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Antiproton-proton annihilation into charged light meson pairs within effective meson theory

Ying Wang
Univ Paris-Sud, CNRS/IN2P3, Institut de Physique Nucléaire, UMR 8608, 91405 Orsay, France

Yury M. Bystritskiy
Joint Institute for Nuclear Research, Dubna, Russia

Egle Tomasi-Gustafsson*

IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
(Received 9 September 2016; revised manuscript received 7 February 2017; published 7 April 2017)

We revisit antiproton-proton annihilation into light mesons in the energy domain relevant to the antiproton
annihilation at Darmstadt (PANDA) experiment at the GSI Facility for Antiproton and Ion Research (FAIR)
[2.25(1.5) � √

s(pL) � 5.47(15) GeV (GeV/c) where
√

s(pL) is the total energy (the beam momentum in the
laboratory frame)]. An effective meson model is developed, with mesonic and baryonic degrees of freedom.
Form factors are added to take into account the composite nature of the interacting hadrons. A comparison is
made with the existing data for charged pion pair production and predictions for angular distributions and energy
dependence in the range 3.362(5) � √

s(pL) � 4.559(10.1) GeV (GeV/c). The model is applied to π±p elastic
scattering, using crossing symmetry, and to charged kaon pair production, on the basis of SU(3) symmetry. In all
cases the results illustrate a nice agreement with the data.
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I. INTRODUCTION

Large experimental and theoretical efforts have been go-
ing on for decades to understand and classify high-energy
processes driven by the strong interaction. We consider here
hadronic reactions at intermediate energies, focusing on two-
body final-state processes.

A beam of antiprotons is a very peculiar probe due to the fact
that scattering and annihilation may occur in the same process,
with definite kinematical characteristics. This process has been
studied in the past, in connection with experiments at the Low
Energy Antiproton Ring (LEAR) at CERN and FermiLab,
where antiproton beams were available. Annihilation occurs
mostly through the production of several pions, five pions
being the most probable channel. This paper focuses on the
annihilation reaction induced by antiprotons on a proton target,
with production of two charged pions. At low energies the
annihilation into light meson pairs is dominated by a few
number of partial waves and the angular distribution shows
a series of oscillations. Experimental data are analyzed with
the use of Legendre polynomials [1]. This regime was also
studied with the aim to look for resonances in the p̄p system.

A change of behavior appears above
√

s = 2 GeV, where
the angular distributions become typical for peripheral pro-
cesses. They are peaked at forward and backward an-
gles, corresponding to small values of t or u, respectively
(s, t , and u are the Mandelstam variables). The differential
cross section dσ/dt and the integrated cross section show a
power-law behavior as a function of energy [2,3]. At even
larger energies, the total cross section becomes asymptotically
constant, reaching a regime where dσ/dt is function of t only,
being independent of s.
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The most exhaustive data on neutral pion (and other neutral
meson) production were published by the FermiLab E760
collaboration in the energy range (2.911 � √

s � 3.686) GeV
[4] and will be the subject of future work. Until now, no
calculation has been developed to reproduce all these data.
We focus here on charged pion production, which has a larger
cross section. Data are scarce and do not fill with continuity a
large angular or energy range [5–7]. To consolidate the model,
we take into account other data sets on the crossed reaction
π±p elastic scattering and on p̄p annihilation into charged
kaons [6] in a comparable energy range [8,9].

According to the foreseen performances of the antiproton
annihilation at Darmstadt (PANDA) experiment at the GSI
Facility for Antiproton and Ion Research (FAIR) [10], a
large amount of data related to light meson pairs production
from p̄p annihilation is expected in the future. The best
possible knowledge of light meson production is also requested
before the experiment takes place, because pions constitute an
important background for many other channels. The devel-
opment of a realistic model working in the few GeV region
is necessary, in particular the foreseen program on timelike
form-factor measurements [11]. This program requires the
detection of a lepton pair, and will benefit from a reliable
estimation of the hadronic background. Pion pair production
has five or six times larger cross section: pions should be
effectively detected and identified [12,13]. For this aim, the
model should reproduce the gross features of the data and
should be expressed in a convenient form to be implemented
in Monte Carlo calculations.

For the considered reaction, p̄p → π+π−, few calcula-
tions of cross section and angular distributions exist in the
literature, and apply at lower energies than those of interest
here. A baryon (N and �) t-channel exchange model has
applicability below 1 GeV beam momentum [14–16]. Potential
models [17] and sophisticated coupled-channel calculations
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[18] become too involved to be extended to higher energies,
due, among other things, to the opening of several channels
and contributions of many resonances [18–20]. Final-state
interaction has been discussed in several works, such as
Ref. [21]. Microscopic quark models were developed to predict
relative two-body branching ratios, dynamical selection rules,
or consequences of SU(2)/SU(3) symmetry (see, for example,
Refs. [22,23]). Within a quark model, the authors of Ref. [24]
show that relativistic effects accounting for higher partial-wave
contributions should be taken into account to reproduce
satisfactorily the data from Ref. [25].

The phenomenology added to take into account nonpertur-
bative effects at low energies is, however, not unique and gave
rise to different approaches (for a review, see Refs. [26,27]).
The domain of applicability of the above calculations does not
exceed 2 GeV.

At higher energies, a constituent interchange quark model
was developed in Ref. [28]. The energy and angular depen-
dencies can be predicted for large-angle scattering and elastic
or quasi-elastic processes.

An effective Lagrangian model was recently developed at
larger energies, including meson exchanges in the s channel,
which qualitatively reproduces a limited set of angular distri-
butions [29]. Parameters include cutoff and normalizations of
form factors. It is assumed that Regge poles dominate the low-
as well as the large-|t | regions. An ad hoc parametrization of
the nucleon Regge trajectory, that saturates at large, negative t
(t is the Mandelstam variable for the transferred momentum),
ensures the transition between soft and hard regimes. However,
the authors warn against the application of this approach to
neighboring energies, which is possibly related to the specific
extrapolation of Regge trajectories in the region t < 0.

We develop here a model with meson and baryon exchanges
in s, t , and u channels, in the energy range of the PANDA
experiment at FAIR [2.25(1.5) � √

s(pL) � 5.47(15) GeV
(GeV/c)]. It is known that first-order Born diagrams give
cross sections much larger than measured, because Feynman
diagrams assume point-like particles. Form factors are added
to take into account the composite nature of the interacting
particles at vertices. Their parametrization is model dependent:
parameters as coupling constants or cutoff are adjusted to
reproduce the data. A “Reggeization” of the trajectories is
often added to reproduce the very forward and very backward
scattering angles. This class of models should be considered
as a phenomenological, effective way to take into account
microscopic degrees of freedom and quark exchange diagrams.

Our aim is to build a model with minimal ingredients, to
calculate the basic features of charged-pion production in the
energy range that will be investigated by the future experiment
PANDA at FAIR. To test the adequacy of the model, we
exploit also the existing π±p elastic-scattering data, applying
crossing symmetry in order to compare the predictions based
on the annihilation channel, at least in a limited kinematical
range. The main requirement is that the model should be able
to reproduce at the same time charged-pion production from
annihilation, and π±p elastic scattering. It is straightforward
to extend the model to charged kaon pair production, with
suitable replacements of the masses of the particles. At the
considered energies, one can also rely on SU(3) symmetry,

which gives a prescription to connect charged kaon and pion
pair production from p̄p annihilation. The comparison of
the results with the existing angular distributions and energy
dependencies shows that the model successfully reproduces
the available data.

Our paper is organized as follows: In Sec. II, the formalism
is derived: the definition of the variables, the kinematics,
and the outline of the model. In Sec. III the relevant data
are shown in comparison with the results of the model for
cross sections and angular distributions. Section IV shows a
straightforward application to kaon pair production. In Sec. V
conclusions summarize the main findings of the paper. The
relevant diagrams are calculated in the appendixes.

II. FORMALISM

A. Kinematics and cross section

We consider the annihilation reaction

p̄(p1) + p(p2) → π−(k1) + π+(k2) (1)

in the center-of-mass system (CMS). The notation of four-
momenta is shown in the parentheses. The following notations
are used:

qt = (−p1 + k1), q2
t = t,

qu = (−p1 + k2), q2
u = u,

qs = (p1 + p2), q2
s = s,

with s + t + u = 2M2
N + 2m2

π , where MN (mπ ) is the nucleon
(pion) mass. The useful scalar product between four-vectors
are explicitly written as

2p1k2 = 2k1p2 = M2
N + m2

π − u,

2p1k1 = 2k2p2 = M2
N + m2

π − t,

2p1p2 = s − 2M2
N, 2k1k2 = s − 2m2

π , (2)

p2
1 = p2

2 = M2
N = E2 − | �p|2,

k2
1 = k2

2 = m2
π = ε2 − |�k|2,

where E (ε) is the energy of the proton (pion), and | �p|
and |�k| are the initial and final particles momenta (moduli),
respectively, in the CMS. The general expression for the
differential cross section of reaction (1) is

dσ

d�
= 1

28π2

1

s

βπ

βp

|M|2, dσ

d cos θ
= 2E2βpβπ

dσ

dt
, (3)

where |M|2 is the squared matrix element of the process
averaged over the spins of the initial particles, βp (βπ ) is the
velocity of the proton (pion) in the CMS. The phase volume
can be transformed as d� → 2π dcos θ due to the azimuthal
symmetry of binary reactions. The total cross section is

σ =
∫ |M|2

64π2s

| �p|
|�k| d�. (4)

B. Crossing symmetry

Crossing symmetry relates annihilation and scattering
cross sections and states that the same amplitudes describe the
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TABLE I. Correspondence between variables in the crossed scattering (s) and annihilation (a)
channels.

Annihilation Scattering

p̄(p1) + p(p2) → π−(k1) + π+(k2) π−(−k2) + p(p2) → π−(k1) + p(−p1)

sa = (p1 + p2)2 ss = (−k2 + p2)2

ta = (p1 − k1)2 ts = (−k2 − k1)2

ua = (p1 − k2)2 us = (p1 − k2)2

sa = 4E2 = 4(M2 + | �pa|2) ss = m2 + M2 + 2E′
2ε

′
2 + 2|�ks |2

σa = 1
4

|Ma |2
64π2s

| �ka |
| �pa | σs = 1

2
|Ms |2
64π2s

|�ks |
| �ps |

crossed processes. This means that the matrix element M(s,t)
is the same for crossed processes at corresponding s and t val-
ues, but the variables span different regions of the kinematical
space. To find this correspondence, kinematical replacements
between variables should be done, as indicated in Table I. Note
that the coefficients 1/2 and 1/4 in the cross-section formulas
are the spin factors: (2Sπ +1)(2Sp+1) and (2Sp̄+1)(2Sp + 1)
for the scattering and annihilation channels, respectively,
where Sπ , Sp, and Sp̄ are the spins of the corresponding initial
particles. The incident momentum in the annihilation channel
for a given invariant s is | �pa| = (s/4 − M2)1/2. From the
equality sa = ss , the CMS momentum for π−p scattering,
|ks |, is evaluated at the same s value:

|�ks |2 = 1

4s
[m4 − 2m2(M2 + s) + (M2 − s)2], (5)

and the amplitudes are assumed to be the same at this point.
Then the cross sections for the two crossed processes are
related by

σa = 1

2

|�ks |2
| �pa|2 σs. (6)

If the scattering cross section is measured at a value
ss = s1 different from sa = s, at small t values one should
rescale the cross section by using the empirical dependence
σs � const. × s−2 [6].

C. The model, the amplitudes, and the matrix element

The formulas written above are model independent, i.e.,
they hold for any reaction mechanism. To calculate M, one
needs to specify a model for the reaction. In this work we
consider the process (1) within the formalism of effective
meson Lagrangian.

The following contributions to the cross section for the
reaction (1) are calculated as illustrated in Fig. 1:

(i) baryon exchange:
(a) t-channel nucleon (neutron) exchange, Fig. 1(a);
(b) t-channel �0 exchange, Fig. 1(b);
(c) u-channel �++ exchange, Fig. 1(c);

(ii) s-channel ρ-meson exchange, Fig. 1(d).

The total amplitude is written as a coherent sum of all the
amplitudes:

M = Mn + M�0 + M�++ + Mρ. (7)

The dominant contribution in the forward direction is N
exchange, whereas �++ mostly contributes to backward
scattering. We neglect the difference of masses between the
nucleons as well as between different charge states of the
pion and of the � resonance. Scattering around cos θ = 0
is sensitive to s-channel exchange of vector mesons, with
the same quantum numbers as the photon. Although several
resonances are present in these region, no one appears to be
dominant outside its peak region. Adding resonances brings
new parameters and unknown relative phases. Therefore, we
limit this contribution to ρ-meson exchange. Assuming ρ is
the dominant contribution, our approach is equivalent to giving
more weight to the P wave. Far from their maximum, all the
L = 1 resonances give proportional contributions, and one can
consider that they are effectively taken into account. The
significant test of the contributing L values is contained in the
experimental angular distributions. These are well reproduced
by our model. The expressions for the amplitudes and their
interferences are detailed in the appendix. Coupling constants
are fixed from the known decays of the particles if it is
possible, otherwise we use the values from effective potentials
of Ref. [30]. Masses and widths are taken from Ref. [31].

The effects of strong interaction in the initial state, between
proton and antiproton, coming from the exchange of vector
and (pseudo) scalar mesons are essential. At larger energies
they effectively lead to the Regge form of the amplitude.
However, in the considered energy range, it turns out that
the considered data may be reproduced only with unusual
values of the Regge parameters. Thus we conclude that we
are not in the Regge regime yet. However, one should realize
this pre-Regge behavior taking into account some effects of
intermediate nucleon (� resonance) off-mass-shellness.

After different attempts, we found that the best solution
in this energy range, which is not asymptotic yet, is to
parametrize the form factors at the p̄p vertexes, with a

p

p

+π

-π

n

(a)

p +π

-πp

(b)

0Δ

p

p

ρ

-π

+π
(c)

++Δ

(d)

p

p

+π

-π

FIG. 1. Feynman diagrams for the reaction p̄ + p → π− + π+

within the effective meson Lagrangian approach.
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logarithmic function of x (where x = s or t or u). This choice
is based on a QCD derivation from Refs. [32,33] that relates
the asymptotic behavior of form factors to the quark contents
of the participating hadrons. It is also known that a logarithmic
dependence of the p̄p cross section reproduces quite well the
background for resonant processes [34,35]. It turns out that
the function

FN,�(x) = NN,�M4
0[(

x − �2
N,�

)
log

(x−�2
N,�)

�2
QCD

]2
, x = s,t,u (8)

acts as a very convenient form factor, where M0 = 3.86 GeV
is a scale parameter, which has been inserted to conserve
units, �QCD = 0.3 GeV is the QCD scale parameter; NN,(�) =
0.361 ± 0.006 (0.041 ± 0.003) is a normalization constant fit
on the data, �N,(�) = 2.25 ± 0.09 (1.05 ± 0.04) is a “slope”
parameter fit on the data (in GeV units).

The procedure is the following: first we apply the form
factor FN,� which depends on momentum transfer (t or u) to
take into account the composite nature of the particle in the
interaction point. Second, we use the factor FN,�(s) which
effectively takes into account pre-Regge regime excitations of
higher resonances in the intermediate state. This leads to an ef-
fective form factor as the product F̃N,�(s,t) = FN,�(s)FN,�(t)
[or F̃N,�(s,u) = FN,�(s)FN,�(u)] containing the same set of
parameters for the s and t(u) dependencies, but different for
N and � exchanges. The fit does not require independent
parameters for s and t(u) dependencies.

The ρNN vertex includes the proton structure in the vector
current form with two form factors (FFs) F

ρ
1 and F

ρ
2

�μ(qs) = F
ρ
1

(
q2

s

)
γμ(qs) + i

2MN

F
ρ
2

(
q2

s

)
σμνq

ν
s , (9)

where σμν = i
2 [γμγν − γνγμ] is the antisymmetric tensor. Due

to the isovector nature of the ρ, the ρNN is similar to
the electromagnetic vertex γNN . However, the two form
factors F

ρ
1 (q2

s ) and F
ρ
2 (q2

s ) are different from the proton
electromagnetic ones. We do not attempt new parametrization
but prefer to fix the form, the constants, and the parameters of
F

ρ
1 (s) and F

ρ
2 (s) according to Refs. [30,36,37] as

F
ρ
1 (s) = gρNN

�4
ρ

�4
ρ + (

s − M2
ρ

)2 , F
ρ
2 (s) = κρF

ρ
1 (s), (10)

with normalization F
ρ
1 (M2

ρ) = gρNN , where the constant gρNN

corresponds to the coupling of the vector meson ρ with
the nucleon [g2

ρNN/(4π ) = 0.55], κρ = 3.7 is the anomalous
magnetic moment of the proton with respect to the coupling
with ρ, and �ρ = 0.911 is an empirical cutoff.

The ρ amplitude is in principle complex, since form
factors in the s channel can contain some nontrivial phase.
To reproduce the s dependence of the cross section, a relative
phase, � = eiπφρ , and a normalization are added.

III. COMPARISON WITH EXISTING DATA:
p̄ + p → π− + π+ AND π± + p → π± + p

The results for the the cos θ dependence of the annihilation
reaction p̄ + p → π− + π+ are shown for the available

θcos
1− 0.5− 0 0.5 1

 [n
b]

θ
/d

co
s

σd

10

210

310

410

510

FIG. 2. Angular dependence (log scale) for the reaction p̄ + p →
π− + π+, for

√
s = 3.680 GeV from Ref. [6] (black solid circles) and

for
√

s = 3.362 GeV from Ref. [7] (red open circles). The present
calculation is shown by a long-dashed red line, and a solid black line
at the corresponding energies. The calculation from the constituent
interchange model of Ref. [28] is also reported as a dash-dotted red
line and a dotted black line, respectively.

data at four values of the total CMS energy (Laboratory
antiproton momentum):

√
s(pL) = 3.362(5) GeV (GeV/c)

[7], 3.627(6) GeV (GeV/c) [38], 3.680(6.2) GeV (GeV/c)
[6], and 4.559 (10.1) GeV (GeV/c) [39]. The calculation from
the present model is compared to the predictions from the
constituent interchange model of Ref. [28].

In the fitting procedures, only the data taken at the CERN
proton synchrotron, from Refs. [6,7,39], were included, getting
a χ2/ndf = 2.16 (“ndf” is the number of degrees of freedom).
The data from Ref. [38], taken at the Brookhaven National
Laboratory multiparticle spectrometer (MPS), were excluded
from the fit, due to several neighboring points that bias the fit.
The results in this plot are therefore given with the parameters
fit on the other data sets.

The data Ref. [6] (black solid circles) and from Ref. [7]
(red open circles) are shown in Fig. 2, together with the results
of the present calculation for the corresponding energies, solid
black line and dashed red line, respectively. The calculation
from the constituent interchange model of Ref. [28] is also
reported as a dotted black line and a dash-dotted red line,
respectively.

For the two sets of annihilation data, from Refs. [38] and
[39], few points are available at forward angles. For the sake
of clarity, a reduced angular region is shown in Fig. 3.

The available data from the annihilation reaction do not
cover the full θ range, especially in the backward region
data are scarce. Because the PANDA detector covers a 4π
solid angle, we rely on the data from π±p elastic scattering
with the help of crossing symmetry to fill this region. The
results for elastic scattering π− + p → π− + p are shown in
Fig. 4. The data correspond to very backward angles of the
π− emission. No other rearrangement of the parameters was
done for the elastic-scattering data bringing an additional test
of the reliability of the model and of the validity of crossing
symmetry, at least in the kinematical region where one diagram
dominates. The agreement is very good for all data sets.
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FIG. 3. Angular dependence (log scale) for the reaction p̄ + p →
π− + π+ for

√
s = 3.627 GeV [38] (red open circles), and 4.559 GeV

[39] (black solid circles). The data from Ref. [38] were excluded from
the fit, but they are well reproduced a posteriori. Lines are as in Fig. 2.

The angular distribution for
√

s = 3.680 GeV is shown in
Fig. 5. The total result (black, solid line) gives a very good
description of the data from Ref. [6] (red open circles), that
here can be appreciated in log scale. For this single data set
χ2/ndf = 1.69.

All components and their interferences are illustrated. n
exchange in t channel dominates at forward angles, followed
by �0 exchange. �++ represent the largest contribution for
backward angles. The interferences affect the shape of the
angular distribution, some of them being negative in part
of the angular region. The ρs-channel exchange is small,
but its contribution as well as the interferences with the
other diagrams help in saturating the cross section around
cos θ = 0, being relatively more important in the region
−0.5 � cos θ = 0.5.

The necessary number of parameters is very limited: two for
the proton and two for the � form factor. The phase between
the s channel (ρ exchange) and the u, t channels, φρ , after

θcos
1− 0.9− 0.8− 0.7− 0.6−

 [n
b]

θ
/d

co
s

σd

10

210

310

410

510

FIG. 4. Angular dependence (log scale) from the elastic reactions
π− + p → π− + p at

√
s = 3.463 GeV from Ref. [8] (red open

circles), and at
√

s = 3.747 GeV from Ref. [9] (black solid circles).
Lines are as in Fig. 2.

 θ cos
1− 0.5− 0 0.5 1

 [n
b]

θ
/d

co
s

σd

1

10

210

310

410 Total
n

0Δ
++Δ

ρ
0Δn 
++Δn 

++Δ 0Δ
ρn 

ρ 0Δ
ρ ++Δ

FIG. 5. Angular distribution for p̄ + p → π+ + π− for
√

s =
3.680 GeV. The data are from Ref. [6]. The total function (black
solid line) and all components are shown on a log scale: n exchange
(yellow thick short-dashed line) dominates at forward angle, followed
by �0 (read thick dotted line). �++ (green thick dash-dotted line)
represents the largest contribution for backward angles. The ρ channel
(blue thick long-dashed line) has a larger contribution for cos θ � 0,
relative to the dominant components. The interferences are n�0 (thin
black short-dashed line) and n�++ (thin red dotted line), visible at
forward angles, �0�++ (green thin short dash-dotted line), nρ (blue
thin long-dashed dotted line), �0ρ (blue thin dash-triple-dotted line),
�++ρ (blue thin long-dashed line).

fitting, is set to unity. The relative normalization of the ρ
diagram is also found consistent with unity and is set to unity.

The dominance of the nucleon and �++ exchanges in the
forward and backward angles, may point out to the presence
of nucleon and �++ poles in the unphysical region. At lower
energies, this phenomena is similar to the peak arising from
charged-pion exchange (pion pole) in the charge-exchange
neutron-proton scattering (backward peak) and in the proton-
antiproton to neutron-antineutron scattering (forward peak)
[40]. At larger energies, the pion pole model has been also
successfully applied for neutron-proton scattering in Ref. [41].

We checked that the results are quite stable against a change
of the parameters in a reasonable interval. In Fig. 6 the s
dependence of the cross section is shown for cos θ = 0. The
long (short) dashed line corresponds to a change of +10%
(−10%) of the parameters, that increases (decreases) the total
function. The sensitivity of the function to these changes
is s dependent, becoming negligible over 4.5 GeV. QCD
gives predictions for the cross section of exclusive processes,
formulated in terms of quark counting rules [2,3], that in our
case is proportional to s−8. Our model is reasonably consistent
with these prediction in the energy range considered.

We may integrate the calculated differential cross section
and give the following values σ (p̄ + p → π+ + π−) = 4.2 ±
2.1 mb at

√
s = 3.362 GeV, σ = 1.4 ± 0.8 mb at

√
s =

3.680 GeV, and σ = 1.0 ± 0.5 mb at
√

s = 4.559 GeV, where,
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 [GeV]s 
3.5 4 4.5 5 5.5 6
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θ
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1
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Model (90% par)
Model (110% par)

 (quark counting)-8s

FIG. 6. s dependence for p̄ + p → π+ + π− for θ = 90◦. The
total function (black solid line), two functions with parameters
changed by +10% (black long-dashed line) and −10% (short-dashed
line) from the fitted values are shown on a log scale, compared with
quark-counting-rule results from Refs. [2,3] (red triple dot-dashed
line).

for safety, we overestimate the error propagation on the fit
parameters by 50%.

IV. EXTENSION TO STRANGE PARTICLES:
p̄ + p → K− + K+

A similar model, based on corresponding diagrams can be
built for charged kaon pair production, changing the mass
of the produced and exchanged particle, and replacing the

 θ cos

-1 -0.5 0 0.5 1

 [n
b]

θ
/d

co
s

σd

10

210

310

410 Model
Model (90% par)
Model (110% par)

FIG. 7. Angular distribution for p̄ + p → K+ + K− for
√

s =
3.680 GeV. The total function (black solid line) is shown on a log
scale. The dashed (dotted) line is the result of the model corresponding
to values of the parameters 10% lower (higher). The data are from
Ref. [6].

coupling constants. Another possibility is to rely on SU(3)
and test its prescription.

Having built the matrix element for p̄ + p → π− + π+,
we may calculate the cross section of p̄ + p → K− + K+, by
applying a global factor, following Ref. [42]:

σ (π−π+) : σ (K−K+) = 1 :
4λ

3
, where λ = 0.4.

In the energy range considered, one set of data for the
angular distribution exists at

√
s = 3.680 GeV [6]. The results

are reported in Fig. 7, showing a very good agreement with
these data, without need of adjusting the parameters.

We may evaluate the integrated cross section, as σ (p̄ +
p → K+ + K−) = 2.1 ± 0.8 mb at

√
s = 3.680 GeV.

V. CONCLUSIONS

A model, based on an effective meson Lagrangian, has been
built in order to reproduce the existing data for two-charged-
pion production in proton-antiproton annihilation at moderate
energies. Form factors are implemented and parameters ad-
justed to the existing data for charged-pion pair production.
Coupling constants are fixed from the known properties of
the corresponding decay channels. The agreement with the
existing data is satisfactory for the angular dependence as
well as the energy dependence of the cross section. At large
energies the model follows naturally the expected behavior
from quark counting rules. A comparison with data from
elastic π±p → π±p, using crossing-symmetry prescriptions
shows a good agreement and brings additional constraints
at very backward angles. Discussions about the validity
of crossing symmetry can be found in Refs. [7,8,38]. The
present results verify that crossing symmetry works at least at
backward angles, where one diagram is dominant. Moreover,
applying SU(3) symmetry, one reproduces the existing data
on the angular distribution for p̄ + p → K+ + K− in the
corresponding energy range.

The logarithmic expression of the form factors imple-
mented here is typically used for hadron electromagnetic form
factors, in the annihilation region. In the scattering region it
corresponds to the dipole form and follows quark counting
rules [2,3], allowing the description of crossed reactions. In
recent works it has been suggested that it enters into the early
q̄ − q pair formation from the quantum vacuum [43,44]. In the
present work it is applied to fully hadronic reactions, providing
an exhaustive description of the considered reactions in the
FAIR-PANDA energy range.

At the PANDA experiment at FAIR, light mesons will be
copiously produced in the considered energy range. PANDA
will use an antiproton beam on a proton target. One important
line of research will be the measurement of timelike form
factors through p̄ + p → e+ + e− [11,12] or μ+ + μ− [45].
Namely, the annihilation into π+π− constitutes the largest
background to lepton pair production [13,46]. The imple-
mentation of Monte Carlo simulations for predictions and
optimization for the future experiments is planned.

This model can be extended to other binary channels; in
particular to neutral pion and other light meson production.
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These channels have smaller cross sections than charged pions,
by at least a factor of ten.
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APPENDIX A: NEUTRON EXCHANGE

The relevant formulas for the amplitudes and their interfer-
ences are given below. The amplitude for nucleon exchange
[see Fig. 1(a)] is written as

MN = g2
πNN

q2
t − M2

N

v̄(p1)(−q̂t + MN )u(p2), (A1)

where u(p2) [v̄(p1)] are the four-component spinors of the
proton. The matrix element squared is written as

|MN |2

= g4
πNN(

q2
t − M2

N

)2 Tr[(p̂1 − MN )(−q̂t + MN )

× (p̂2 + MN )(−q̂t + MN )]

= −2
g4

πNN(
t − M2

N

)2

[
m4

π + (
M2

N − t
)(

M2
N − s − t + 2mπ

)]
,

(A2)

with qt = k1 − p1 = p2 − k2, q2
t = t .

APPENDIX B: t-EXCHANGE OF �0

The specific ingredients for � exchange [see Fig. 1(b)] are
related to the spin 3/2 nature of the � resonance. For the

�-spin vector U�, we take the expression from Refs. [47–49],
where the density matrix is

Pμν = U�
μ (p�)Ū ∗�

ν (p�)

= −gμν + 1

3
γμγν + γμPν − γνPμ

3M�

+ 2

3

PμPν

M2
�

. (B1)

The � propagator is parametrized as

i

(2π )4

q̂t + M�

q2
t − M2

�

Pμν, (B2)

and the expression of the vertex � → πN is

− i(2π )4g�πNk
μ
1 . (B3)

M� = 1232 ± 2 MeV is the weighted mass of the � resonance
(i.e., the mass averaged over the � multiplet), and g�πN is the
coupling constant for the vertex � → πN .

The matrix element for the diagram in Fig. 1(b) is

M�0 = − g2
�πN

t − M2
�

v̄(p1)(q̂t + M�)Pμν(qt )u(p2)kμ
1 kν

2 . (B4)

Squaring the amplitude, one has

|M�0 |2 = g4
�πN(

t − M2
�

)2 k
μ
1 kν

2kα
1 k

β
2 Tr[(p̂1 − MN )(q̂t + M�)

×Pμν(qt )(p̂2 + MN )P̃αβ(qt )(q̂t + M�)]. (B5)

Here we use the notation Õ = γ0O
+γ0. To find the value of

g�Nπ coupling constant we consider the decay width of � into
nucleon and pion:

�� = 3

2

| �pp|
32πM2

�

|M(� → Nπ )|2, (B6)

where pp is the nucleon momentum in the system where the
� is at rest. Using the experimental values of the decay width
�� = 117 ± 3 MeV [31], one can estimate g�Nπ = 15.7 ±
0.4 GeV−1.

APPENDIX C: u-EXCHANGE OF �++

The diagram in Fig. 1(c) dominates π− emission at
backward angles. It involves the exchange of �++ and can
be obtained from t exchange, Fig. 1(b), with the replacements:
t ↔ u and k1 ↔ k2.

APPENDIX D: INTERFERENCES WITH �

1. The �0-N interference

The expression of the �0-N interference is

2Re
[
M∗

NM0
�

] = 2Re

{
g2

πNNg2
�πN(

t − M2
N

)(
t − M2

�

)Tr[(p̂1 + MN )(−q̂t + MN )(p̂2 + MN )P̃μν(qt )(q̂u + M�)]kμ
1 kν

2

}
, (D1)

with qu = k2 − p1 = p2 − k1, q2
u = u.
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2. The �++-N interference

The expression of the �++-N interference is

2Re[M∗
NM++

� ] = 2Re

{
g2

πNNg2
�πN(

u − M2
�

)(
t − M2

N

)Tr[(p̂1 + MN )(−q̂t + MN )(p̂2 + MN )P̃μν(qu)(q̂u + M�)]kν
1k

μ
2

}
. (D2)

3. The �++-�0 interference

The expression for the �++-�0 interference is

2Re
[
M∗0

� M++
�

] = 2Re

{
g4

�πN(
t − M2

�

)(
u − M2

�

)Tr[(p̂1 − MN )(q̂t + MN )Pμν(qt )(p̂2 + MN )P̃αβ(qu)(q̂u + M�)]kμ
1 kν

2kα
2 k

β
1

}
. (D3)

APPENDIX E: s-EXCHANGE OF ρ MESON

In the s channel, Fig. 1(d), we consider a ρ-meson contribution, with ∼100% branching ratio into two pions. We take for the
ρ propagator:

− i

(2π )4

[
gμν − (

q
μ
s qν

s

)/
m2

ρ

q2
s − m2

ρ + i
√

q2
s �ρ

(
q2

s

)]
, (E1)

and for the ρππ vertex:

−igρππ (k1 − k2)ν(2π )4, (E2)

where gμν is the metric tensor, qs = p1 + p2 = k1 + k2, and q2
s = s. The matrix element is written as

Mρ = gρppgρππ[
s − m2

ρ + i
√

s�ρ(s)
] [v̄(p1)�μ(q)u(p2)](k1 − k2)ν

{
gμν − qμqν

m2
ρ

}
. (E3)

Squaring the amplitude one gets

|Mρ |2 = g2
ρNNg2

ρππ[
s − m2

ρ + i
√

s�ρ(s)
]2 (k1 − k2)ν(k1 − k2)β

(
gμν − (qs)μ(qs)ν

m2
ρ

)(
gαβ − (qs)α(qs)β

m2
ρ

)
× Tr[(p̂1 − MN )�μ(qs)(p̂2 + MN )�α(qs)]. (E4)

The coupling constant gρ→ππ is found from the the experimental value of the total width � for the decay ρ → ππ : �(ρ) =
149.1 ± 0.8 MeV [31]. The branching ratio into two pions is ≈100%. The total width has the form

� = 4

3

g2
ρππ

16πm2
ρ

(
m2

ρ − 4m2
π

)3/2
, (E5)

where we added a factor 4/3 to take into account that there are three possible initial states of the ρ meson and four possible
charged decays. Inverting Eq. (E5) and using the experimental value for the decay width one finds the following value of the
coupling constant: gρππ = 5.175 ± 0.017.

APPENDIX F: INTERFERENCES WITH ρ

1. The N-ρ interference

The expression of the N -ρ interference is

2Re[M∗
NMρ] = 2Re

{
gπNNgρππg2

ρNN[
s − m2

ρ + i
√

s�ρ(s)
](

t − M2
N

)Tr[(p̂1 − MN )�μ(qs)(p̂2 + MN )P̃αβ(qt )(−q̂t + MN )]

× kα
1 k

β
2 (k1 − k2)ν

(
gμν − qμqν

m2
ρ

)}
. (F1)
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2. The �0-ρ interference

The expression of the �0-ρ interference is

2Re[M�0m∗
ρ] = 2Re

{
gρNNgρππg2

�ρN[
s − m2

ρ + i
√

s�ρ(s)
](

t − M2
�

)Tr[(p̂1 − MN )�μ(qs)(p̂2 + MN )P̃αβ(qt )(−q̂t + M�)]

× kα
1 k

β
2 (k1 − k2)ν

(
gμν − qμqν

m2
ρ

)}
. (F2)

3. The �++-ρ interference

The expression of the �++-ρ interference is

2Re[M�++m∗
ρ] = 2Re

{
gρNNgρππg2

�ρN[
s − m2

ρ + i
√

s�ρ(s)
](

u − M2
�

)Tr[(p̂1 − MN )�μ(qs)(p̂2 + MN )P̃αβ(qu)(−q̂u + M�)]

× kα
1 k

β
2 (k1 − k2)ν

(
gμν − qμqν

m2
ρ

)}
. (F3)
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