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Analytic properties of the quark propagator from an effective infrared interaction model
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In this paper, I investigate the analytic properties of the quark propagator Dyson-Schwinger equation (DSE) in
the Landau gauge. In the quark self-energy, the combined gluon propagator and quark-gluon vertex is modeled
by an effective interaction (the so-called Maris-Tandy interaction), where the ultraviolet term is neglected. This
renders the loop integrand of the quark self-energy analytic on the cut plane −π < arg(x) < π of the square of
the external momentum. Exploiting the simplicity of the truncation, I study solutions of the quark propagator
in the domain x ∈ [−5.1,0] GeV2 × i[0,10.2] GeV2. Because of a complex conjugation symmetry, this region
fully covers the parabolic integration domain for Bethe-Salpeter equations (BSEs) for bound state masses of up
to 4.5 GeV. Employing a novel numerical technique that is based on highly parallel computation on graphics
processing units (GPUs), I extract more than 6500 poles in this region, which arise as the bare quark mass is
varied over a wide range of closely spaced values. The poles are grouped in 23 individual trajectories that capture
the movement of the poles in the complex region as the bare mass is varied. The raw data of the pole locations
and residues is provided as Supplemental Material, which can be used to parametrize solutions of the complex
quark propagator for a wide range of bare mass values and for large bound-state masses. This study is a first step
towards an extension of previous work on the analytic continuation of perturbative one-loop integrals, with the
long-term goal of establishing a framework that allows for the numerical extraction of the analytic properties of
the quark propagator with a truncation that extends beyond the rainbow by making adequate adjustments in the
contour of the radial integration of the quark self-energy.
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I. INTRODUCTION

A successful approach to describe mesons as quark-
antiquark bound states is the framework of Dyson-Schwinger
equations (DSEs) and Bethe-Salpeter equations (BSEs) [1–4],
which complements lattice-based studies; see, e.g., Refs. [5–
7]. Also, baryons are described in the functional approach; see
Ref. [8] for a recent review. In order to solve the BSE, the quark
propagator has to be computed in a (parabolically bounded)
region in the complex plane of the square of the external
momentum. Even though a thorough treatment of the quark
propagator in principle involves simultaneous computation of
the dressed quark-gluon vertex, together with the propagators
and vertices of the Yang-Mills sector (see Ref. [9]), it is still
interesting to employ a truncation of the quark DSE where the
(tree-level approximated) quark-gluon vertex and the gluon
propagator are modeled by an effective interaction [10–12].
The analytic properties of the quark DSE that arise when only
the infrared (IR) part of the Maris-Tandy interaction [10] is
taken into account has been the subject of a thorough study
[13,14]. This particular form of interaction, however, also
introduces a series of problems that cannot be ignored and
have to be addressed at this point. Because of the isolated
poles that appear in the quark propagator, a Wick rotation
is not possible. Furthermore, the absence of the perturbative
(logarithmic) term modifies the analytic properties of the
interaction significantly, since the branch cut and poles induced
by the ultraviolet (UV) term are not captured. Because of these
shortcomings, this interaction is not a very realistic choice.
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However, because of its simplicity, the interaction is still
used for light meson masses, and serves as a natural starting
point for the development of a framework whose long-term
goal is to provide access to solutions of the quark propagator
with a more realistic choice of the interaction in the complex
domain. In Ref. [13], it has been found that for meson masses
of less than Mqq̄ ∼ 1 GeV, the quark propagator, obtained
with the IR part of the interaction, is analytic in the complex
domain relevant for the BSE, and it is fairly simple to evaluate
the quark DSE at the required complex momenta. For larger
meson masses, however, the IR Maris-Tandy modeled quark
propagator features (complex conjugate and real) poles within
the parabolic region in the complex plane where the BSE
have to be evaluated. For a consistent treatment, knowledge of
the location and residues of those poles is important [13–15].
Some of the pole locations, together with their residues, have
been extracted in Refs. [13,14], where the parabolic region
under consideration corresponded to bound state masses of up
to Mqq̄ ∼ 3.5 GeV.

Employing the infrared part of the Maris-Tandy interaction
[10], the results presented in this paper are as follows:

(1) All poles within the parabolic region for bound state
masses of up to Mqq̄ = 4.5 GeV have been identified;
see Sec. V. Their positions and residues have been
extracted by employing a novel graphics processing
unit (GPU)–based numerical framework that allows for
quick, reliable, and automatic extraction of the poles
in the scalar and vector parts of the propagator; see
Sec. IV.

(2) The bare quark mass m0 is varied from 5 to 2500 MeV
in increments of 5 MeV, and the movement of the poles
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in the complex plane is captured in trajectories. For
these 500 different mass values, more than 6500 poles
have been extracted; see Sec. V.

(3) The bare mass dependence of the position of a given
pole, as well as the corresponding mass dependence of
the residues in the scalar and vector part of the quark
propagator, are presented as plots for quick reference
in Secs. V B and V D.

(4) The behavior of the poles on the real axis is studied in
detail. It is found that for bare mass values above m0 ∼
455 MeV, the segment of the real axis enclosed by the
parabola for bound state masses of Mqq̄ = 4.5 GeV is
free of real poles; see Sec. V C.

(5) The positions and residues of all poles found in this
study are available as Supplemental Material published
alongside with this paper; see Sec. VI. In this section,
I also provide a step-by-step guide that shows how the
data can be used.

The numerical framework developed throughout this study
is a direct continuation of previous works, where a technique
to solve perturbative one-loop integrals in the complex domain
has been established; see Refs. [16–18]. The paper at hand is
considered to be the first step towards the long-term goal of
developing a nonperturbative framework that allows for the
extraction of the analytic properties of the quark propagator
for more complicated truncation schemes, such that issues of
positivity violation and confinement, as recently studied for
the Yang-Mills sector [19], to be addressed. The main goal
is to investigate the impact of certain tensor structures in the
quark-gluon vertex on the property of positivity violation, as
suggested in Ref. [20].

II. THE RAINBOW TRUNCATED LANDAU GAUGE
QUARK PROPAGATOR DYSON-SCHWINGER EQUATION

A diagrammatic representation of the quark propagator
Dyson-Schwinger equation is shown in Fig. 1.

The dressed (inverse) quark propagator on the left is
composed of all possible ways of propagation: the bare
propagation, without the occurrence of any intermediate
interaction, and the quark self-energy constituted by the
quark emitting a gluon via the tree-level vertex, after which
both the quark and the gluon propagate with all quantum
corrections as dressed quantities, to finally rejoin in all possible
ways through a dressed vertex. Every dressed quantity is
depicted by a big blob, while the bare propagator is just a
line without a blob, and the tree-level vertex is denoted by

FIG. 1. A diagrammatic representation of the Landau gauge
quark propagator Dyson-Schwinger equation. The momentum rout-
ing is shown explicitly.

a small black dot. The algebraic expression corresponding
to this diagrammatic representation requires the following
ingredients. The (inverse) quark propagator is a Lorentz scalar
with Dirac structure and one associated momentum, such that
it can be spanned by two basis elements,

S−1(p) = δαβ(i�p A(p2) + B(p2)1D), (1)

where A(p2) and B(p2) are the dressing functions. Note that
this study is carried out in Euclidean space. Here I consider
one flavor only, and the propagator is also diagonal in color
space, as indicated by the δαβ . This is readily inverted to give

S(p) = δαβ −i�p A(p2) + B(p2)1D

p2A2(p2) + B2(p2)
. (2)

Consequently, the bare inverse quark propagator reads

S−1
0 (p2) = δαβ[Z2(i�p + Zmm0)], (3)

where I furthermore introduced the wave function and mass
renormalization constants Z2 and Zm. The free Landau gauge
gluon propagator reads

D
μν
free(p) = δab 1

p2

(
δμν − pμpν

p2

)
, (4)

where the indices a and b are associated with color in the
adjoint representation. Finally, the bare quark-gluon vertex is
given by

�
μ
0 = Z1F ig(ta)αβγ μ, (5)

with ta being the ath generator of SU(3)c, α and β are
color indices with respect to the fundamental representation,
and Z1F is the renormalization constant associated with the
coupling. The rainbow truncated quark propagator DSE uses
a bare vertex instead of the dressed one, that is,

ig(ta)αβ�μ → ig(ta)αβγ μ. (6)

This simplifies the complexity of the quark equation con-
siderably, since, in Landau gauge and in the vacuum, the
dressed vertex still requires eight (transverse) tensor structures
as basis elements. Because a bare vertex is used here, an ansatz
for the combined gluon- and quark-gluon interaction term is
employed. Keeping this general for now, the combined term is
written as

Z1F g2Dμν(k)�ν(q,p) =: k2G(k2)Dμν
free(k)γ ν, (7)

where k = p − q, and G(k2) is an effective interaction term
that I specify later.

Having collected all the ingredients, the algebraic ex-
pression for the rainbow truncated quark-propagator Dyson-
Schwinger equation becomes

S−1(p) = S−1
0 (p) +

∫
d4q

(2π )4

{G[(p − q)2]

× (p − q)2D
μν
free(p − q)γ μS(q)γ ν

}
. (8)

where the change of sign in the self-energy term comes from
the two imaginary units going with the two vertices. The color
structure of the equation evaluates to the quadratic Casimir
operator and contributes a prefactor of 4

3 in front of the quark
self-energy; see Appendix A. The coupling renormalization
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constant has been absorbed into the model of the effective
interaction; thus, there are only two renormalization constants
to be fixed: the remaining wave function renormalization
constant Z2 and the mass renormalization constant Zm. In
order to solve the equation numerically it is convenient to
isolate the quark propagator dressing functions A and B, which
is achieved by multiplying the equation on both sides from the
left with an appropriate term, and performing a Dirac trace
afterwards,

A(p) = Z2 + 1

4p2
TrD{−i�p	(p)}, (9)

B(p) = Z2Zmm0 + 1

4
TrD{	(p)}, (10)

where 	(p) is the quark self-energy after dealing with color
space,

	(p) = 4

3

∫
d4q

(2π )4

{G[(p − q)2]

× (p − q)2D
μν
free(p − q)γ μS(q)γ ν

}
. (11)

The traces of the self-energy in Dirac space are presented
in Appendix A; see Eqs. (A11) and (A12). The two coupled
integral equations for the dressing functions A and B are then
given by

A(p2) = Z2 + 4

3p2

∫
d4q

(2π )4

A(q2)G[(p − q)2]

q2A2(q2) + B2(q2)

×
(

2(q · p) + (p2 + q2)(q · p) − 2p2q2

(p − q)2

)
, (12)

B(p2) = Z2Zmm0 + 4

3

∫
d4q

(2π )4

3B(q2)G[(p − q)2]

q2A2(q2) + B2(q2)
. (13)

Switching to hyperspherical coordinates and integrating the
two trivial angles (see Appendix A for details), the equations
become

A(x) = Z2 + 1

6π3

∫ 


ε

dyy
A(y)

yA2(y) + B2(y)

×
∫ +1

−1
dz
√

1 − z2G(x + y − 2
√

x
√

yz)

×
(

2
√

y√
x

z + (1 + y
x

)
√

x
√

yz − 2y

x + y − 2
√

x
√

yz

)
, (14)

B(x) = Z2Zmm0 + 1

6π3

∫ 


ε

dyy
3B(y)

yA2(y) + B2(y)

×
∫ +1

−1
dz
√

1 − z2G(x + y − 2
√

x
√

yz). (15)

In order to fix the renormalization constants Z2 and Zm,
one can demand that the dressing functions A and B become
one and m0 at the renormalization point respectively, by
employing a momentum subtraction (MOM) renormalization
scheme; see, e.g., Ref. [21]. However, in this study I only
consider the infrared part of the Maris-Tandy model. I thus do
not apply such a renormalization scheme, but simply put the
renormalization constants to one. An explicit evaluation of the

self-energy at a renormalization scale of ζ = 19 GeV revealed
that the integrals to be subtracted evaluate to values that are
indeed negligibly small.

III. THE INFRARED PART OF THE MARIS-TANDY
INTERACTION

In this section, I discuss the structure of the quark
propagator DSE as arising from the IR part of the Maris-Tandy
(MT) interaction model, [10]. The full interaction model is
given by

Z1F g2 G

k2
= 4π2

ω6
Dk2e

− k2

ω2

+ 4π2
12

33−2Nf

1
2 ln

[
e2 − 1 + (

1 + k2


2
QCD

)2]F (k2),

(16)

with

F (k2) = 1

k2

(
1 − e

− k2

4m2
t

)
, (17)

and the parameters are Nf = 4,

Nf =4
QCD = 0.234 GeV, ω =

0.3 GeV, D = 1.25 GeV2, and mt = 0.5 GeV. As discussed
in Ref. [22], the angular integral could induce branch cuts in
the complex plane of the radial integration variable once the
external momentum square becomes a complex number. If this
is the case, the radial integration contour must be deformed in
order to avoid the branch cuts. Here, however, similar to the
studies [11,13,14], I only consider the IR part of the model, that
is, the first term in Eq. (16). This simplifies the computation of
the quark propagator DSE in the complex plane significantly,
since the integrand of the loop in the quark self-energy
is an analytic function in the cut-plane −π < arg(p2) < π .
This in turn implies that the contour of the self-energy loop
integral can be kept solely real, and it is sufficient to have
knowledge of the positive real-axis solution of the dressing
functions A and B. This can be easily verified by following
the procedure presented in Ref. [22]. At this point, a further
remark that concerns the more recently introduced Qin-Chang
(QC) interaction [12] is in order. It would, of course, be very
interesting to perform a similar analysis as the one presented
in the sections below in a scenario where the Qin-Chang
interaction is employed. However, for the momentum routing
used in this study, even if one restricts oneself to the IR part
of the QC model, only parts of the quark self-energy integral
can be treated as easily as in the case of the MT interaction.
In particular, parts of the quark self-energy integrand feature
branch cuts that require appropriate contour adjustments away
from the real axis. While this can be done in principle, it
is beyond the scope of this initial study on the subject and
will be considered in a future publication. In order to allow
for easy comparison with the results presented in Ref. [13], I
will use the parametrization presented by Alkofer, Watson, and
Weigel (AWW) [11], which is dimensionally different from the
original MT parametrization. In order to emphasize that, I will
henceforth add the subscript AWW to the parameters D and
ω. The IR part of the MT interaction in AWW parametrization
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is given by

GAWW(x) = 4π2DAWW

ω2
AWW

x exp

{ −x

ω2
AWW

}
, (18)

where I use DAWW = 16 GeV2 and ωAWW = 0.5 GeV. Since
the actual structure of the integrals plays an important role
once complex arguments are considered, I present the coupled
equations for this interaction model explicitly,

A(x) = 1 + DAWW

ω2
AWW

∫ 


ε

dyyA(y)

yA2(y) + B(y)

×
∫ +1

−1
dz
√

1 − z2 exp

{
− (x + y − 2

√
x
√

yz)

ω2
AWW

}

× 2

π

[√
x
√

yz

(
1 + y

x

)
− 2

3
y − 4

3
yz2

]
, (19)

B(x) = m0 + DAWW

ω2
AWW

∫ 


ε

dyyB(y)

yA2(y) + B2(y)

×
∫ +1

−1
dz
√

1 − z2 exp

{−(x + y − 2
√

x
√

yz)

ω2
AWW

}

× 2

π
[x + y − 2

√
x
√

yz]. (20)

In this particular case, the angular integral can be solved
everywhere in the cut plane −π < arg(p2) < π . The solution
can be expressed in terms of modified Bessel functions of the
first kind [11]. After the angular integration (see Appendix B
for details), the coupled equations become

A(x) = 1 + DAWW

∫ 


ε

dyyA(y)

yA2(y) + B2(y)
exp

{
− x + y

ω2
AWW

}

×
[(

1 + y

x
+ 2ω2

AWW

x

)
I2

(
2
√

x
√

y

ω2
AWW

)

− 2
√

y√
x

I1

(
2
√

x
√

y

ω2
AWW

)]
, (21)

B(x) = m0 + DAWW

∫ 


ε

dyyB(y)

yA2(y) + B2(y)
exp

{
− x + y

ω2
AWW

}

×
[(√

x√
y

+
√

y√
x

)
I1

(
2
√

x
√

y

ω2
AWW

)
− 2I2

(
2
√

x
√

y

ω2
AWW

)]
,

(22)

where In(z), z ∈ C \ R− are the modified Bessel functions of
the first kind. Equations (21) and (22) are the central object
of this study. Once real and complex solutions have been
obtained, the scalar and vector part of the propagator can be
computed,

σS(p) = B(p)

p2A2(p) + B2(p)
, (23)

σV (p) = A(p)

p2A2(p) + B2(p)
. (24)

The real and complex solutions of these quantities are
discussed in detail in the following sections.

IV. NUMERICAL IMPLEMENTATION

A. Positive real axis

In this study, a novel numerical technique for solving the
quark propagator DSE has been implemented, which exploits
the parallel computing capabilities of graphics processing units
(GPUs). Since this approach is technically more involved, this
also introduces a source of errors that is not present if one
employs a sequentially executed CPU code. Thus, as a first
step, the real-axis solution is produced and compared with
known results. Similar to Ref. [13], bare masses of m

u,d
0 =

0.005 GeV,ms
0 = 0.115 GeV, and mc

0 = 1 GeV have been
employed. The positive real axis results are summarized in
Fig. 2, which has been arranged in a similar fashion as Fig. 2
in Ref. [13] for easy comparison. The results are in very good
agreement.

B. Complex domain

The second step and main goal of this study is to compute
the solution of the quark propagator in the complex domain. To
this end, first the real axis solution is obtained. For the angular
integral, both the exact solution in terms of Bessel functions
and explicit numerical integration based on Gauss-Chebyshev
quadrature have been used. Even though the iterative procedure
that yields the dressing functions A and B has been performed
on the GPU, the Bessel functions were precomputed on the
CPU using Ref. [23], because of the lack of an adequate
GPU library. Both approaches, exact angular integration and
numerical treatment of the angular integral, produce the same
result and are consistent within numerical precision. Once
the real axis solution has been obtained for a given bare
mass value m0, the propagator is evaluated in the rectangular
region [−5.1,0] GeV2 × i[0,10.2] GeV2 of the square of the
external momentum x = p2, which completely contains half
of the parabolic region that extends into the Euclidean timelike
domain for meson masses of Mqq̄ = 4.5 GeV. The other half
follows from a complex conjugation symmetry, which has
been verified explicitly by an additional calculation below
the real axis; see Sec. V. The rectangular region has been
discretized on a 850 × 850 lattice, which provides a resolution
of 6 × 10−3 GeV2 for the real part and 12 × 10−3 GeV2 for
the imaginary part. Since only a radial integration has to
be performed, even for more than thousand Gauss-Legendre
quadrature nodes for the radial integration, the GPU execution
for all 8502 points takes only a few seconds, thereby producing
the complex dressing functions A and B. The precomputation
of the Bessel functions takes several minutes. However, once
the Bessel functions are known, a solution for a different bare
mass value can be obtained within seconds, since the Bessel
functions only have to be evaluated for values within the cube
[−5.1,0] GeV2 × i[0,10.2] GeV2 × [ε,
] GeV2 spanned by
the external and internal momenta, but they do not depend on
the bare mass. This allowed for a numerically very efficient
scan of a large range of bare mass values, starting at m0 =
5 MeV, and ranging up to m0 = 2500 MeV in increments of
5 MeV. For each of these 500 complex solutions for A and B, a
pole search and analysis procedure has been employed. As an
example, Fig. 3 shows the solution for ReσV for the arbitrarily
chosen bare mass of m0 = 225 MeV.
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FIG. 2. Plots of the quark propagator dressing functions (a) A(p2) and (b) B(p2), as well as the alternative functions (c) σS (p2) and (d) σV (p2).
The plots have been generated to provide a comparison with the solutions presented in Ref. [13], thereby validating the graphics-processing
unit (GPU) parallelized code used in this study.

C. Pole search and analysis strategy

Once a complex solution A and B has been obtained
for a given bare mass, a pole search and analysis has been

FIG. 3. This figure shows the real part of the solution for σV (p2)
for m0 = 225 MeV, obtained in the region p2 ∈ [−5.1,0] × i[0,10.2]
of the square of the external momentum.

conducted. Instead of using the dressing functions A and B,
the scalar and vector parts of the propagator, σS and σV ,
has been computed. Since the real axis solutions for A and
B are free of poles, and since the self-energy integrand is
analytic everywhere except along the negative real axis, poles
arising in the functions σS and σV in the complex domain must
coincide with the zeros of the denominator p2A2(p) + B2(p).
Thus, similar to the strategy used in Ref. [13], I exploit the
Cauchy argument principle to learn how many zeros are to
be expected in the complex region in which the solution has
been obtained. Once the number of zeros is known, a simple
yet effective algorithm searches local maxima and performs a
circular contour integral around each local maximum until the
number of zeros matches the number of identified poles. Let
me discuss the procedure in detail by considering an example.
In every step of the procedure, I will refer to Fig. 4, where each
step is shown explicitly for the arbitrarily chosen example of
m0 = 225 MeV.

Step 1: Determine number of zeros.
After obtaining the complex and real solutions for A
and B for a given mass, the first step is to obtain the
number of zeros (Nz) of the denominator of σS and
σV . This is done by exploiting Cauchy’s argument
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FIG. 4. The real part of the solution for σV (p2) for m0 = 225 MeV
features one pole on the real axis and eight further poles at locations
with nontrivial imaginary part. Various steps that are used for the
automated identification of the poles are highlighted and are referred
to in the discussion of the pole search procedure in the main text.

principle,

Nz = 1

2πi

∮
γ

dξ 2
[ξ 2A2(ξ ) + B2(ξ )]′

ξ 2

ξ 2A2(ξ ) + B2(ξ )

= 1

2πi

∮
γ

dξ 2 A2(ξ ) + 2ξ 2A(ξ )A(ξ )′ + 2B(ξ )B(ξ )′

ξ 2A2(ξ ) + B2(ξ )
.

(25)

The contour is chosen to be the boundary of the
complex region of evaluation, that is,

γ : (−5.1,0) → (0,0) → (0,10.2)

→ (−5.1,10.2) → (−5.1,0), (26)

where the first entry in the tuple corresponds to the
real part of ξ 2 and the second entry to the imaginary
part of ξ 2. In the example of m0 = 225 MeV shown in
Fig. 4, the contour γ is shown in red and is labeled as
item 1© (note that the figure shows the real part of σV ,
so, in fact, while the contour is the same, the integrand
that enters (25) is complex and consists only of the
denominator). In the example of Fig. 4, this integral
evaluates to Nz = 8.503. The fact that this number is
half-integer indicates the existence of a pole sitting
exactly on the integration contour, which, in this case,
happens to be a segment of the real axis. The eight
remaining poles are clearly visible as sharp spikes
in the figure. The expected number of poles to be
extracted is thus 9.

Step 2: Find the global maximum of the masked matrix.
Since the GPU produces the complex solution on an
850 × 850 lattice, the local maxima of the real part of
σV can be used to locate the poles. Of course, one can
also use the imaginary part, or σS for that matter, but

it suffices to consider ReσV . Apart from the complex
matrices that hold the values for x, A, B, σS , and σV ,
a Boolean matrix of the same size is maintained (in
Fig. 4, the Boolean matrix is shown as an array of green
values of T and red values of F, located underneath the
plot for ReσV ). The initial setup of this matrix is that
all of its values are True. Next, the (CUDA-)FORTRAN

[24] intrinsic function that provides the location of the
global maximum is called, where the Boolean matrix
serves as a mask in the sense that only those parts
of the matrix ReσV are considered for the maximum
search for which the corresponding Boolean entry is
True. Since on initial time of the search all entries are
set to True, this just yields the global maximum (z0)
of the array. In the example shown in Fig. 4, the global
maximum z0 happens to be the pole labeled as item 2©.

Step 3: Exploit the residue theorem.
The previous step provided a location z0 of a possible
pole; thus it has to be checked whether the residue of
σV at this point is zero or nonzero. To be more explicit,
the following quantities are computed at point z0,

Res(σS ; z0) = 1

2πi

∮
γ

σS(z)dz, (27)

Res(σV ; z0) = 1

2πi

∮
γ

σV (z)dz. (28)

The contour used for this computation is a circle
of a fixed radius (I used r = 0.1 GeV2). In order
to increase the precision of the calculation of the
residues, the values of the integrands are not inter-
polated, but recomputed for at least 1024 integration
points per contour. The contour is shown in Fig. 4
as item 3© (the circular contour appears elliptic in
the figure because the extent of the complex region
in imaginary direction is twice its real extent, while
the lattice is a square). If one of the four values,
Res(ReσS), Res(ImσS), Res(ReσV ), or Res(ImσV ) is
greater than 10−8, z0 is considered to be a singular
point, and the location and residues are stored. If
all four values are below that number, then z0 is
considered as a regular point, and the computed
residues, as well as the location are disregarded.

Step 4: Update the Boolean mask.
Regardless of whether the previous step found a
pole or not, the point (area) of consideration has to
be masked out, such that a repetitive process can
be engaged. This is achieved by setting entries of
the Boolean matrix that correspond to neighboring
points of z0 to False, such that a subsequent global
maximum search conducted by step 2 produces the
next pole location with a great chance. It turned out to
be practical to use the same radius as for the residue
integral to define this neighborhood. Note that this
radius also limits the minimal resolution at which two
adjacent poles can be identified as being separated. In
Fig. 4, this step is labeled as item 4©. Next, one can
continue with step 2, and run the procedure as long as
necessary until all Nz poles have been identified.
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FIG. 5. All poles that have been detected as the bare mass were
varied from 5 to 2500 MeV in increments of 5 MeV. While the
following analysis has been restricted to the second quadrant, the
third quadrant has also been calculated in order to verify the complex
conjugate nature of the poles. Overall, for all mass parameters and
in both quadrants together, more than 13 000 poles, as well as the
corresponding residues in σS and σV have been extracted.

V. RESULTS

In this section, the results produced by using the numerical
procedures outlined in Sec. IV above are presented. Overall,
more than 6500 pole locations for a total of 500 different bare
mass values have been found and their residues have been
extracted. The full table of all pole locations and residues is
provided as supplemental material; see Sec. VI. However, for
quick consultations, all locations and residues as functions of
the bare mass are included as plots in the main text in this
section. The area in the complex plane for which solutions
have been sought has been chosen such that the full parabolic
region for meson bound-state masses of up to Mqq̄ = 4.5 GeV
is covered.

A. Complex conjugate nature of the solution

For the main result of this study, I focused on a rectangular
region in the complex plane with negative real parts are
positive imaginary parts. The axes have been included and
constitute two of the four boundary edges of the lattice. Since
the evaluation of the complex solution is performed in a
highly parallelized manner, it is computationally rather cheap
to explicitly perform a second computation in a rectangular
region of the same size as the one for which the results are
presented, but for negative real parts and negative imaginary
parts. The combined results of both regions are shown in Fig. 5,
where the complex conjugate nature of the pole positions is
evident. Thus, in the following, the discussion will be based
solely on the region above and include the real axis.
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FIG. 6. This figure shows the main result of this study, obtained
in the region p2 ∈ [−5.1,0] × i[0,10.2] of the square of the external
momentum. For the sake of completeness, the behavior of the poles
on the real axis is included. A detailed analysis of the trajectories
of the real poles is presented in Sec. V C. The plot is to be read as
follows. Trajectories which do not possess any real valued poles are
self-explanatory. The bare mass value of the occurrence of the first
pole is explicitly provided (in MeV), and also the last mass value
for which a particular trajectory has been tracked. The highest mass
value in the computation is 2500 MeV, and, apart from trajectory J,
all trajectories which have an endpoint within the domain specified
above end at this value. The scale that emerges around p2 = −4 GeV2

is discussed in the main text.

B. Pole locations with varying bare mass m0

Figure 6 summarizes the main result of this study. It
shows the movement (trajectories) of the poles in the region
[−5.1,0] GeV2 × i[0,10.2] GeV2, as the bare mass m0 is
varied from 5 to 2500 MeV in increments of 5 MeV. Overall,
23 trajectories have been identified and have been assigned a
letter (from A to Q) for identification. The letter B (together
with appropriate sublabels) has been used multiple times, since
those trajectories are related to one another, yet they have
different features which makes an individual identification
fruitful. Figure 6 contains a lot of information, such that a
thorough description is in order. First, as most prominently
evident in Fig. 5, a scale emerges for external momenta with
a real part of just above −4 GeV2. This scale could not be
attributed to any of the scales involved in the calculation (IR
and UV cutoff scale, mass scale) and could possibly indicate
a breakdown of the numerical procedure. However, varying
the cutoffs or number of integration nodes did not affect the
emergence of this behavior. Since this scale emerges in a region
that is only relevant for relatively high bound-state masses,
where the approximation of the interaction that lacks an UV
term becomes less justified anyway, and because poles enter
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FIG. 7. These plots show the real and imaginary part of the trajectories traced out by the poles as the bare mass is varied from 5 to 2500 MeV
in increments of 5 MeV. The various trajectories have been grouped together in four sets. Each subfigure is dedicated to such a set. Since
this computation has been performed in the second quadrant, all real parts are negative and all imaginary parts are positive. Consequently, all
graphs below zero correspond to the real part of the respective trajectory, while graphs greater than zero represent the imaginary part of the
trajectory. In panel (a), the imaginary part of trajectory H left the region of computation, but re-entered after a short while, which is why this
graph appears to be cut off. Panels (b) and (c) contain the trajectories B1 and B2, which originate on the negative real axis. As the poles meet,
they leave the real axis, as indicated by them developing a nonzero imaginary part; see Sec. V C for a detailed analysis.

this region predominantly for very high bare masses, I did not
pursue a more profound analysis of this phenomenon.

Having addressed this, let me continue by discussing
Fig. 6. In addition to the trajectories, the parabolic integration
domains as relevant for Bethe-Salpeter equations for bound
states of different masses have been included as a guide,
where the respective bound-state mass is denoted outside of
the plot region. For instance, the region bound by the 3.5-GeV
parabola requires, depending on the bare mass, inclusion of
the poles on the trajectories A, B1a, B1b, B1c, E, G, and H.
Each trajectory that does not have a vanishing imaginary part
is in principle self explanatory. For example, the trajectory
labeled A arises for a bare mass of 5 MeV around the point
x = −0.25 GeV2 + i 0.19 GeV2 and ends around the point
x = −3.65 GeV2 + i 3.57 GeV2 for a bare mass value of
2500 MeV. Whenever a trajectory enters or leaves the region
in which the quark DSE has been solved, the respective
mass value for which the region is left and/or entered is
provided near that point. The behavior of the poles on the
real axis is more involved and is discussed separately in
Sec. V C.

Another interesting observation can be made. Comparing
the results of Fig. 6 with Fig. 3.9 of Ref. [8] suggests that
the additional set of poles featured in the light current quark
mass solution of the full MT interaction owes its existence to
the presence of the UV term. This, in turn, could be relevant
for a possible connection between the pole structure of the
propagator and anomalous states in the spectrum; see Ref. [25].
Finally, as far as the pole locations are concerned, Fig. 7 shows
the various pole positions in terms of the real and imaginary
parts as a function of the bare mass for all trajectories.

C. The behavior of the poles on the real axis

As pointed out in Sec. V B, the behavior of the poles
on the real axis is more involved and requires a separate
discussion. There are two main processes involving the real
axis, where process means that two real poles meet at a
certain real value of the square of the external momentum
and scatter off perpendicularly. Thereby, they are tracing out
two new trajectories, along which the two poles are heading
into positive and negative imaginary directions. Note that a
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FIG. 8. This figure shows the behavior of the poles in the interval p2 ∈ [−5.1,0], which collide, and scatter off into the imaginary direction.
In panel (a), two trajectories, B1a (approaching from the left) and B1b (approaching from the right), come together and form a new (complex
conjugate) trajectory B1c. The collision occurs between a bare mass value of 105 and 110 MeV. In panel (b), again two trajectories collide. At
low mass values, trajectory B2a1 approaches from the left and reverses its direction of movement between a mass value of 230 and 235 MeV,
after which it is labeled as B2a2. Because the trajectories B2a1 and B2a2 would overlap in the figure, they have been slightly shifted away
from the real axis, even though their imaginary parts are zero. Finally, a pole moving to the right along trajectory B2a1 collides with a pole
moving to the left along trajectory B2b, creating a new complex (conjugate) trajectory B2c between mass values of 450 and 455 MeV. Above
455 MeV, there are no real poles in the interval [−5.1,0] for all bare mass values of up to 2500 MeV.

similar behavior can be observed if the mass is fixed while
ω is varied [26]. These processes are labeled B1 and B2. B1
involves the trajectories B1a, B1b, and B1c; see Fig. 8(a) for
details. In process B1, two trajectories are approaching each
other head-on on the real axis. At a bare mass value between
105 MeV < m0 < 110 MeV, the two trajectories collide and
create a new, complex (conjugate) trajectory B1c, which leads
away from the real axis in the imaginary direction. Process B2
is even more complicated; see Fig. 8(b). Similar to the process
B1, two trajectories collide, but, prior to the collision, one of
the trajectories changes its direction along the real axis at some
point. Trajectories involved in this process are B2a1, B2a2,
B2b, and B2c. Let me start by discussing B2a1. It starts at a
bare mass value of 25 far out on the real axis and moves towards
the origin. At a value of around x ≈ −3 GeV2, the trajectory
changes direction and starts moving along the real axis, away
from the origin. The trajectory after the change of direction
is labeled B2a2. For the sake of clarity, trajectories B2a1 and
B2a2 are slightly shifted off the axis in Fig. 8(b), even though
they do not have an imaginary part. At the same time, trajectory
B2b approaches from lesser real values and eventually collides
with B2a2 between a bare mass value of 450 MeV < m0 <
455 MeV. The new complex (conjugate) trajectory, B1c, again
leads away from the real axis in the imaginary direction. Thus,
the whole region in which the quark DSE has been solved is
completely free of poles on the real axis for bare mass values
m0 � 455 MeV. The collision of the poles can also be seen in
Figs. 7(b) and 7(c), where the (real) positions of the two tra-
jectories come together, and a nonzero imaginary component
develops.

D. The residues of σS and σV for varying masses m0

Apart from the pole locations, their residues are also of
importance. The residues have been computed by following the
procedure outlined in Sec. IV above. The complete numerical
results are provided as Supplemental Material; see Sec. VI. In
Figs. 9, 10, and 11, real and imaginary parts of all residues of
σS and σV are provided as a function of mass. The trajectories
are grouped together in such a way that the range in which the
respective residue varies is roughly of the same order.

E. Comparison with known results and numerical errors

In order to further validate the findings presented here, a
comparison with published results is made. In Ref. [13], pole
locations as well as residues for σS and σV are presented for
bare mass values of m0 = 5 MeV and m0 = 115 MeV. For
the convenience of the reader, I reproduce the relevant table
from Ref. [13] here; see Table I. In Table II, I summarize
the poles that have been found by the automated numerical
procedure outlined in Sec. IV. Because the pole location is
derived from the locations of points on the discretized complex
region, the pole position has uncertainties of ±6 × 10−3 GeV2

for the real part, and ±12 × 10−3 GeV2 for the imaginary part.
The residues, however, are expected to be of much greater
precision, and no estimate for an error can be provided. A
direct comparison of the pole properties presented in Ref. [13]
and the corresponding pole properties that have been extracted
by the automated procedure used in this study shows that the
results agree remarkably well.
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FIG. 9. Residues of σS and σV as a function of m0 for trajectories A, B2, K [(a)–(d)], and B1, L and M [(e)–(h)].
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FIG. 10. Residues of σS and σV as a function of m0 for trajectories E, G, H, I [panels (a)–(d)] and N, O, P, Q [panels (e)–(h)].
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FIG. 11. Residues of σS and σV as a function of m0 for trajectories C, D, F, and J [panels (a)–(d)].

VI. SUPPLEMENTAL MATERIAL AND USAGE OF THE
DATA

Because the amount of data produced in this study
is too overwhelming to be included in the main text
in an economical fashion, I provide the main data as
Supplemental Material in form of the ASCII text file
pole_trajectory_data.txt [27]. This file contains all pole
locations and residues for all 23 pole trajectories discussed
in the text. For a given trajectory, the data are arranged
in seven columns, which are summarized in Table III.
In addition, a second ASCII text file, HOWTO_extract_
data_from_file.txt, is included. This file contains a
one-line command that allows for extraction of the data
of a single pole trajectory from the file, together with an
example that shows the application explicitly. The command

should work in any linux/UNIX environment that has the
program sed installed. The data can then be used to find
good parametrizations for the infrared Maris-Tandy modeled
quark propagator. Assuming that a certain bare mass value
m0 is desired, as well as a certain bound-state mass Mqq̄ , the
following steps can be performed to identify the relevant poles
and residues.

Step 1: Consult Fig. 6.
For given values of m0 and Mqq̄ , choose the relevant
parabola in Fig. 6 and note down all trajectories that
intersect the parabola.

Step 2: Extract the trajectories from the data file.
Extract the data of the trajectories that have been
identified in step 1. The data contain the real and
imaginary parts of the pole location, as well as the

TABLE I. Table of pole positions and residues as presented in Ref. [13], denoted as (Rex,Imx).

m0 = 5 MeV 1 2 3 4

Pole position z0 (−0.2588,±0.19618) (−0.2418,±2.597) (−1.0415,±2.8535) (−0.738, 0.0)
Res(σS,z0) (−0.016,∓0.511) (0.04,±0.10) (−0.05,∓0.076) (0.069,0.0)
Res(σV ,z0) (0.259,∓0.859) (0.0234,∓0.063) (0.0014,∓0.052) (-0.080,0.0)

m0 = 115 MeV 1 2 3 4
Pole position z0 (−0.463,±0.513) (−0.51,±3.35) (−1.45,±3.82) (−3.25, 0.0)

Res(σS,z0) (0.009,∓0.49) (0.06,±0.10) (−0.056,∓0.08) (0.007,0.0)
Res(σV ,z0) (0.26,∓0.54) (0.013,∓0.06) (−0.0005,∓0.048) (0.004,0.0)
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TABLE II. Table of pole positions and residues as found by the automated numerical procedure described in Sec. IV for m0 = 5 MeV and
m0 = 115 MeV, denoted as (Rex,Imx). The poles are numbered in an arbitrary fashion, except for the first four, which have been picked such
that they match the poles presented in Table I for comparison. The pole numbers chosen for m0 = 5 MeV and m0 = 115 MeV are not consistent
in the sense that a pole labeled 6 for m0 = 5 MeV does not necessarily belong to the same trajectory as the pole labeled 6 for m0 = 115 MeV.
For a consistent treatment of the properties of a pole, consult the trajectories discussed above.

m0 = 5 MeV 1 2 3 4 5

Pole position z0 (−0.258,±0.192) (−0.240,±2.595) (−1.033,±2.847) (−0.739, 0.0) (−1.562,±4.950)
Res(σS,z0) (−0.016,∓0.511) (0.040,±0.100) (-0.050,∓0.076) (0.069,0.0) (−0.024,∓0.041)
Res(σV ,z0) (0.259,∓0.860) (0.023,∓0.063) (0.001,∓0.052) (−0.080,0.0) (0.002,∓0.021)

m0 = 5 MeV 6 7 8 9 10
Pole position z0 (−0.619,±4.698) (−1.015,±7.040) (−2.986,±8.338) (−1.051,±8.578) (−0.841,±6.752)

Res(σS,z0) (0.038,±0.058) (−0.074,∓0.067) (−0.002,∓0.001) (0.033,±0.036) (0.031,±0.051)
Res(σV ,z0) (0.004,∓0.032) (−0.004,∓0.037) (−0.001,∓0.0003) (−0.0002,∓0.017) (0.004,∓0.023)

m0 = 115 MeV 1 2 3 4 5
Pole position z0 (−0.439,±0.517) (−0.505,±3.364) (−1.484,±3.845) (−3.256, 0.0) (−1.490,±8.266)

Res(σS,z0) (0.009,∓0.491) (0.055,±0.102) (−0.056,∓0.080) (0.007,0.0) (−0.080,∓0.059)
Res(σV ,z0) (0.261,∓0.539) (0.013,∓0.061) (−0.0005,∓0.048) (0.004,0.0) (−0.008,∓0.033)

m0 = 115 MeV 6 7 8 9 10
Pole position z0 (−2.114,±0.288) (−0.919,±5.851) (−1.135,±8.122) (−2.066, 6.283) (−1.382,±10.150)

Res(σS,z0) (0.028,∓0.043) (0.041,±0.055) (0.034,±0.048) (−0.019,∓0.047) (0.032,±0.035)
Res(σV ,z0) (−0.021,∓0.028) (0.002,∓0.028) (0.002,∓0.020) (0.005,∓0.019) (−0.0004,∓0.015)

residues in σS and σV for bare mass values with a
separation of 5 MeV. However, for very small residues
it can happen that the a certain pole has not been
tracked for every mass value. In that case, one can
interpolate the data to find the desired values.

Step 3: Solve and fit the quark propagator DSE on the real
axis.
In this study, a plethora of data containing complex
solutions of the quark propagator has been produced.
However, the amount of data is too overwhelming to
be made available even as Supplemental Material. In
order to still take advantage of the pole properties
provided here, one can follow Sec. III B of Ref. [13]
to produce fits for the quark propagator, together with
the representation that takes the pole positions and
residues into account.

VII. SUMMARY AND OUTLOOK

In this study I presented results for the rainbow truncated
quark propagator Dyson-Schwinger equation in the Landau
gauge. The interaction has been modeled using the infrared
part of the Maris-Tandy model, which renders the self-energy
integrand analytic on the cut-plane −π < arg(x) < π of the
square of external momenta. The angular integral can be solved
analytically, and the contour of the remaining (radial) integral
can be maintained on the real axis, even for complex external

momenta. This scenario is thus an ideal basis to develop
new techniques based on nonperturbative Dyson-Schwinger
equations that are capable of providing robust and accurate
solutions in the complex domain, as required for bound-state
equations such as the Bethe-Salpeter equation. Using an
automated algorithm for the extraction of poles and residues,
all poles for bound-state masses of up to Mqq̄ = 4.5 GeV and
for a large range of bare quark masses have been identified
and provided in the form of plots and in the form of raw data
published as Supplemental Material. Several possibilities for
future calculations exist. The next natural step is to extend
the framework further to allow for a proper inclusion of
the ultraviolet term of the Maris-Tandy interaction model. A
first step towards this goal has been performed in Ref. [13];
however, a full treatment that accounts for the nonanalyticities
arising in the complex plane of the radial integration variable
as the external momentum is driven to complex values remains
elusive. The status of this ongoing work is that the obstructive
branch cuts have been successfully identified analytically (this
subject is also discussed in Ref. [28], but no results have
been published). The analytic prediction agrees perfectly with
the numerical analysis, and I am currently working on the
implementation of the necessary contour deformations. These
findings will be made available in a future publication. It
remains to be seen how the methods presented in this paper
can be extended and applied in the presence of the UV
term. However, the experience gained throughout this study

TABLE III. Organization of the data in the supplementary text file pole_trajectory_data.txt.

Column 1 2 3 4 5 6 7

Dimension [MeV] [GeV2] [GeV2] [GeV] [GeV] [1] [1]
Content m0 Re(z0) Im(z0) Re(Res(σS,z0)) Im(Res(σS,z0)) Re(Res(σV ,z0)) Im(Res(σV ,z0))
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will prove to be useful and provides a solid basis to build
upon. Once the framework has been set up, a wider range
of interactions can be studied, like the Qin-Chang interaction
model [12], or more complicated vertex constructions that
go beyond the tree-level tensor structure. This, in turn, bears
the potential to answer more profound questions, such as the
positivity properties of the Landau gauge quark propagator.
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APPENDIX A: SOME DETAILS OF THE RAINBOW
TRUNCATION

1. Convention

All calculations are performed in Euclidean space. The
standard representation for γ matrices is

γ k =
(

0 −iσ k

iσ k 0

)
, γ 4 =

(
1 0
0 −1

)
, γ 5 =

(
0 1
1 0

)
,

(A1)

with σ k the Pauli matrices, such that

γ μ = (γ μ)†, (A2)

γ 5 = −γ 1γ 2γ 3γ 4, (A3)

and

(γ 1)2 = (γ 2)2 = (γ 3)2 = (γ 4)2 = 1D. (A4)

In Euclidean space, the Clifford algebra is defined through

{γ μ,γ ν} = 2δμν. (A5)

2. Color space

The color space part of the quark DSE is very simple. On the
left, the inverse dressed quark propagator is diagonal in color
space, δαβ . On the right-hand side, there are two terms, the bare
inverse propagator, which also is diagonal in color space and
thus just yields a δ function, and the quark self-energy, which
gives a nontrivial contribution via the bare and dressed quark-
gluon vertices. The vertices are connected through a dressed
quark and a dressed gluon, which are both diagonal in color
space, such that the color structure of the quark self-energy
can be written as follows:

	color = δγ δδ
ab(ta)αγ (tb)δβ

= (ta)αγ (ta)γβ . (A6)

Making use of the Fiertz identity (see, e.g., Eq. (8.4) in
Ref. [29])

(ta)αβ(ta)γ δ = 1

2

(
δαδδβγ − 1

Nc

δαβδγ δ

)
, (A7)

the color structure becomes

	color = (ta)αγ (ta)γβ

= 1

2

⎛
⎜⎝δαβ δγ γ︸︷︷︸

=Nc

− 1

Nc

δαγ δγβ

⎞
⎟⎠

= 1

2

(
Nc − 1

Nc

)
δαβ

= N2
c − 1

2Nc

δαβ. (A8)

Since both the left- and right-hand sides of the quark
propagator are thus proportional to δαβ , the trace thereof
cancels and the quark self-energy integral is modified by the
factor of the quadratic Casimir, (N2

c − 1)/(2Nc), which, for
Nc = 3, evaluates to 4

3 .

3. Dirac space

The trivial traces on the left-hand side of the equation,
as well as on the bare inverse propagator on the right,
are not explicitly discussed here. However, for the sake of
completeness I also present the Dirac traces of the quark
self-energy. The first trace of interest appears in the projection
on the vector part of the propagator,

	A(p2) = 1

4p2
TrD{−i�p	} = 1

4p2

4

3

∫
d4q

(2π )4

G[(p − q)2]

q2A2(q2) + B2(q2)
TrD

{
−i�pγ μ[−i�qA(q2)]γ ν

[
δμν − (p − q)μ(p − q)ν

(p − q)2

]}

= − 1

4p2

4

3

∫
d4q

(2π )4

A(q2)G[(p − q)2]

q2A2(q2) + B2(q2)
TrD

{
�pγ μ

�qγ ν

[
δμν − (p − q)μ(p − q)ν

(p − q)2

]}
. (A9)

Considering the trace only yields

TrD

{
�pγ μ

�qγ ν

[
δμν − (p − q)μ(p − q)ν

(p − q)2

]}

= TrD{�pγ μ
�qγ μ} − 1

(p − q)2
TrD{�p(�p − �q)�q(�p − �q)}
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= pρqσ TrD{γ ργ μγ σ γ μ} − 1

(p − q)2
[TrD{�p�p�q�p} − TrD{�p�p�q�q} − TrD{�p�q�q�p} + TrD{�p�q�q�q}]

= pρqσ TrD{γ ρ(2δμσ − γ σ γ μ)γ μ} − 1

(p − q)2
[TrD{p2

�q�p} − TrD{p2q21D} − TrD{p2q21D} + TrD{q2
�p�q}]

= 2TrD{�p�q} − TrD{�p�q γ μγ μ︸ ︷︷ ︸
=4 1D

} − 1

(p − q)2
[p2(qp) − 2p2q2 + q2(qp)]TrD{1D} = −8(qp) − 4

(p2 + q2)(qp) − 2p2q2

(p − q)2
.

(A10)

The projection of the quark self-energy is then given by

	A(p2) = 4

3p2

∫
d4q

(2π )4

A(q2)G[(p − q)2]

q2A2(q2) + B2(q2)

[
2(qp) + (p2 + q2)(qp) − 2p2q2

(p − q)2

]
. (A11)

On the other hand, the projection on the scalar part gives rise to the self-energy contribution

	B(p2) = 1

4
TrD{	} = 1

4

4

3

∫
d4q

(2π )4

G[(p − q)2]

q2A2(q2) + B2(q2)
TrD

{
γ μ[B(q2)]γ ν

[
δμν − (p − q)μ(p − q)ν

(p − q)2

]}

= 1

4

4

3

∫
d4q

(2π )4

B(q2)G[(p − q)2]

q2A2(q2) + B2(q2)

[
TrD{γ μγ μ} − TrD

{
(�p − �q)(�p − �q)

(p − q)2

}]

= 1

4

4

3

∫
d4q

(2π )4

B(q2)G[(p − q)2]

q2A2(q2) + B2(q2)
(16 − 4) = 4

3

∫
d4q

(2π )4

3B(q2)G[(p − q)2]

q2A2(q2) + B2(q2)
. (A12)

4. Hyperspherical coordinates

The integration over the 4-momentum q can be expressed
through hyperspherical coordinates as follows:∫

R4
d4q →

∫ 2π

0
dφ

∫ ∞

0
dq q3

∫ π

0
dθ1 sin2 θ1

∫ π

0
dθ2 sin θ2

=

∣∣∣∣∣∣∣
y ≡ q2 → dy = 2qdq

θ1 ≡ arccos z → dθ1 = − dz√
1−z2

θ2 ≡ arccos w → dθ2 = − dw√
1−w2

∣∣∣∣∣∣∣
= 1

2

∫ 2π

0
dφ

∫ ∞

0
dy y

∫ 1

−1
dz
√

1 − z2

∫ 1

1
dw.

(A13)

Since there are only two different momenta in the quark
self-energy integral, the external momentum p and the internal
(loop) momentum q, there is only the radial and one angular
integral that is nontrivial. By performing the two trivial
integrations, and introducing an IR cutoff ε as well as an UV
cutoff 
, the self-energy integral becomes∫

R4

d4q

(2π )4
→ 1

(2π )3

∫ 


ε

dy y

∫ 1

−1
dz
√

1 − z2. (A14)

By introducing the variable x for the square of the external
momentum p2,

x := p2, (A15)

the scalar products appearing in the integrand of the self-energy
can be rewritten

p.q = √
x
√

yz. (A16)

Switching to hyperspherical coordinates, as well as using
the variable x, the quark self-energy contributions 	A and 	B

become

	A(x) = 1

6π3

∫ 


ε

dyy
A(y)

yA2(y) + B2(y)

×
∫ +1

−1
dz
√

1 − z2G(x + y − 2
√

x
√

yz)

×
(

2
√

y√
x

z + (1 + y
x

)
√

x
√

yz − 2y

x + y − 2
√

x
√

yz

)
, (A17)

	B(x) = 1

6π3

∫ 


ε

dyy
3B(y)

yA2(y) + B2(y)

×
∫ +1

−1
dz
√

1 − z2G(x + y − 2
√

x
√

yz). (A18)

APPENDIX B: THE ANGULAR INTEGRAL OF THE IR
PART OF THE INTERACTION MODEL

In this section, I present the analytic solution of the angular
integral of the IR part of the Maris-Tandy interaction. The
first integral in question is the angular integral in the quark
self-energy contribution 	A. The integral reads

∫ +1

−1
dz
√

1 − z2

⎡
⎢⎢⎣−2

3
y︸ ︷︷ ︸

=:c1

+
(

1 + y

x

)√
x
√

y︸ ︷︷ ︸
=:c2

z −4

3
y︸ ︷︷ ︸

=:c3

z2

⎤
⎥⎥⎦

× exp

⎧⎪⎪⎨
⎪⎪⎩−x + y

ω2︸ ︷︷ ︸
=:c4

+ 2
√

x
√

y

ω2︸ ︷︷ ︸
=:c5

z

⎫⎪⎪⎬
⎪⎪⎭
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=
∣∣∣∣ z = cos θ∫ +1

−1 dz
√

1 − z2 → ∫ π

0 dθ sin2 θ

∣∣∣∣
=
∫ π

0
dθ sin2 θ [c1 + c2 cos θ + c3 cos2 θ ] exp{c4}︸ ︷︷ ︸

=:c6

× exp{c5 cos θ}. (B1)

These integrals can be rewritten in such a way that they
correspond to integral representations of the modified Bessel
functions of the first kind. Those functions are holomorphic
on the cut-plane π > arg(x) > −π , for x ∈ C.

The integral representations of the modified Bessel func-
tions of the first kind can be found in the book of Abramowitz
and Stegun, p. 376 [30]. Here I just present the two relevant
relations 9.6.18 and 9.6.19,

Iν(z) =
(

1
2z
)ν

π
1
2 �
(
ν + 1

2

) ∫ π

0
dθ exp{±z cos θ} sin2ν θ, (B2)

In(z) = 1

π

∫ π

0
dθ exp{z cos θ} cos nθ, (B3)

where z ∈ C,�ν > − 1
2 and n ∈ Z+ ∪ {0}. � is the � function,

which reduces to the shifted factorial (n − 1)! for n ∈ Z+. Now
the integrals have to be identified:∫ π

0
dθ sin2 θ [c1 + c2 cos θ + c3 cos2 θ ]c6 exp{c5 cos θ}

= c1c6

∫ π

0
dθ sin2 θ exp{c5 cos θ}

+ c2c6

∫ π

0
dθ sin2 θ cos θ exp{c5 cos θ}

+ c3c6

∫ π

0
dθ sin2 θ cos2 θ exp{c5 cos θ}

=: T1 + T2 + T3. (B4)

T1 is already in the form of (B2). Using ν = 1 yields

T1 = c1c6

∫ π

0
dθ sin2 θ exp{c5 cos θ}

(B2)= c1c6
π

1
2

=√
π/2︷ ︸︸ ︷

�
(

3
2

)
1
2c5

I1

(
2
√

x
√

y

ω2

)

= −πω2

3

√
y√
x

exp

{
−x + y

ω2

}
I1

(
2
√

x
√

y

ω2

)
. (B5)

For T2, the following relation can be exploited,

cos 3θ = −3 sin2 θ cos θ + cos3 θ, (B6)

such that

sin2 θ cos θ = − 1
3 (cos 3θ − cos3 θ )

= − 1
3 (cos 3θ − cos θ + cos θ sin2 θ )

= − 1
4 (cos 3θ − cos θ ), (B7)

which takes integral T2 into the form of (B3),

T2 = c2c6

∫ π

0
dθ sin2 θ cos θ exp{c5 cos θ}

= c2c6
1

4

∫ π

0
dθ [cos θ − cos 3θ ] exp{c5 cos θ}

(B3)= c2c6
π

4

[
I1

(
2
√

x
√

y

ω2

)
− I3

(
2
√

x
√

y

ω2

)]

= π

4

(
1 + y

x

)√
x
√

y exp

{
−x + y

ω2

}

×
[
I1

(
2
√

x
√

y

ω2

)
− I3

(
2
√

x
√

y

ω2

)]
. (B8)

The difference of the two Bessel functions can be rewritten as
follows. Using the recurrence relation (see 9.6.26 in the book
of Abramowitz and Stegun [30]),

Iν−1(z) − Iν+1(z) = 2ν

z
Iν(z), (B9)

with ν = 2,T2 can be simplified to

T2 = c2c6

∫ π

0
dθ sin2 θ cos θ exp{c5 cos θ}

= ω2π

2

(
1 + y

x

)
exp

{
−x + y

ω2

}
I2

(
2
√

x
√

y

ω2

)
. (B10)

Finally, T3 can be rewritten to yield

T3 = c3c6

∫ π

0
dθ sin2 θ cos2 θ exp{c5 cos θ}

= c3c6

∫ π

0
dθ [cos2 θ − cos4 θ ] exp{c5 cos θ}

= c3c6

∫ π

0
dθ [1 − sin2 θ − (1 − sin2 θ )2] exp{c5 cos θ}

= c3c6

∫ π

0
dθ [sin2 θ − sin4 θ ] exp{c5 cos θ}, (B11)

which is of the form of (B2). The first integral is the same as
(B5), and T3 becomes

T3 = c3c6

∫ π

0
dθ [sin2 θ − sin4 θ ] exp{c5 cos θ}

= c3c6
π

c5
I1

(
2
√

x
√

y

ω2

)
− c3c6

3π

c2
5

I2

(
2
√

x
√

y

ω2

)

= c3c6π

c5

[
I1

(
2
√

x
√

y

ω2

)
− 3

c5
I2

(
2
√

x
√

y

ω2

)]

= −4

3
y

πω2

2
√

x
√

y
exp

{
−x + y

ω2

}
I1

(
2
√

x
√

y

ω2

)

+ 2ω4
√

y√
x

π

2
√

x
√

y
exp

{
−x + y

ω2

}
I2

(
2
√

x
√

y

ω2

)
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= −2π

3

√
y√
x

ω2 exp

{
−x + y

ω2

}
I1

(
2
√

x
√

y

ω2

)

+ π

x
ω4 exp

{
−x + y

ω2

}
I2

(
2
√

x
√

y

ω2

)
. (B12)

Combining the three individual integration results finally
yields

∫ +1

−1
dz
√

1 − z2

[
− 2

3
y +

(
1 + y

x

)√
x
√

yz − 4

3
yz2

]

× exp

{
− x + y

ω2
+ 2

√
x
√

y

ω2
z

}
= T1 + T2 + T3

= −πω2

3

√
y√
x

exp

{
−x + y

ω2

}
I1

(
2
√

x
√

y

ω2

)

+ω2π

2

(
1 + y

x

)
exp

{
−x + y

ω2

}
I2

(
2
√

x
√

y

ω2

)

− 2π

3

√
y√
x

ω2 exp

{
−x + y

ω2

}
I1

(
2
√

x
√

y

ω2

)

+ π

x
ω4 exp

{
−x + y

ω2

}
I2

(
2
√

x
√

y

ω2

)
, (B13)

which can be simplified to give

∫ +1

−1
dz
√

1 − z2

[
− 2

3
y +

(
1 + y

x

)√
x
√

yz − 4

3
yz2

]

× exp

{
− x + y

ω2
+ 2

√
x
√

y

ω2
z

}

= πω2

2
exp

{
−x + y

ω2

}[
−

√
y√
x

I1

(
2
√

x
√

y

ω2

)

+
(

1 +
√

y√
x

+ 2
ω2

x

)
I2

(
2
√

x
√

y

ω2

)]
. (B14)

The angular integral of 	B can be treated in a similar fashion:

∫ +1

−1
dz
√

1 − z2

[
x + y︸ ︷︷ ︸

=:c7

−2
√

x
√

y︸ ︷︷ ︸
=:c8

z

]

× exp

{
−x + y

ω2︸ ︷︷ ︸
=:c4

+2
√

x
√

y

ω2︸ ︷︷ ︸
=:c5

z

}

=
∫ π

0
dθ sin2 θ [c7 + c8 cos θ ] exp{c4}︸ ︷︷ ︸

=:c6

exp{c5 cos θ}

= c6c7

∫ π

0
dθ sin2 θ exp{c5 cos θ}

= c6c8

∫ π

0
dθ sin2 θ cos θ︸ ︷︷ ︸

=− 1
4 (cos 3θ−cos θ)

exp{c5 cos θ}

= c6c7

∫ π

0
dθ sin2 θ exp{c5 cos θ}

+ c6c8
1

4

∫ π

0
dθ cos θ exp{c5 cos θ}

− c6c8
1

4

∫ π

0
dθ cos 3θ exp{c5 cos θ}

=: T4 + T5 + T6. (B15)

These integrals are the same as the ones above, and it follows
that

T4 = exp

{
−x + y

ω2

}
(x + y)

ω2π

2
√

x
√

y
I1

(
2
√

x
√

y

ω2

)

= exp

{
−x + y

ω2

}
ω2π

2

(√
x√
y

+
√

y√
x

)
I1

(
2
√

x
√

y

ω2

)
,

(B16)

T5 = − exp

{
−x + y

ω2

}√
x
√

yπ

2
I1

(
2
√

x
√

y

ω2

)
, (B17)

T6 = exp

{
−x + y

ω2

}√
x
√

yπ

2
I3

(
2
√

x
√

y

ω2

)
, (B18)

such that the last two Bessel functions can be combined by
using the recurrence relation as before. The final result is then
given by ∫ +1

−1
dz
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)]
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