos2 θ + 2(2I − 1)(

√
2I + 1 cos 2φ +

√
I ) sin2 θ

+ [
√

I
√

2I + 1(2I − 3) − (6I − 1)] sin 2θ cos φ}, (A7)

A
1/2
++ = 3i

k

1

(2I + 1)2(2I + 3)
{I (4I 2 + 4I + 5) cos2 θ + [

√
2I + 1(2I 2 + I + 1) − (2I − 1)

√
I ] − sin 2θ cos φ

+ [I (2I − 1) − 2
√

I
√

2I + 1 cos 2φ] sin2 θ}, (A8)

A
3/2
++ = 3i

2k

1

(I + 1)(2I + 3)

{
2I cos2 θ +

[
I (2I 2 + 5I + 5)

2I + 1
+

(√
3(I + 1)

(2I + 1)
− √

I + 1
√

2I + 3

)
cos 2φ

]
sin2 θ

+
(

2
√

I + 1 − √
2I + 3(I + 1) −

√
3

2I + 1

)
sin 2θ cos φ

}
. (A9)

APPENDIX B: RELATIONS BETWEEN DIFFERENT SPIN-COUPLING SCHEMES

The relation between two spin coupling schemes �J = ( �I + �s) + �l and �J = (�s + �l) + �I is given by〈((
l,

1

2

)
j,I

)
J

∣∣∣∣(l,
(

1

2
,I

)
S)J

〉
= (−1)l+I+j+S

√
(2j + 1)(2S + 1)

{
l 1

2 j
I J S

}
, (B1)

where �S = �I + �s and �j = �s + �l.
Now, defining

x = ∣∣j = 1
2

〉
, y = ∣∣j = 3

2

〉
, xs = ∣∣S = I − 1

2

〉
, ys = ∣∣S = I + 1

2

〉
, (B2)
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one can write for l = 1

xs = (−1)2I+1
√

4I

{
1 1

2
1
2

I J I − 1
2

}
x + (−1)2I

√
8I

{
1 1

2
3
2

I J I − 1
2

}
y,

ys = (−1)2I
√

4(I + 1)

{
1 1

2
1
2

I J I + 1
2

}
x + (−1)2I+1

√
8(I + 1)

{
1 1

2
3
2

I J I + 1
2

}
y. (B3)

APPENDIX C: SPIN-OPERATOR REPRESENTATION

Sometimes for the description of neutron propagation through a polarized target, it is convenient to use a spin operator [24,25]

f̂ = a + b(�s · �I ) (C1)

whose eigenvalues for J = I ± 1/2 are scattering amplitudes f±1/2. In that case, one can calculate the coefficients a and b as

a = 1

2I + 1

[
(I + 1)f 1

2
+ If− 1

2

]
, b = 2

2I + 1

(
f 1

2
− f− 1

2

)
, (C2)

with the amplitudes f± 1
2

as given in Eq. (11).
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