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Systematic procedure for analyzing cumulants at any order
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We present a systematic procedure for analyzing cumulants to arbitrary order in the context of heavy-ion
collisions. It generalizes and improves existing procedures in many respects. In particular, particles which are
correlated are allowed to belong to different phase-space windows, which may overlap. It also allows for the
analysis of cumulants at any order, using a simple algorithm rather than complicated expressions to be derived
and coded by hand. In the case of azimuthal correlations, it automatically corrects to leading order for detector
nonuniformity, and it is useful for numerous other applications as well. We discuss several of these applications:
anisotropic flow, event-plane correlations, symmetric cumulants, and net baryon and net charge fluctuations.
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I. INTRODUCTION

A nucleus-nucleus collision at ultrarelativistic energies
typically emits thousands of particles [1]. The large mul-
tiplicity enables one to accurately measure various high-
order correlations and cumulants. Cumulants are connected
correlations, and high-order cumulants are typically used to
probe the emergence of collective effects. More specifically,
cumulants of azimuthal correlations have been measured [2–6]
in order to study the collective expansion of the quark-
gluon plasma in the direction of the impact parameter or
elliptic flow [7,8]. Cumulants of the net proton [9] and net
charge [10,11] distributions are analyzed in order to search
for the critical fluctuations associated with the QCD phase
transition at finite baryon density [12,13]. Recent years have
witnessed the emergence of a great variety of new correlation
observables: Event-plane correlations [14,15], correlations
between transverse momentum and anisotropic flow [16],
or correlations between two different Fourier harmonics of
anisotropic flow [17,18], which all involve cumulants of
multiparticle correlations.

We propose a new framework for the cumulant analysis,
which is more flexible than existing frameworks and allows
one to fully exploit the potential of multiparticle correlation
analyses in high-energy collisions. Our understanding of the
collision dynamics has considerably evolved since cumulants
were introduced in this context [19]. The importance of
event-to-event fluctuations in the flow pattern [20,21] was only
recognized later [22,23]. More specifically, it was recently
shown that the rapidity dependence of anisotropic flow fluctu-
ates event to event [24,25]. This longitudinal decorrelation [26]
induces a sizable variation of azimuthal correlations with the
relative rapidity [27]. Existing analysis frameworks [28,29],
where all particles but one1 are taken from the same rapidity
window, do not allow study of this effect.

1The analysis of differential flow with cumulants correlates one
particle from a restricted phase space window with reference particles
which are all in the same window.

Precision studies of high-order cumulants are also needed.
They have been argued to be a crucial probe of collective be-
havior in proton-nucleus collisions [30–33] and proton-proton
collisions [34,35], and first analyses of order 6 and 8 cumulants
are promising [36]. High-order cumulants also provide insight
into non-Gaussian fluctuations in nucleus-nucleus collisions
[37–39], where they have also been measured up to order 8
[6,33]. The maximum value of 8 is dictated by existing analysis
frameworks, but higher orders are feasible experimentally.

The oldest framework [40] extracts cumulants by nu-
merically tabulating the generating function and using a
finite-difference approximation to compute its successive
derivatives. The numerical errors resulting from this procedure
are hard to evaluate. A new framework by Bilandzic et al. [29]
uses explicit expressions of cumulants in terms of moments
of the flow vector, which is a more robust approach. However,
only a finite set of cumulants are provided, and azimuthal
symmetry is assumed in order to simplify the algebraic
complexity of these expressions. Azimuthal asymmetries in
the detector acceptance and efficiency must therefore be
corrected beforehand. On the other hand, the cumulant analysis
automatically corrects for such asymmetries [19], so it is
tempting to use cumulants for this purpose as well.

Our new framework generalizes the approach of Bilandzic
[29] in several respects:

(1) It applies to arbitrary observables, not only to Fourier
coefficients of the azimuthal distribution.

(2) One can correlate particles from different bins in
rapidity and transverse momentum.

(3) No assumption is made regarding the detector accep-
tance and efficiency.

(4) Cumulants can be evaluated to arbitrarily high order.

In Sec. II, we illustrate the procedure on the simple
example of azimuthal pair correlations. We then generalize
results to higher-order correlations in Sec. III, where we
show how to remove self-correlations to all orders [17],
and in Sec. IV, where we give the inversion formulas for
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cumulants as a function of moments to all orders [41]. Specific
implementations are discussed in Sec. V.

II. EXAMPLE: PAIR CORRELATION

We illustrate the steps of the calculation on the simple
example of azimuthal pair correlations [42]. One typically
wants to compute an average value of cos n��, where n is
the harmonic order and �� is the relative azimuthal angle
between two particles in the same event [43]. Specifically, one
takes the first particle from a region of momentum space A
and the second from region B, and one evaluates

〈cos n��〉 ≡
〈∑

pairs ein(φj −φk )
〉

〈∑
pairs 1

〉 , (1)

where φj and φk are the azimuthal angles of particles belonging
to the same event, “pairs” is a shorthand notation for “j ∈ A,
k ∈ B and j �= k,” and angular brackets in the right-hand side
denote an average over events.2

One could evaluate the sums over pairs as nested loops over
j and k, but it is more efficient to instead factorize the sums
[29]. For example, if A and B are disjoint,∑

pairs

ein(φj −φk) =
∑
j∈A

einφj

∑
k∈B

e−inφk . (2)

In the case where regions A and B overlap, such that they share
some of the same particles, one must exclude the extra terms
with j = k, corresponding to a trivial correlation of a particle
with itself (self-correlation):∑

pairs

ein(φj −φk ) =
∑
j∈A

einφj

∑
k∈B

e−inφk −
∑

j∈A∩B

1, (3)

where the final sum is over the intersection of sets A
and B, A ∩ B, and each term has unit contribution since
ein(φj −φj ) = 1.

The next step is to average over a large number of collision
events. We first assume that particles are independent, in the
sense that the number of particles in two disjoint momentum
bins p1 and p2 are independent variables. Then, the average
number of pairs factorizes as a product of single averages, and〈∑

pairs

ein(φj −φk )

〉
=

〈∑
j∈A

einφj

〉〈∑
k∈B

e−inφk

〉
. (4)

For an ideal (isotropic) detector and azimuthal symmetric
regions A and B, the right-hand side vanishes identically, since
every collision event has an arbitrary azimuthal orientation. In
a more realistic experimental situation, the detector efficiency
has azimuthal asymmetries and the right-hand side is nonzero.
However, Eq. (4) is still valid when particles are independent.

In the more general case where particles are not indepen-
dent, we define the connected correlation as the difference
between the two sides of this equation. It thus isolates the

2The imaginary part of the right-hand side vanishes if parity is
conserved, up to statistical fluctuations and asymmetries in the
detector efficiency.

physical correlation and naturally corrects for asymmetries in
the detector:〈∑

pairs

ein(φj −φk )

〉
c

≡
〈∑

pairs

ein(φj −φk )

〉

−
〈∑

j∈A

einφj

〉〈∑
k∈B

e−inφk

〉
, (5)

where the subscript c in the left-hand side denotes the
connected part of the correlation, i.e., the cumulant [19].
Note, however, that a nonuniform efficiency introduces a
“cross-harmonic bias” [44] and the cumulant involves in
general several harmonics of the particle distribution, not just
harmonic n [45].

Note that our definition of independent particles is not
exactly equivalent to assuming that for a given pair of particles,
azimuthal angles φj and φk are independent [29]. With this
alternative definition, one can write an equation similar to
Eq. (4), where the left-hand side is divided by the average
number of pairs and the single-particle averages in the right-
hand side are divided by the average number of particles in
A and B. The definition of the cumulant is then modified
accordingly:

〈cos n��〉 ≡
〈∑

pairs ein(φj −φk )
〉

〈∑
pairs 1

〉
−

〈 ∑
j∈A einφj

〉
〈 ∑

j∈A 1
〉

〈 ∑
k∈B e−inφk

〉
〈∑

k∈B 1
〉 . (6)

The method in this paper can be applied with either choice, as
explained at the end of Sec. IV. The advantage of our definition
is that it simpler and allows one to treat multiplicity fluctuations
and correlations on the same footing as anisotropic flow. Its
apparent drawback is that a correlation can be induced by a
large fluctuation of the global multiplicity, which is of little
physical interest. However, one easily gets rid of this effect by
using a fine centrality binning, which is recommended anyway
for correlation analyses [46].3

Instead of explicitly considering the connected correlation
Eq. (5) [or its variant Eq. (6)] to correct for detector anisotropy,
one can do the correction in other ways. Bilandzic et al.
[29] weight each particle with 1/p, where p is the efficiency
(probability of detection) at the point where the particle hits
the detector. After the correction, azimuthal asymmetry can
be assumed, and the first term alone in the right-hand side
of Eq. (5) is equivalent to the connected part. This inverse
weighting method can still be used here but is no longer
necessary. In particular, note that inverse weighting cannot
be applied when there are holes in the detector, in which case
the efficiency p is 0.

3Note that early cumulant analyses, which used wide centrality bins
due to limited statistics, used a fixed subset of the multiplicity [3] in
order to avoid the effects of multiplicity fluctuations in conjunction
with detector asymmetries and nonflow correlations.
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Eliminating the nested sums gives the final expression for
the numerator and denominator of the measurement〈∑

pairs

ein(φj −φk )

〉
c

≡
〈∑

j∈A

einφj

∑
k∈B

e−inφk

〉
−

〈 ∑
j∈A∩B

1

〉

−
〈∑

j∈A

einφj

〉〈∑
k∈B

e−inφk

〉
(7)

and 〈∑
pairs

1

〉
=

〈∑
j∈A

1
∑
k∈B

1

〉
−

〈 ∑
j∈A∩B

1

〉
. (8)

In the following sections, we generalize the above discus-
sion to higher-order correlations and arbitrary observables.

III. SUBTRACTING SELF-CORRELATIONS

Cumulants can be constructed from moments, which are
correlations that count n-tuples in a collision event, where
n now denotes the order of the correlation. Depending on
the observable, one may weight every particle differently
depending on its momentum, as in Eq. (1). In general, one
evaluates in each event multiple sums of the type

Q(A1, . . . ,An) ≡
∑

j1∈A1,...,jn∈An

q1(j1) . . . qn(jn), (9)

where j1, . . . ,jn label particles chosen from n sets labeled
A1, . . . ,An (representing, e.g., specific regions in pT and η, or
particular particle species), all indices in the sum are different,
and qi(j ) are functions of the particle momentum. In the
numerator of Eq. (1), for example, we have q1(j ) = einφj and
q2(j ) = e−inφj .

The sum runs over all possible n-tuples in the same event.
If one uses nested loops, the time needed to evaluate such
sums grows with the multiplicity M like Mn, which can be
computationally prohibitive.

In this section, we explain how to express them as a function
of simple sums such as

Q(Ai) ≡
∑
ji∈Ai

qi(ji). (10)

This reduces the number of operations from Mn down to M
for any order n. In the case of the analysis of anisotropic flow,
Q(Ai) is the usual flow vector for particle set Ai [47,48].4

The idea is to factorize the sum, as in Eq. (2). In the
case when there is some overlap in the sets of particles Ai ,
however, one must subtract terms in the sum where the same
particle appears more than once, as in Eq. (3). In the case
of pair correlations, the notation (10) allows us to recast this
subtraction in compact form:

Q(A1,A2) = Q(A1)Q(A2) − Q(A1 ∩ A2). (11)

4Recursive algorithms for subtracting self-correlations in this
context are given by Bilandzic et al. in Sec. III A of Ref. [17].

We have introduced the auxiliary notation

Q(A1 ∩ A2) ≡
∑

j∈A1∩A2

q1(j )q2(j ), (12)

where the sum runs over all particles belonging to both A1

and A2.
Consider now a three-particle correlation. The product

Q(A1)Q(A2)Q(A3) contains all possible triplets, plus the
self-correlations which must be removed. One separates the
sum into different contributions, depending on which particles
are identical: (1) j1, j2, j3 all different, (2) j1 = j2 �= j3, (3)
j2 = j3 �= j1, (4) j1 = j3 �= j2, and (5) j1 = j2 = j3. This
decomposition can be represented with Young diagrams:

1
2
3

+ 1 2
3

+ 2 3
1

+ 1 3
2

+ 1 2 3 , (13)

where each box is associated with a set Ai . In each diagram,
different rows correspond to different values of the indices,
and the values of the indices are identical for boxes belonging
to the same horizontal row. The first term in Eq. (13) is the
term we want to isolate and others must be subtracted. The
subtraction, which generalizes Eq. (3) to third order, is derived
in Appendix B. One obtains [17]

Q(A1,A2,A3) = Q(A1)Q(A2)Q(A3) − Q(A1 ∩ A2)Q(A3)

−Q(A2 ∩ A3)Q(A1) − Q(A1 ∩ A3)Q(A2)

+ 2Q(A1 ∩ A2 ∩ A3), (14)

which we represent diagrammatically as

Q(A1,A2,A3) = − + 2 , (15)

where we have omitted the labels since the weights are
identical for all permutations of the indices. The right-hand
side of Eq. (14) is a sum over all partitions of the set
{A1,A2,A3}. This can be generalized to arbitrary n, as shown
in Appendix A. The contribution of a partition is the product
of contributions of its subsets, called blocks. Each row in
the Young diagram corresponds to a block of the partition.
The contribution of a block of k elements {Ai1 , . . . ,Aik }
is the product of the integer weight (−1)k−1(k − 1)! and
Q(Ai1 ∩ · · · ∩ Aik ), which is defined by a straightforward
generalization of Eq. (12):

Q
(
Ai1 ∩ · · · ∩ Aik

) ≡
∑

j∈Ai1 ∩···∩Aik

qi1 (j ) . . . qik (j ). (16)

Blocks of k = 1, 2, 3 elements get respective weights of 1,
−1, 2, which explains the factors in front of each term in
Eq. (14).

We write explicitly, for sake of illustration, the correspond-
ing formula for the four-particle correlation [17]:

Q(A1,A2,A3,A4) = Q(A1)Q(A2)Q(A3)Q(A4)
−Q(A1 ∩ A2)Q(A3)Q(A4)
−Q(A1 ∩ A3)Q(A2)Q(A4)
−Q(A2 ∩ A3)Q(A1)Q(A4)
−Q(A1 ∩ A4)Q(A2)Q(A3)
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−Q(A2 ∩ A4)Q(A1)Q(A3)
−Q(A3 ∩ A4)Q(A1)Q(A2)
+Q(A1 ∩ A2)Q(A3 ∩ A4)
+Q(A1 ∩ A3)Q(A2 ∩ A4)
+Q(A1 ∩ A4)Q(A2 ∩ A3)
+2Q(A1 ∩ A2 ∩ A3)Q(A4)
+2Q(A2 ∩ A3 ∩ A4)Q(A1)
+2Q(A1 ∩ A3 ∩ A4)Q(A2)
+2Q(A1 ∩ A2 ∩ A4)Q(A3)
−6Q(A1 ∩ A2 ∩ A3 ∩ A4), (17)

which we represent diagrammatically as

− + + 2 − 6 . (18)

The weight of a given partition can be read directly from
the Young diagram. It is the product over all rows (all blocks)
of (−1)k−1(k − 1)!, where k is the number of boxes in the row
(number of elements in block).

In order to implement the subtraction in the most general
case, one must generate all partitions of the set {A1, . . . ,An}.
An efficient algorithm has been described by Orlov, with a
public domain C++ implementation available [49]. A sum can
then be taken, with coefficient for each term given by the above
formula.

IV. FROM MOMENTS TO CUMULANTS

We now define the cumulants of n-particle correlations.
Let f (p1, . . . ,pn)dp1 . . . dpn denote the probability of finding
a n-tuple in dp1 . . . dpn. We call f (p1, . . . ,pn) the n-point
function. It is normalized to the average number of n-tuples:∫

p

f (p1, . . . ,pn) = 〈M(M − 1) . . . (M − n + 1)〉, (19)

where
∫
p

is a shorthand notation for
∫

dp1 . . . dpn, and M

denotes the total multiplicity of an event.
The connected n-point function fc(p1, . . . ,pn), or cumu-

lant, is the contribution of the n-particle correlation. For any
order n, it is defined recursively by isolating n-particle clusters
through an order-by-order decomposition of f (p1, . . . ,pn)
[41]. The 1-point functions are equal by definition:

f (p1) = fc(p1). (20)

The two-point function is the sum of an uncorrelated part and
a correlated part fc(p1,p2):

f (p1,p2) = fc(p1,p2) + fc(p1)fc(p2). (21)

Similarly, one defines fc(p1,p2,p3) as the part of f (p1,p2,p3),
which is not due to lower-order correlations [50]:

f (p1,p2,p3) = fc(p1,p2,p3) + fc(p1,p2)fc(p3)
+fc(p2,p3)fc(p1) + fc(p1,p3)fc(p2)
+fc(p1)fc(p2)fc(p3). (22)

The right-hand side of this equation is again a sum over parti-
tions of the set {p1,p2,p3}, where each cluster corresponds to

a block of the partition. It can be represented diagrammatically
as

1 2 3 + 1 2
3

+ 2 3
1

+ 1 3
2

+
1
2
3

. (23)

Generalization to arbitrary order n is straightforward.
The average of Q(A1, . . . ,An) over many collision events

is a weighted integral of f (p1, . . . ,pn):

〈Q(A1, . . . ,An)〉 =
∫

p

q1(p1) . . . qn(pn)f (p1, . . . ,pn). (24)

We refer to such averages as moments. The cumulant decom-
position applies to moments after multiplying equations (21)
and (22) by qi(pi) and integrating over pi . The cumulant of
order 2 is thus given by the inversion formula

〈Q(A1,A2)〉c ≡ 〈Q(A1,A2)〉 − 〈Q(A1)〉〈Q(A2)〉, (25)

which generalizes Eq. (5), and which we rewrite synthetically
as

〈Q1Q2〉c = 〈Q1Q2〉 − 〈Q1〉〈Q2〉. (26)

Note that the cumulant is unchanged if one shifts Qi by
a constant value. This property of translational invariance
[51], which is true to all orders, explains why cumulants are
remarkably stable with respect to detector imperfections.

We write for sake of illustration the inversion formulas
giving cumulants of order 3 and 4 as a function of the
corresponding moments:

〈Q1Q2Q3〉c = 〈Q1Q2Q3〉 − 〈Q1Q2〉〈Q3〉
−〈Q1Q3〉〈Q2〉 − 〈Q2Q3〉〈Q1〉
+2〈Q1〉〈Q2〉〈Q3〉 (27)

and

〈Q1Q2Q3Q4〉c = 〈Q1Q2Q3Q4〉 − 〈Q1Q2Q3〉〈Q4〉
−〈Q2Q3Q4〉〈Q1〉 − 〈Q1Q3Q4〉〈Q2〉
−〈Q1Q2Q4〉〈Q3〉 − 〈Q1Q2〉〈Q3Q4〉
−〈Q1Q3〉〈Q2Q4〉 − 〈Q1Q4〉〈Q2Q3〉
+2〈Q1Q2〉〈Q3〉〈Q4〉+2〈Q1Q3〉〈Q2〉〈Q4〉
+2〈Q2Q3〉〈Q1〉〈Q4〉+2〈Q1Q4〉〈Q2〉〈Q3〉
+2〈Q2Q4〉〈Q1〉〈Q3〉+2〈Q3Q4〉〈Q1〉〈Q2〉
−6〈Q1〉〈Q2〉〈Q3〉〈Q4〉. (28)

The right-hand sides of these equations are again sums over
partitions of the sets {A1,A2, . . . ,An} for n = 2,3,4. We
represent them diagrammatically as

〈Q1Q2〉c = −

〈Q1Q2Q3〉c = − + 2

〈Q1Q2Q3Q4〉c = −

− + 2 − 6 (29)
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The weight of each term is given by a classic [41] Möbius
inversion formula (see Appendix A). It is equal to (−1)n−1(n −
1)!, where n is the number of blocks of the partition, i.e., the
number of rows of the diagram.

Note the striking formal analogy between the subtraction of
self-correlations and the cumulant expansion. Both involve a
summation over set partitions (so both can be generated by the
same algorithm [49]). The only difference is that the weight
associated with each Young diagram involves the number of
boxes in each row for self-correlations and the number of rows
for the cumulant expansion.

Finally, we point out that the corrections for self-
correlations cancel to some extent in the cumulant. Take as
an example the order 3 cumulant, given by Eq. (27). Moments
of order 2 and 3 in the right-hand side must be corrected for
self-correlations using Eqs. (11) and (14), and averaged over
events. After summing all terms, the correction to the cumulant
from self-correlation can be written as

〈Q(A1 ∩ A2)〉〈Q(A3)〉 − 〈Q(A1 ∩ A2)Q(A3)〉
+ 〈Q(A1 ∩ A3)〉〈Q(A2)〉 − 〈Q(A1 ∩ A3)Q(A2)〉
+ 〈Q(A2 ∩ A3)〉〈Q(A1)〉 − 〈Q(A2 ∩ A3)Q(A1)〉
+ 2〈Q(A1 ∩ A2 ∩ A3)〉. (30)

The first line is, up to a sign, the connected correlation between
Q(A1 ∩ A2) and Q(A3), which is usually much smaller than
their respective magnitudes. This is true to all orders [19], and
the contribution to cumulants from self-correlations becomes
smaller as the order increases when collective effects are
present.5 It has been checked experimentally [5,52] that one
obtains compatible results with and without self-correlations
in the limit of large cumulant order, through an analysis of
Lee-Yang zeros [53,54].

Self-correlations must be subtracted on an event-by-event
basis, and the number of terms increases strongly with the order
n (it is the Bell number); therefore they are a limiting factor for
the calculation. However, it is expected that they are negligible
beyond a certain order (which should explicitly be checked by
doing the calculation with and without self-correlations). The
cumulant expansion can then be pushed to arbitrarily high
order, limited only by statistical uncertainty.

Our definition of cumulants in this section follows from
our choice of random variables, which are the numbers of
n-tuples in a momentum bin dp1 . . . dpn. As discussed in
Sec. II, an alternative choice is to choose as random variables
the momenta p1, . . . ,pn themselves [29]. Our method also
accommodates this definition, at the expense of a slight
complication: One must normalize each moment by the
average number of n-tuples before taking the cumulant (as
in Eqs. (7) and (8) of Ref. [29]). This number is obtained
by repeating the calculations of Sec. III with qk(jk) = 1 in
Eq. (9). However, this complication does not appear to offer
any advantage. Our formulation has the advantage that it

5In the context of the analysis of anisotropic flow, this is consistent
with the expectation that higher-order cumulants are less sensitive
to nonflow effects, since nonflow effects are of the same order as
self-correlations [45].

provides a unified framework for all analyses of correlations
and fluctuations, as we now explain.

V. APPLICATIONS

The interest of cumulants is that they subtract the effect
of lower correlations and isolate n-particle correlations. If a
nucleus-nucleus collision is a superposition of a fixed number
N of independent nucleon-nucleon collisions, a moment of
order n scales like Nn, while the corresponding cumulant is
proportional to N . If, on the other hand, there are collective
effects in the system, cumulants are typically of the same order
as moments, so that large cumulants are a clear signature of
collective effects.

By collective effect, one typically means an all-particle
correlation. Collective effects often arise from global fluctu-
ations, which affect the whole system. The fluctuation of the
total multiplicity, already mentioned in Sec. II, is a mundane
collective effect which can be eliminated by a fine centrality
binning [46]. On the other hand, fixing the total multiplicity
M in each event also generates cumulants to all orders, but
they are proportional to M at any order (see Appendix C). As
a result, working at a fixed multiplicity does not generate fake
collective effects.

We now describe how usual cumulant analyses can be
implemented within our framework.

A. Net charge fluctuations and related studies

Our framework, where the random variables are numbers
of particles in momentum bins (as opposed to momenta
of given particles [29]), naturally encompasses correlation
studies involving these numbers themselves, such as net charge
and net baryon fluctuations.

We first illustrate the formulas derived in previous sections
by discussing the simplest case, where one takes all particles
from the same set, A1 = · · · = An, and all the functions qi

in Eq. (9) are equal to 1. In this case, the summation in this
equation just counts the number of n-tuples of M particles [cf.
Eq. (19)]:

Q(A1, . . . ,An) = M(M − 1) . . . (M − n + 1). (31)

This result can be used to check the validity of Eqs. (11), (14),
and (17). Each factor Q(...) in these equations is equal to M;
therefore, they reduce to

Q(A1,A2) = M2 − M,

Q(A1,A2,A3) = M3 − 3M2 + 2M, (32)

Q(A1,A2,A3,A4) = M4 − 6M3 + 11M2 − 6M,

which agree with the general result (31) after expanding in
powers of M .

Averaging Q(A1, . . . ,An) over events, one obtains the
(unnormalized) factorial moment Fn, which counts the average
number of n-tuples:

Fn ≡ 〈M(M − 1) . . . (M − n + 1)〉. (33)

If M is distributed according to a Poisson distribution,
Fn = 〈M〉n.
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The cumulants as defined in Sec. IV are the factorial
cumulants Kn [55] of the distribution of M; unlike traditional
multiplicity cumulants, they vanish for n � 2 for a Poisson
distribution and are therefore automatically corrected for
trivial statistical fluctuations [56].6 In the same way, one
can study correlations between multiplicities in two different
rapidity windows, such as forward-backward correlations
[58,59], which have been proposed as a probe of longitudinal
fluctuations [60]. Analyses could easily be extended to higher-
order cumulants [61].

Consider next the case where qi in Eq. (9) is the baryon
number or the electric charge. Assuming that qi = ±1 for all
particles, the moment of order 2, as defined by Eq. (11), is
Q(A1,A2) = �N2

ch − M , where = �Nch = ∑
i qi is the net

charge and M = ∑
i(qi)2 is the charged multiplicity. Thus

trivial fluctuations are again subtracted, and such observables
give more direct access to interesting quantities than the raw
distribution of �Nch [11] or traditional cumulants [62].

B. Anisotropic flow

The analysis of anisotropic flow is one the most important
practical applications of cumulants in high-energy physics. We
recall the definition of the relevant observables and how they
are obtained in our framework.

The flow paradigm [23,63] states that the bulk of particle
production is well described by independent-particle emission
from an underlying probability distribution. The classic picture
is that of a relativistic fluid—near freeze-out, the system is a
fluid, composed of well-defined particles that are uncorrelated
with each other (e.g., as in a Boltzmann description). In
other words, if every event had the same hydrodynamic initial
conditions (and a fixed orientation), the connected correlations
defined by Eqs. (21) and (22) would vanish.

In a single event, then, all information is contained in the
single-particle distribution F (p). Note that this single-particle
distribution is different from f (p) in Eq. (20), which is F (p)
averaged over events (and azimuthal orientation). Anisotropic
flow is the particular observation that the single-particle
distribution depends on azimuthal angle φ:

F (p) = N

2π

∞∑
n=−∞

Vne
inφ, (34)

with V0 = 1, V−n = V ∗
n , and N is the average number of

particles in the event. One denotes by vn ≡ |Vn| the anisotropic
flow coefficient in harmonic n [64] in a particular event.

One can instead absorb the factor of N into the coefficients
[65]

F (p) = 1

2π

∞∑
n=−∞

Vne
inφ, (35)

where now Vn = NVn. While less standard, these are
convenient quantities since they are additive with respect to

6Notations are not yet standardized. Bzdak et al. use the notation Kn

for traditional cumulants and Cn for factorial cumulants [56], while
the STAR Collaboration [57] uses Cn for traditional cumulants.

rebinning in momentum space and are more natural quantities
with respect to the cumulant analysis.

The single-event distribution F (p) fluctuates from one
event to the next. Upon averaging over events (and fluctu-
ations), this generates correlations to all orders. Moments
and cumulants of multiparticle correlations are moments and
cumulants of F (p).7

Even if the bulk of particle production can be described
according to this single-particle distribution, it is expected for
there to be small correlations that cannot be captured by F (p).
Such effects are typically referred to as “nonflow” and can arise
from sources such as Bose-Einstein correlations, resonance
decays, unthermalized jets, momentum conservation, etc.
Observables involving higher-order cumulants are expected
to be less sensitive to such nonflow effects [19].

The measure of vn from the cumulant of order 2k is
usually noted vn{2k}, and it can easily be obtained with the
procedure outlined above. This generalizes the discussion of
pair correlations outlined in Sec. II. One now takes 2k-tuples,
again taken from the same region of phase space (“integrated”
flow). The factor qi in Eq. (9) is equal to einφ for the first k
particles and to e−inφ for the next k particles. The subtraction
of self-correlations carried out in Sec. III generalizes that of
Ref. [29]. For instance, one easily checks that the order-4
result Eq. (17) reproduces the numerator of Eq. (18) of
Ref. [29].8 We denote by 〈|Qn|2k〉c the cumulant obtained
after subtracting self-correlations, averaging over events and
subtracting lower-order moments (Sec. IV). As explained
above, it is a cumulant of the distribution of Vn. We thus
define

Vn{2k}2k ≡ 1

a2k

〈|Qn|2k〉c, (36)

where a2k is the ratio of the coefficients of the expansions of
ln I0(x) (cumulants) and I0(x) (moments) to order x2k [19]:

ln I0(x) =
∞∑

k=1

a2kx
2k

22k(k!)2
, (37)

which gives a2 = 1, a4 = −1, a6 = 4, a8 = −33, a10 = 456,
a12 = −9460, etc. This normalization ensures that Vn{2k} =
|Vn| for all k if |Vn| were the same for all events.

In order to match the usual normalization convention of
the flow coefficients vn, one normalizes this cumulant by

7There are nontrivial mathematical consequences to having uncor-
related particles in each event, e.g., for pair correlations [66,67].

8The weight of each event is the same as in Ref. [29], in the sense
that all n-tuples are treated on an equal footing (and as a result,
each event can have significantly different contribution, if multiplicity
fluctuates). A variety of prescriptions are found in the literature.
The scalar-product analysis [2] and the Lee-Yang zero analysis [45]
use a prescription equivalent to ours. The cumulant analysis of Ref.
[40] weights each event by 1/M , and the analysis of event-plane
correlations [15] implements a similar weight 1/ET , where ET is
the energy deposited in the calorimeter. Finally, factors of 1/

√
M

were used in the cumulant analysis of Ref. [19] and in studies of the
distribution of the flow vector [2]).
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the average number of 2k-tuples. The standard azimuthal
cumulants are thus given by

vn{2k}2k ≡ 1

a2k

〈|Qn|2k〉c
F2k

. (38)

This normalization ensures that again vn{2k} = vn when there
are no fluctuations.

For the traditional measurement of differential flow [19], the
only difference with the previous case is that the first particle
is taken from a different (restricted) phase space window B,
while the 2k − 1 remaining particles are taken from the same
set of particles A. One then scales the resulting cumulant with
the corresponding number of 2k-tuples (with 1 particle in
B and 2k − 1 particles in A). The flow in B, traditionally
denoted by v′

n{2k}, is again given by an equation similar to
(38), where one replaces in the left-hand side vn{2k}2k with
v′

n{2k}vn{2k}2k−1. Note that the coefficients ak are the same as
for integrated flow.

In principle, each particle can be taken from an arbitrary
region in momentum space, and many other differential analy-
ses are possible [68,69]. With our normalization conventions,
all differential cumulants are additively related to integrated
measurements.

C. Symmetric cumulants and event-plane correlations

The normalized symmetric cumulant NSC(m,n) with n �=
m can be defined by [18]9

NSC(m,n) = 〈QnQmQ−nQ−m〉c
〈|Qn|2〉c〈|Qm|2〉c (39)

(flow)= 〈|Vm|2|Vn|2〉 − 〈|Vm|2〉〈|Vn|2〉
〈|Vm|2〉〈|Vn|2〉 . (40)

The numerator is a four-particle cumulant [17] with q1 = eimφ ,
q2 = einφ , q3 = e−imφ , and q4 = e−inφ . The fact that it is
measured through a four-particle cumulant guarantees that
nonflow effects are small. Equation (40) is the value assuming
the flow paradigm of independent particles in each event.

The mean square values 〈|Vn|2〉 = F2vn{2}2 in the denom-
inator are two-particle cumulants obtained as described in
Sec. V B, which may be biased by short-range correlations
(especially nonflow effects) unless a rapidity gap is applied.
The existing analysis [18] implements a gap in the denomi-
nator, but not in the numerator, hence neglecting the effect of
longitudinal fluctuations. It would be interesting to redo the
analysis by implementing the same gap in the numerator and
the denominator, and studying how NSC(m,n) varies with the
gap.

Event-plane correlations [15] are Pearson correlation co-
efficients between different complex flow hamonics [70,71].
For instance, the two-plane correlation between V2 and V4 is

9As with previous cumulants, the ALICE Collaboration chose to
normalize each individual moment by F2 or F4. See the discussion at
the end of Sec. IV. We chose to have no normalization factors in the
normalized measurement.

defined as (we use the notation of ATLAS):

〈cos (4(�2 − �4))〉w ≡ 〈Q4Q−2Q−2〉c√〈|Q4|2
〉
c

〈|Q2|4
〉 (41)

(flow)= 〈V4(V∗
2 )2〉√

〈|V4|2〉〈|V2|4〉
. (42)

The numerator is a three-particle cumulant obtained with
q1 = e4iφ , q2 = q3 = e−2iφ . The ATLAS analysis uses two
sets of particles separated with a rapidity gap, where particles
2 and 3 belong to the same bin. Thus self-correlations
between particles 2 and 3 are not removed. It has been
argued that they are small [72], but it will be interesting to
check experimentally. The denominator of Eq. (41) involves
moments which, as in the case of symmetric cumulants, may be
biased by nonflow effect unless a rapidity gap is applied (note
that the four-particle v2 factor is a moment, not a cumulant).

It has been pointed out [73] that the value of NSC(4,2)
measured by ALICE seems large compared to what one would
expect based on the corresponding event-plane correlation
measured by ATLAS [15], where a large rapidity gap is
implemented. It would be interesting to measure both the
symmetric cumulant and the event-plane correlation with the
same kinematic cuts.

D. Correlation between transverse momentum
and anisotropic flow

The correlation between transverse momentum and
anisotropic flow recently proposed by Bozek as a further test of
hydrodynamic behavior [16] is a straightforward application
of our formalism. It is a three-particle cumulant with q1 = pt ,
q2 = einφ , and q3 = e−inφ . Bozek recommends to use particles
from three different rapidity intervals A,B,C separated with
gaps in order to avoid nonflow correlations but predicts
that results should be identical if A = B = C provided that
self-correlations are subtracted.

VI. CONCLUSION

We have proposed a new, unified framework for cumulant
analyses which is more systematic and flexible than existing
frameworks and discussed its practical implementation for the
analysis of factorial cumulants and anisotropic flow. A major
improvement is that one can correlate particles in arbitrary
regions of phase space. Application to proton-nucleus and
nucleus-nucleus at RHIC and the LHC should shed light
on longitudinal fluctuations. Our procedure is systematic
and can be carried out to arbitrarily large orders, which is
important in order to probe collective behavior. In particular,
we have argued that the subtraction of self-correlations, which
is the limiting factor when going to higher orders, becomes
a negligible correction at large orders. This can be checked
explicitly, and the cumulant expansion can then be extended
to higher orders. Finally, our new framework also extends
beyond the analysis of anisotropic flow, and we anticipate a
rich program of generalized cumulant analyses on this basis in
the near future.
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APPENDIX A: MÖBIUS INVERSION

In this Appendix, we recall some known facts [74] on
Möbius inversion applied to functions of set partitions. We
show in particular how it implies the moment/cumulant
relations of Sec. IV, as well as the self-correlation subtraction
of Sec. III.

1. Set partitions and Möbius inversion

Let [n] ≡ {1,2, . . . ,n} and P(n) the set of its partitions.
We denote by I = {I1, . . . ,Ik} a partition, where Ij are subsets
of [n], called blocks of the partition. The number of blocks
k is called the length of the partition I and denoted by |I|.
There is a natural partial order relation on partitions which
we denote by � and is defined as follows. If I and J are two
partitions of [n], I � J if the partition I is a refinement of the
partition J, that is, if each block of I is included in a block of J.
For instance we have {{1,2},{3},{4}} � {{1,2},{3,4}} but the
order relation does not relate {{1,2},{3,4}} to {{1,3},{2,4}}.
The finest partition is denoted by 0̂ ≡ {{1},{2}, . . . ,{n}} and
the coarsest partition by 1̂ ≡ [n]. For all I ∈ P(n), 0̂ � I � 1̂.

The Möbius inversion formula goes as follows [75].
Assume we have two real functions f,g defined on P(n), such
that for all I ∈ P(n):

f (J) =
∑

0̂�I�J

g(I); (A1)

then we have the inverse relation

g(J) =
∑

0̂�I�J

μ(I,J) f (I), (A2)

where the Möbius function μ(I,J) is given by

μ(I,J) = (−1)|I|−|J|
n∏

i=1

((i − 1)!)ri (I,J), (A3)

where ri(I,J) denotes the number of blocks of J containing
exactly i blocks of I.

Likewise, there is a dual Möbius inversion formula:
Assuming f,g are related via

f (I) =
∑

I�J�1̂

g(J) (A4)

for all I ∈ P(n) then we have the inverse relations

g(I) =
∑

I�J�1̂

μ(I,J) f (J). (A5)

2. Applications

An example of the decomposition (A1) is the decomposi-
tion of moments into cumulants (Sec. IV). One defines f (I) as
the product of moments over all blocks, and g(I) as the product
of cumulants over all blocks, that is,

f (I) ≡
|I|∏

j=1

〈∏
l∈Ij

Ql

〉
,

(A6)

g(I) ≡
|I|∏

j=1

〈∏
l∈Ij

Ql

〉
c

.

Then the Möbius inversion formula (A2) specialized to J = 1̂
gives the connected correlation function 〈Q1 . . .Qn〉c in terms
of moments as a sum over partitions, with coefficients

μ(I,1̂) = (−1)|I|−1 (|I| − 1)! (A7)

Formulas (26), (27), and (28) follow as well as the general
case.

Similarly, the dual Möbius inversion formula applies di-
rectly to the problem of subtracting self-correlations (Sec. III).
We now define f ([n]) ≡ Q(A1) . . . Q(An) (sum over all
indices, including self-correlations) g([n]) ≡ Q(A1, . . . ,An)
(sum over different indices), and more generally

f (I) ≡ Q(∩i∈I1Ai)Q(∩i∈I2Ai) . . . Q(∩i∈In
Ai),

(A8)
g(I) ≡ Q(∩i∈I1Ai, ∩i∈I2 Ai, . . . , ∩i∈In

Ai).

The relations (A4) are clearly satisfied, as shown by splitting
uncontrained sums into sums of constrained ones, for instance,

Q(A1)Q(A2) =
∑
i,j

q1(i)q2(j )

=
∑
i �=j

q1(i)q2(j ) +
∑
i=j

q1(i)q2(i)

= Q(A1,A2) + Q(A1 ∩ A2). (A9)

The dual Möbius inversion formula (A5) for I = 0̂ gives the
expression for g(0̂) = Q(A1,A2, . . . ,An) in terms of the f (J),
with coefficients

μ(0̂,J) =
|J|∏
i=1

(−1)|Ji |−1 (|Ji | − 1)! (A10)

where |Ji | is the cardinality of the block Ji , equal to the length
of the ith row of the Young diagram of J. Formulas (11), (14),
and (17) and their generalization follow.

APPENDIX B: RECURSION RELATION

We derive a relation for generating the self-correlation
corrections order by order. It is simple to implement and
easy to understand, but less efficient numerically than the
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general method exposed in Sec. III. Similar relations have
been previously derived in Ref. [17].

We want to evaluate sums of the type

Q(A1, . . . ,An) ≡
∑

j1∈A1,...,jn∈An

q1(j1) . . . qn(jn), (B1)

where all indices in the sum are different. Self-correlations
can be subtracted order by order. Once one has a formula that
works for n − 1, then to order n one has

Q(A1, . . . ,An) = Q(A1, . . . ,An−1)Q(An)

−
n−1∑
k=1

Q(A1, . . . ,Ak ∩ An, . . . ,An−1).

(B2)

The first term in the right-hand side takes into account the
conditions that the indices i1 to in−1 are all different, and
the last term subtracts the contributions from ik = in. It is
understood that the product qiqj should be used together with
the intersection Ai ∩ Aj . For n = 2, Eq. (B2) gives Eq. (3).
For n = 3, it gives

Q(A1,A2,A3) = Q(A1,A2)Q(A3) − Q(A1 ∩ A3,A2)
−Q(A1,A2 ∩ A3). (B3)

Substituting Eq. (3) into Eq. (B3), one obtains Eq. (14). For
n = 4, Eq. (B2) gives

Q(A1,A2,A3,A4) = Q(A1,A2,A3)Q(A4)
−Q(A1 ∩ A4,A2,A3)
−Q(A1,A2 ∩ A4,A3)
−Q(A1,A2,A3 ∩ A4). (B4)

Substituting Eq. (B3) into Eq. (B4), one obtains Eq. (17).
Generating the subtraction to order n with this method requires
n! operations so that it is less efficient in practice than
generating partitions, since the number of partitions is the
Bell number which grows more slowly with n than n!.

APPENDIX C: GENERATING FUNCTION

Moments and cumulants to all orders are conveniently
expressed in terms of generating functions. The moment
defined by Eq. (24) can be obtained by expanding the

generating function:

G(z1, . . . ,zn) ≡
〈

M∏
j=1

[1 + z1q1(j ) + · · · + znqn(j )]

〉
, (C1)

where the product runs over all particles in the event. If one
expands the product, the moment defined by (the average over
events of) Eq. (9) is the coefficient in front of z1 . . . zn. The
corresponding cumulant is given by the expansion of ln G to
the same order:

〈Q1 . . . Qn〉c = ∂n

∂z1 · · · ∂zn

ln G(z1, . . . ,zn)

∣∣∣∣
z1=···=zn=0

. (C2)

Writing G as a product over all particles [40] guarantees that
self-correlations do not appear at any order in the expansion.
If one does not subtract self correlations, then the generating
function takes the usual exponential form [19]:

G(z1, . . . ,zn) ≡ 〈exp (z1Q(A1) + · · · + znQ(An))〉, (C3)

with Q(Ai) = ∑
j qi(j ). Note that Eq. (C1) can also be written

in an exponential form analogous to (C3) by introducing
Grassmann variables [76]. This formal analogy shows that
the algebraic relations linking moments to cumulants, derived
in Sec. IV, are identical irrespective of whether or not
self-correlations are subtracted. Both forms of the generating
function have been used [5,52] in the context of the analysis
of elliptic flow with Lee-Yang zeros [45].

As an application of the formalism, we evaluate the
generating function (C1) in the simple case of independent
particles, where all terms in the product are independent. First,
consider the case where the multiplicity M is fixed. Then,
Eq. (C1) gives

G(z1, . . . ,zn) = (1 + z1〈q1〉 + · · · + zn〈qn〉)M. (C4)

Therefore, ln G is proportional to M and cumulants of arbitrary
order scale like M , as stated in the first paragraph of Sec. V.

If, on the other hand, all the connected n-point functions
f (p1, . . . ,pn) vanish for n � 2, then, the multiplicity M
follows a Poisson distribution:

pM = 〈M〉M
M!

e−〈M〉. (C5)

Inserting into Eq. (C1) and summing the series, one obtains

G(z1, . . . ,zn) = exp (〈M〉(z1〈q1〉 + · · · + zn〈qn〉)). (C6)

Therefore, ln G(z1, . . . ,zn) is linear in all the variables z1 and
cumulants of order � 2 vanish identically, as expected.
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